1
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Pradhan B, Kim H, Abassi S, Ki JS. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel) 2022; 14:397. [PMID: 35737058 PMCID: PMC9229940 DOI: 10.3390/toxins14060397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (B.P.); (H.K.); (S.A.)
| |
Collapse
|
3
|
Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022; 41:4219-4252. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria (blue-green algae) are Gram-negative photosynthetic eubacteria that are found everywhere. This largest group of photosynthetic prokaryotes is rich in structurally novel and biologically active compounds; several of which have been utilized as prospective drugs against cancer and other ailments, as well. Consequently, the integument of nanoparticles-synthetic approaches in cyanobacterial extracts should increase pharmacological activity. Moreover, silver nanoparticles (AgNPs) are small materials with diameters below 100 nm that are classified into different classes based on their forms, sizes, and characteristics. Indeed, the biosynthesized AgNPs are generated with a variety of organisms, algae, plants, bacteria, and a few others, for the medicinal purposes, as the bioactive compounds of curio and some proteins from cyanobacteria have the potentiality in the treatment of a wide range of infectious diseases. The critical focus of this review is on the antimicrobial, antioxidant, and anticancer properties of cyanobacteria. This would be useful in the pharmaceutical industries in the future drug development cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Linington RG, Keller L, Choi H, Bertin MJ. Special Issue in Honor of Professor William Gerwick. JOURNAL OF NATURAL PRODUCTS 2022; 85:459-461. [PMID: 35330994 DOI: 10.1021/acs.jnatprod.2c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lena Keller
- Weincampus Neustadt, University of Applied Sciences Kaiserslautern, 67435 Neustadt an der Weinstraße, Germany
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
5
|
Li T, Xi C, Yu Y, Wang N, Wang X, Iwasaki A, Fang F, Ding L, Li S, Zhang W, Yuan Y, Wang T, Yan X, He S, Cao Z, Naman CB. Targeted Discovery of Amantamide B, an Ion Channel Modulating Nonapeptide from a South China Sea Oscillatoria Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2022; 85:493-500. [PMID: 34986303 DOI: 10.1021/acs.jnatprod.1c00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amantamide B (1) is a new linear nonapeptide analogue of the cyanobacterial natural product amantamide A (2), and both have methyl ester and butanamide termini. These compounds were discovered in this study from the organic extract of a tropical marine filamentous cyanobacterium, Oscillatoria sp., collected around the Paracel Islands in the South China Sea. The use of LC-MS/MS molecular networking for sample prioritization and as an analytical dereplication tool facilitated the targeted isolation of 1 and 2. These molecules were characterized by spectroscopy and spectrometry, and configurational assignments were determined using chemical degradation and chiral-phase HPLC analysis. Compounds 1 and 2 modulated spontaneous calcium oscillations without notable cytotoxicity at 10 μM in short duration in vitro testing on primary cultured neocortical neurons, a model system that evaluates neuronal excitability and/or the potential activity on Ca2+ signaling. Both molecules were also found to be moderately cytotoxic in longer duration bioassays, with in vitro IC50 values of 1-10 μM against CCRF-CEM human T lymphoblastoid cells and U937 human histiocytic lymphoma cells. These formerly undiscovered bioactivities of known compound 2 expand upon its previously reported function as a selective CXCR7 agonist among 168 GPCR targets.
Collapse
Affiliation(s)
- Te Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xiao Wang
- Department of Pathology and Pathogen Biology, College of Medicine, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fang Fang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Shuang Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Ye Yuan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| |
Collapse
|
6
|
Pharmacological Dissection of the Crosstalk between Na V and Ca V Channels in GH3b6 Cells. Int J Mol Sci 2022; 23:ijms23020827. [PMID: 35055012 PMCID: PMC8775721 DOI: 10.3390/ijms23020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.
Collapse
|
7
|
Shen S, Wang W, Chen Z, Zhang H, Yang Y, Wang X, Fu P, Han B. Absolute Structure Determination and Kv1.5 Ion Channel Inhibition Activities of New Debromoaplysiatoxin Analogues. Mar Drugs 2021; 19:630. [PMID: 34822501 PMCID: PMC8622842 DOI: 10.3390/md19110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022] Open
Abstract
Potassium channel Kv1.5 has been considered a key target for new treatments of atrial tachyarrhythmias, with few side effects. Four new debromoaplysiatoxin analogues with a 6/6/12 fused ring system were isolated from marine cyanobacterium Lyngbya sp. Their planar structures were elucidated by HRESIMS, 1D and 2D NMR. The absolute configuration of oscillatoxin J (1) was determined by single-crystal X-ray diffraction, and the absolute configurations of oscillatoxin K (2), oscillatoxin L (3) and oscillatoxin M (4) were confirmed on the basis of GIAO NMR shift calculation followed by DP4 analysis. The current study confirmed the absolute configuration of the pivotal chiral positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic ring system. Compound 1, 2 and 4 exhibited blocking activities against Kv1.5 with IC50 values of 2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively. However, compound 3 exhibited a minimum effect on Kv1.5 at 10 µM. Furthermore, all of these new debromoaplysiatoxin analogs displayed no apparent activity in a brine shrimp toxicity assay.
Collapse
Affiliation(s)
- Sicheng Shen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Weiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.W.); (X.W.)
| | - Zijun Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Huihui Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Yuchun Yang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| | - Xiaoliang Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.W.); (X.W.)
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.S.); (Z.C.); (H.Z.); (Y.Y.)
| |
Collapse
|
8
|
Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mar Drugs 2021; 19:md19100562. [PMID: 34677461 PMCID: PMC8537899 DOI: 10.3390/md19100562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are considered to be one of the most important ion channels given their remarkable physiological role. VGSCs constitute a family of large transmembrane proteins that allow transmission, generation, and propagation of action potentials. This occurs by conducting Na+ ions through the membrane, supporting cell excitability and communication signals in various systems. As a result, a wide range of coordination and physiological functions, from locomotion to cognition, can be accomplished. Drugs that target and alter the molecular mechanism of VGSCs’ function have highly contributed to the discovery and perception of the function and the structure of this channel. Among those drugs are various marine toxins produced by harmful microorganisms or venomous animals. These toxins have played a key role in understanding the mode of action of VGSCs and in mapping their various allosteric binding sites. Furthermore, marine toxins appear to be an emerging source of therapeutic tools that can relieve pain or treat VGSC-related human channelopathies. Several studies documented the effect of marine toxins on VGSCs as well as their pharmaceutical applications, but none of them underlined the principal marine toxins and their effect on VGSCs. Therefore, this review aims to highlight the neurotoxins produced by marine animals such as pufferfish, shellfish, sea anemone, and cone snail that are active on VGSCs and discuss their pharmaceutical values.
Collapse
|
9
|
Cyanotoxins and the Nervous System. Toxins (Basel) 2021; 13:toxins13090660. [PMID: 34564664 PMCID: PMC8472772 DOI: 10.3390/toxins13090660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health.
Collapse
|
10
|
Khalifa SAM, Shedid ES, Saied EM, Jassbi AR, Jamebozorgi FH, Rateb ME, Du M, Abdel-Daim MM, Kai GY, Al-Hammady MAM, Xiao J, Guo Z, El-Seedi HR. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar Drugs 2021; 19:241. [PMID: 33923369 PMCID: PMC8146687 DOI: 10.3390/md19050241] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eslam S. Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Fatemeh H. Jamebozorgi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran; (A.R.J.); (F.H.J.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Guo-Yin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | | | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
11
|
Demeritte A, Wuest WM. A look around the West Indies: The spices of life are secondary metabolites. Bioorg Med Chem 2020; 28:115792. [PMID: 33038665 PMCID: PMC7528826 DOI: 10.1016/j.bmc.2020.115792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products possess a wide range of bioactivities with potential for therapeutic usage. While the distribution of these molecules can vary greatly there is some correlation that exists between the biodiversity of an environment and the uniqueness and concentration of natural products found in that region or area. The Caribbean and pan-Caribbean area is home to thousands of species of endemic fauna and flora providing huge potential for natural product discovery and by way, potential leads for drug development. This can especially be said for marine natural products as many of are rapidly diluted through diffusion once released and therefore are highly potent to achieve long reaching effects. This review seeks to highlight a small selection of marine natural products from the Caribbean region which possess antiproliferative, anti-inflammatory and antipathogenic properties while highlighting any synthetic efforts towards bioactive analogs.
Collapse
Affiliation(s)
- Adrian Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2020; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
13
|
Xu J, Zhang T, Yao J, Lu J, Liu Z, Ding L. Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species. Eur J Med Chem 2020; 201:112473. [PMID: 32652435 DOI: 10.1016/j.ejmech.2020.112473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are one of the oldest creatures on earth, originated 3.5-3.3 billion years ago, and are distributed all over the world, including freshwater ponds and lakes, hot springs, and polar ice, especially in tropical and subtropical marine locations. Due to their large multimodular non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) biosynthetic machinery, cyanobacteria have represented a significant new source of structurally bioactive secondary metabolites. Moorea as a prolific producer have yielded lots of natural products with a variety of bioactivities such as highly cytotoxicity, anticancer activity, ion channel blocking activity, brine shrimp toxicity and other activities. Some of secondary metabolites have been identified as potential lead compounds for the development of anticancer agents. In this review, a total of 111 bioactive marine cyanobacterial secondary metabolites from the genus Moorea, published in the 54 literatures updated to the middle of 2019 and some synthetic analogues, are discussed with emphasis on their structures and biological activities.
Collapse
Affiliation(s)
- Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiaxiao Yao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Zhiwen Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
14
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
15
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
16
|
Mello FD, Braidy N, Marçal H, Guillemin G, Nabavi SM, Neilan BA. Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotox Res 2017; 33:153-167. [PMID: 28836116 DOI: 10.1007/s12640-017-9780-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Environmental toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their ability to damage several tissues in humans. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Furthermore, other toxins such as anatoxin, saxitoxin, microcystin, nodularin and ciguatoxin also have a different range of effects on human tissues, including hepatotoxicity, neurotoxicity and gastrointestinal irritation. However, the vast majority of known environmental toxins have not yet been examined in the context of neurodegenerative disease. This review aims to investigate whether neurotoxic mechanisms can be demonstrated in all aforementioned toxins, and whether there exists a link to neurodegeneration. Management of toxin exposure and potential neuroprotective compounds is also discussed. Collectively, all aforementioned microbial toxins are likely to exert some form of neuronal damage, with many of their modes of action consistent with neurodegeneration. This is important in advancing our current understanding of the cytotoxic potential of environmental toxins upon human brain function, particularly in the context of age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Fiona D Mello
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Helder Marçal
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gilles Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
17
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
18
|
He Y, Zou X, Li X, Chen J, Jin L, Zhang F, Yu B, Cao Z. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca 2+ overloading. Arch Toxicol 2016; 91:935-948. [PMID: 27318804 DOI: 10.1007/s00204-016-1755-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na+ currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC50 = 0.68 µM) and produced massive intracellular Ca2+ overloading (EC50 = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca2+ response of BmK NT1 was primary through extracellular Ca2+ influx since reducing the extracellular Ca2+ concentration suppressed the Ca2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na+/Ca2+ exchangers. Nifedipine, an L-type Ca2+ channel inhibitor, slightly suppressed both Ca2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca2+ overloading through both NMDA receptor- and Na+/Ca2+ exchanger-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Yuwei He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,School of Biological Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
20
|
Zhao F, Li X, Jin L, Zhang F, Inoue M, Yu B, Cao Z. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin. Mar Drugs 2016; 14:md14020036. [PMID: 26891306 PMCID: PMC4771989 DOI: 10.3390/md14020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Fan Zhang
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Rastogi RP, Madamwar D, Incharoensakdi A. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Front Microbiol 2015; 6:1254. [PMID: 26635737 PMCID: PMC4646972 DOI: 10.3389/fmicb.2015.01254] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are ecologically one of the most prolific groups of phototrophic prokaryotes in both marine and freshwater habitats. Both the beneficial and detrimental aspects of cyanobacteria are of considerable significance. They are important primary producers as well as an immense source of several secondary products, including an array of toxic compounds known as cyanotoxins. Abundant growth of cyanobacteria in freshwater, estuarine, and coastal ecosystems due to increased anthropogenic eutrophication and global climate change has created serious concern toward harmful bloom formation and surface water contamination all over the world. Cyanobacterial blooms and the accumulation of several cyanotoxins in water bodies pose severe ecological consequences with high risk to aquatic organisms and global public health. The proper management for mitigating the worldwide incidence of toxic cyanobacterial blooms is crucial for maintenance and sustainable development of functional ecosystems. Here, we emphasize the emerging information on the cyanobacterial bloom dynamics, toxicology of major groups of cyanotoxins, as well as a perspective and integrative approach to their management.
Collapse
Affiliation(s)
- Rajesh P. Rastogi
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| |
Collapse
|
22
|
Salvador-Reyes LA, Luesch H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 2015; 32:478-503. [PMID: 25571978 DOI: 10.1039/c4np00104d] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial.
Collapse
Affiliation(s)
- Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
23
|
Involvement of JNK and caspase activation in hoiamide A-induced neurotoxicity in neocortical neurons. Mar Drugs 2015; 13:903-19. [PMID: 25675001 PMCID: PMC4344608 DOI: 10.3390/md13020903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidiumgracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH) efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.
Collapse
|
24
|
The voltage-gated sodium channel: a major target of marine neurotoxins. Toxicon 2014; 91:84-95. [PMID: 25305552 DOI: 10.1016/j.toxicon.2014.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
Abstract
Voltage-gated sodium channels (Nav) are key components for nerve excitability. They initiate and propagate the action potential in excitable cells, throughout the central and peripheral nervous system, thus enabling a variety of physiological functions to be achieved. The rising phase of the action potential is driven by the opening of Nav channels which activate rapidly and carry Na(+) ions in the intracellular medium, and ends with the Na(+) current inactivation. The biophysical properties of these channels have been elucidated, through the use of pharmacological agents that disrupt the molecular mechanism of the channel functioning. Among them, marine toxins produced by venomous animals or microorganisms have been crucial to map the different allosteric binding sites of the channels, understand their mode of action and represent an emerging source of therapeutic agents to alleviate or cure Na(+) channels-linked human diseases. In this article, we review recent discoveries on the molecular and biophysical properties of the Na(+) channel as a target for marine neurotoxins, and present the ongoing developments of pharmacological agents as therapeutic tools.
Collapse
|
25
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
26
|
INOUE M. Chemical construction and structural permutation of neurotoxic natural product, antillatoxin: importance of the three-dimensional structure of the bulky side chain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:56-66. [PMID: 24522155 PMCID: PMC3948940 DOI: 10.2183/pjab.90.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Antillatoxin 1 is a unique natural product that displays potent neurotoxic and neuritogenic activities through activation of voltage-gated sodium channels. The peptidic macrocycle of 1 was attached to a side chain with an exceptionally high degree of methylation. In this review, we discuss the total synthesis and biological evaluation of 1 and its analogues. First we describe an efficient synthetic route to 1. This strategy enabled the unified preparation of nine side chain analogues. Structure-activity relationship studies of these analogues revealed that subtle side chain modification leads to dramatic changes in activity, and detailed structural analyses indicated the importance of the overall size and three dimensional shape of the side chain. Based on these data, we designed and synthesized a photoresponsive analogue, proving that the activity of 1 was modulated via a photochemical reaction. The knowledge accumulated through these studies will be useful for the rational design of new tailor-made molecules to control the function and behavior of ion channels.
Collapse
Affiliation(s)
- Masayuki INOUE
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Zhang F, Xu X, Li T, Liu Z. Shellfish toxins targeting voltage-gated sodium channels. Mar Drugs 2013; 11:4698-723. [PMID: 24287955 PMCID: PMC3877881 DOI: 10.3390/md11124698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryotic cyanobacteria and eukaryotic dinoflagellates in both marine and fresh water systems, which can accumulate in marine animals via the food chain. Consumption of shellfish toxin-contaminated seafood may result in potentially fatal human shellfish poisoning. This article provides an overview of the structure, bioactivity, and pharmacology of shellfish toxins that act on VGSCs, along with a brief discussion on their pharmaceutical potential for pain management.
Collapse
Affiliation(s)
- Fan Zhang
- Cooperative Innovation Center of Engineering and New Products for Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | | | | | | |
Collapse
|
28
|
Okura K, Matsuoka S, Inoue M. The bulky side chain of antillatoxin is important for potent toxicity: rational design of photoresponsive cytotoxins based on SAR studies. Chem Commun (Camb) 2013; 49:8024-6. [PMID: 23903352 DOI: 10.1039/c3cc44066d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antillatoxin is a cyclic peptide with potent neurotoxic and neuritogenic activities. We designed and synthesized six analogues that have photocleavable protecting groups at the terminus of the side chain. Among these compounds, the bis-o-nitrobenzyl acetal derivative was found to exhibit high toxicity and was effectively deactivated by photochemical removal, proving that the biological activity of antillatoxin was modulated by altering the size of the terminal group.
Collapse
Affiliation(s)
- Ken Okura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
29
|
Okura K, Inoue M. The Orientation of the TerminaltBu Group of Antillatoxin is Important for Potent Toxicity: Design, Synthesis and Biological Evaluation of Conformationally Restricted Analogues of Antillatoxin. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Costa M, Costa-Rodrigues J, Fernandes MH, Barros P, Vasconcelos V, Martins R. Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar Drugs 2012; 10:2181-2207. [PMID: 23170077 PMCID: PMC3497016 DOI: 10.3390/md10102181] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023] Open
Abstract
Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed.
Collapse
Affiliation(s)
- Margarida Costa
- Marine and Environmental Research Center—CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; (M.C.); (V.V.)
| | - João Costa-Rodrigues
- Laboratory of Pharmacology and Cellular Biocompatibility, Faculty of Dental Medicine, Porto University, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.C.-R.); (M.H.F.)
| | - Maria Helena Fernandes
- Laboratory of Pharmacology and Cellular Biocompatibility, Faculty of Dental Medicine, Porto University, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.C.-R.); (M.H.F.)
| | - Piedade Barros
- Centre of Health and Environmental Research—CISA, Superior School of Health Technology of Porto, Polytechnic Institute of Porto, Rua Valente Perfeito, 322, 4400-330 Vila Nova de Gaia, Portugal;
| | - Vitor Vasconcelos
- Marine and Environmental Research Center—CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; (M.C.); (V.V.)
- Faculty of Sciences, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rosário Martins
- Marine and Environmental Research Center—CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; (M.C.); (V.V.)
- Centre of Health and Environmental Research—CISA, Superior School of Health Technology of Porto, Polytechnic Institute of Porto, Rua Valente Perfeito, 322, 4400-330 Vila Nova de Gaia, Portugal;
- Institute for Molecular and Cell Biology—IBMC, Porto University, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Author to whom correspondence should be addressed; ; Tel.: +351-22-340-18-00; Fax: +351-22-339-06-08
| |
Collapse
|
31
|
Nardi A, Damann N, Hertrampf T, Kless A. Advances in targeting voltage-gated sodium channels with small molecules. ChemMedChem 2012; 7:1712-40. [PMID: 22945552 DOI: 10.1002/cmdc.201200298] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Blockade of voltage-gated sodium channels (VGSCs) has been used successfully in the clinic to enable control of pathological firing patterns that occur in conditions as diverse as chronic pain, epilepsy, and arrhythmias. Herein we review the state of the art in marketed sodium channel inhibitors, including a brief compendium of their binding sites and of the cellular and molecular biology of sodium channels. Despite the preferential action of this drug class toward over-excited cells, which significantly limits potential undesired side effects on other cells, the need to develop a second generation of sodium channel inhibitors to overcome their critical clinical shortcomings is apparent. Current approaches in drug discovery to deliver novel and truly innovative sodium channel inhibitors is next presented by surveying the most recent medicinal chemistry breakthroughs in the field of small molecules and developments in automated patch-clamp platforms. Various strategies aimed at identifying small molecules that target either particular isoforms of sodium channels involved in specific diseases or anomalous sodium channel currents, irrespective of the isoform by which they have been generated, are critically discussed and revised.
Collapse
Affiliation(s)
- Antonio Nardi
- Global Drug Discovery, Department of Medicinal Chemistry, Grünenthal, Zieglerstrasse 6, 52078 Aachen, Germany.
| | | | | | | |
Collapse
|
32
|
Nagarajan M, Maruthanayagam V, Sundararaman M. A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. J Appl Toxicol 2011; 32:153-85. [PMID: 21910132 DOI: 10.1002/jat.1717] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 11/07/2022]
Abstract
Novel toxic metabolites from marine cyanobacteria have been thoroughly explored. Biologically active and chemically diverse compounds that could be hepatotoxic, neurotoxic or cytotoxic, such as cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides, have been produced from marine cyanobacteria. Many reports have revealed that biosynthesis of active metabolites is predominant during cyanobacterial bloom formation. Marine cyanobacterial toxic metabolites exhibit important biological properties, such as interfering in signal transduction either by activation or blockage of sodium channels or by targeting signaling proteins; inducing apoptosis by disrupting cytoskeletal proteins; and inhibiting membrane transporters, receptors, serine proteases and topoisomerases. The pharmacological importance of these metabolites resides in their proliferation and growth-controlling abilities towards cancer cell lines and disease-causing potent microbial agents (bacteria, virus, fungi and protozoa). Besides their toxic and pharmacological potentials, the present review discusses structural and functional resemblance of marine cyanobacterial metabolites to marine algae, sponges and mollusks.
Collapse
Affiliation(s)
- M Nagarajan
- Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | | | | |
Collapse
|
33
|
Inoue M. Total synthesis and functional analysis of non-ribosomal peptides. CHEM REC 2011; 11:284-94. [DOI: 10.1002/tcr.201100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Indexed: 11/07/2022]
|
34
|
|
35
|
De Oliveira EO, Graf KM, Patel MK, Baheti A, Kong HS, MacArthur LH, Dakshanamurthy S, Wang K, Brown ML, Paige M. Synthesis and evaluation of hermitamides A and B as human voltage-gated sodium channel blockers. Bioorg Med Chem 2011; 19:4322-9. [PMID: 21683602 DOI: 10.1016/j.bmc.2011.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Hermitamides A and B are lipopeptides isolated from a Papau New Guinea collection of the marine cyanobacterium Lyngbya majuscula. We hypothesized that the hermitamides are ligands for the human voltage-gated sodium channel (hNa(V)) based on their structural similarity to the jamaicamides. Herein, we describe the nonracemic total synthesis of hermitamides A and B and their epimers. We report the ability of the hermitamides to displace [(3)H]-BTX at 10 μM more potently than phenytoin, a clinically used sodium channel blocker. We also present a potential binding mode for (S)-hermitamide B in the BTX-binding site and electrophysiology showing that these compounds are potent blockers of the hNav1.2 voltage-gated sodium channel.
Collapse
Affiliation(s)
- Eliseu O De Oliveira
- Drug Discovery Program, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 α subunits. BMC Neurosci 2010; 11:154. [PMID: 21156065 PMCID: PMC3009643 DOI: 10.1186/1471-2202-11-154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antillatoxin (ATX) is a structurally unique lipopeptide produced by the marine cyanobacterium Lyngbya majuscula. ATX activates voltage-gated sodium channel α-subunits at an undefined recognition site and stimulates sodium influx in neurons. However, the pharmacological properties and selectivity of ATX on the sodium channel α-subunits were not fully characterized. RESULTS In this study, we characterized the pharmacological properties and selectivity of ATX in cells heterologously expressing rNa(v)1.2, rNa(v)1.4 or rNa(v)1.5 α-subunits by using the Na(+) selective fluorescent dye, sodium-binding benzofuran isophthalate. ATX produced sodium influx in cells expressing each sodium channel α-subunit, whereas two other sodium channel activators, veratridine and brevetoxin-2, were without effect. The ATX potency at rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 did not differ significantly. Similarly, there were no significant differences in the efficacy for ATX-induced sodium influx between rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 α-subunits. ATX also produced robust Ca²(+) influx relative to other sodium channel activators in the calcium-permeable DEAA mutant of rNa(v)1.4 α-subunit. Finally, we demonstrated that the 8-demethyl-8,9-dihydro-antillatoxin analog was less efficacious and less potent in stimulating sodium influx. CONCLUSIONS ATX displayed a unique efficacy with respect to stimulation of sodium influx in cells expressing rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 α-subunits. The efficacy of ATX was distinctive inasmuch as it was not shared by activators of neurotoxin sites 2 and 5 on VGSC α-subunits. Given the unique pharmacological properties of ATX interaction with sodium channel α-subunits, decoding the molecular determinants and mechanism of action of antillatoxin may provide further insight into sodium channel gating mechanisms.
Collapse
|
37
|
Nunnery JK, Mevers E, Gerwick WH. Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 2010; 21:787-93. [PMID: 21030245 DOI: 10.1016/j.copbio.2010.09.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 11/28/2022]
Abstract
Marine cyanobacteria are a rich source of complex bioactive secondary metabolites which derive from mixed biosynthetic pathways. Recently, several marine cyanobacterial natural products have garnered much attention due to their intriguing structures and exciting anti-proliferative or cancer cell toxic activities. Several other recently discovered secondary metabolites exhibit insightful neurotoxic activities whereas others are showing pronounced anti-inflammatory activity. A number of anti-infective compounds displaying activity against neglected diseases have also been identified, which include viridamides A and B, gallinamide A, dragonamide E, and the almiramides.
Collapse
Affiliation(s)
- Joshawna K Nunnery
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
38
|
Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins (Basel) 2010; 2:2359-410. [PMID: 22069558 PMCID: PMC3153167 DOI: 10.3390/toxins2102359] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/01/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Collapse
Affiliation(s)
- Elisabete Valério
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Sandra Chaves
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| | - Rogério Tenreiro
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| |
Collapse
|
39
|
Neurotoxic cyanobacterial toxins. Toxicon 2010; 56:813-28. [DOI: 10.1016/j.toxicon.2009.07.036] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/19/2022]
|
40
|
Villa FA, Gerwick L. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 2010; 32:228-37. [PMID: 20441539 DOI: 10.3109/08923970903296136] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural products, secondary metabolites, isolated from plants, animals and microbes are important sources for bioactive molecules that in many cases have been developed into treatments for diseases. This review will focus on describing the potential for finding new treatments from marine natural products for inflammation, cancer, infections, and neurological disorders. Historically terrestrial natural products have been studied to a greater extent and such classic drugs as aspirin, vincristine and many of the antibiotics are derived from terrestrial natural products. The need for new therapeutics in the four areas mentioned is dire. Within the last 30 years marine natural products, with their unique structures and high level of halogenation, have shown many promising activities against the inflammatory response, cancer, infections and neurological disorders. The review will outline examples of such compounds and activities.
Collapse
Affiliation(s)
- Francisco A Villa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
41
|
Aráoz R, Vilariño N, Botana LM, Molgó J. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors. Anal Bioanal Chem 2010; 397:1695-704. [DOI: 10.1007/s00216-010-3533-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 11/30/2022]
|
42
|
Okura K, Matsuoka S, Goto R, Inoue M. The Twisted Side Chain of Antillatoxin is Important for Potent Toxicity: Total Synthesis and Biological Evaluation of Antillatoxin and Analogues. Angew Chem Int Ed Engl 2010; 49:329-32. [DOI: 10.1002/anie.200905892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken Okura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Ryosuke Goto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| |
Collapse
|
43
|
Okura K, Matsuoka S, Goto R, Inoue M. The Twisted Side Chain of Antillatoxin is Important for Potent Toxicity: Total Synthesis and Biological Evaluation of Antillatoxin and Analogues. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ken Okura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Ryosuke Goto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo‐ku, Tokyo 113‐0033 (Japan), Fax: (+81) 3‐3395‐5214
| |
Collapse
|
44
|
Pereira A, Cao Z, Murray TF, Gerwick WH. Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two papua new Guinea cyanobacteria. ACTA ACUST UNITED AC 2009; 16:893-906. [PMID: 19716479 DOI: 10.1016/j.chembiol.2009.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022]
Abstract
Hoiamide A, a novel bioactive cyclic depsipeptide, was isolated from an environmental assemblage of the marine cyanobacteria Lyngbya majuscula and Phormidium gracile collected in Papua New Guinea. This stereochemically complex metabolite possesses a highly unusual structure, which likely derives from a mixed peptide-polyketide biogenetic origin, and includes a peptidic section featuring an acetate extended and S-adenosyl methionine modified isoleucine moiety, a triheterocyclic fragment bearing two alpha-methylated thiazolines and one thiazole, and a highly oxygenated and methylated C15-polyketide substructure. Pure hoiamide A potently inhibited [(3)H]batrachotoxin binding to voltage-gated sodium channels (IC(50) = 92.8 nM), activated sodium influx (EC(50) = 2.31 microM) in mouse neocortical neurons, and exhibited modest cytotoxicity to cancer cells. Further investigation revealed that hoiamide A is a partial agonist of site 2 on the voltage-gated sodium channel.
Collapse
Affiliation(s)
- Alban Pereira
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
45
|
Jabba SV, Prakash A, Dravid SM, Gerwick WH, Murray TF. Antillatoxin, a novel lipopeptide, enhances neurite outgrowth in immature cerebrocortical neurons through activation of voltage-gated sodium channels. J Pharmacol Exp Ther 2009; 332:698-709. [PMID: 20026674 DOI: 10.1124/jpet.109.161802] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Antillatoxin (ATX) is a structurally novel lipopeptide that activates voltage-gated sodium channels (VGSC) leading to sodium influx in cerebellar granule neurons and cerebrocortical neurons 8 to 9 days in vitro (Li et al., 2001; Cao et al., 2008). However, the precise recognition site for ATX on the VGSC remains to be defined. Inasmuch as elevation of intracellular sodium ([Na(+)](i)) may increase N-methyl-d-aspartate receptor (NMDAR)-mediated Ca(2+) influx, Na(+) may function as a signaling molecule. We hypothesized that ATX may enhance neurite outgrowth in cerebrocortical neurons by elevating [Na(+)](i) and augmenting NMDAR function. ATX (30-100 nM) robustly stimulated neurite outgrowth, and this enhancement was sensitive to the VGSC antagonist, tetrodotoxin. To unambiguously demonstrate the enhancement of NMDA receptor function by ATX, we recorded single-channel currents from cell-attached patches. ATX was found to increase the open probability of NMDA receptors. Na(+)-dependent up-regulation of NMDAR function has been shown to be regulated by Src family kinase (SFK) (Yu and Salter, 1998). The Src kinase inhibitor PP2 abrogated ATX-enhanced neurite outgrowth, suggesting a SFK involvement in this response. ATX-enhanced neurite outgrowth was also inhibited by the NMDAR antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and the calmodulin-dependent kinase kinase (CaMKK) inhibitor, 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), demonstrating the requirement for NMDAR activation with subsequent downstream engagement of the Ca(2+)-dependent CaMKK pathway. These results with the structurally and mechanistically novel natural product, ATX, confirm and generalize our earlier results with a neurotoxin site 5 ligand. These data suggest that VGSC activators may represent a novel pharmacological strategy to regulate neuronal plasticity through NMDAR-dependent mechanisms.
Collapse
Affiliation(s)
- S V Jabba
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
46
|
Suyama TL, Cao Z, Murray TF, Gerwick WH. Ichthyotoxic brominated diphenyl ethers from a mixed assemblage of a red alga and cyanobacterium: structure clarification and biological properties. Toxicon 2009; 55:204-10. [PMID: 19638282 DOI: 10.1016/j.toxicon.2009.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/16/2009] [Accepted: 07/22/2009] [Indexed: 11/29/2022]
Abstract
Primary fractions from the extract of a tropical red alga mixed with filamentous cyanobacteria, collected from Papua New Guinea, were active in a neurotoxicity assay. Bioassay-guided isolation led to two natural products (1,2) with relatively potent calcium ion influx properties. The more prevalent of the neurotoxic compounds (1) was characterized by extensive NMR, mass spectrometry, and X-ray crystallography, and shown to be identical to a polybrominated diphenyl ether metabolite present in the literature, but reported with different NMR properties. To clarify this anomalous result, we synthesized a candidate isomeric polybrominated diphenyl ether (3), but this clearly had different NMR shifts than the reported compound. We conclude that the original isolate of 3,4,5-tribromo-2-(2,4-dibromophenoxy)phenol was contaminated with a minor compound, giving rise to the observed anomalous NMR shifts. The second and less abundant natural product (2) isolated in this study was a more highly brominated species. All three compounds showed a low micromolar ability to increase intracellular calcium ion concentrations in mouse neocortical neurons as well as toxicity to zebrafish. Because polybrominated diphenyl ethers have both natural as well as anthropomorphic origins, and accumulate in marine organisms at higher trophic level (mammals, fish, birds), these neurotoxic properties are of environmental significance and concern.
Collapse
Affiliation(s)
- Takashi L Suyama
- Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, MC 0212, La Jolla, CA 92093-0212, USA
| | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. CONCLUSIONS/SIGNIFICANCE This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and successful marine protists.
Collapse
|
48
|
Mattei C, Wen PJ, Nguyen-Huu TD, Alvarez M, Benoit E, Bourdelais AJ, Lewis RJ, Baden DG, Molgó J, Meunier FA. Brevenal inhibits pacific ciguatoxin-1B-induced neurosecretion from bovine chromaffin cells. PLoS One 2008; 3:e3448. [PMID: 18941627 PMCID: PMC2565126 DOI: 10.1371/journal.pone.0003448] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/19/2008] [Indexed: 11/20/2022] Open
Abstract
Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and β-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera.
Collapse
Affiliation(s)
- César Mattei
- CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, Gif-sur-Yvette, France
| | - Peter J. Wen
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Truong D. Nguyen-Huu
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Martha Alvarez
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey, México
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, Gif-sur-Yvette, France
| | - Andrea J. Bourdelais
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, North Carolina, United States of America
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Daniel G. Baden
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, North Carolina, United States of America
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, Gif-sur-Yvette, France
- * E-mail: (JM); (FAM)
| | - Frédéric A. Meunier
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (JM); (FAM)
| |
Collapse
|
49
|
Cao Z, George J, Gerwick WH, Baden DG, Rainier JD, Murray TF. Influence of lipid-soluble gating modifier toxins on sodium influx in neocortical neurons. J Pharmacol Exp Ther 2008; 326:604-13. [PMID: 18448863 DOI: 10.1124/jpet.108.138230] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability of VGSC gating modifiers to evoke Na+ influx. Intracellular sodium concentration ([Na+](i)) was monitored using the Na+-sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced a rapid and concentration-dependent elevation in neuronal [Na+](i). The increment in [Na+](i) exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal increments in neuronal [Na+](i) produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with maximal [Na+](i) increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane > batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx-3alpha-naphthoate > veratridine > deltamethrin > aconitine > gambierol. These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na+](i) produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin, indicating that VGSCs represent the sole pathway of Na+ entry after exposure to gating modifier neurotoxins.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | |
Collapse
|
50
|
Linington RG, Edwards DJ, Shuman CF, McPhail KL, Matainaho T, Gerwick WH. Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine Cyanobacterium Symploca sp. JOURNAL OF NATURAL PRODUCTS 2008; 71:22-7. [PMID: 18163584 PMCID: PMC2832912 DOI: 10.1021/np070280x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Investigation of a Symploca sp. from Papua New Guinea has led to the isolation of symplocamide A (1), a potent cancer cell cytotoxin, which also inhibits serine proteases with a 200-fold greater inhibition of chymotrypsin over trypsin. The complete stereostructure of symplocamide A was determined by detailed NMR and MS analysis as well as chiral HPLC analysis of the component amino acid residues. The presence of several unusual structural features in symplocamide A provides new insights into the pharmacophore model for protease selectivity in this drug class and may underlie the potent cytotoxicity of this compound to H-460 lung cancer cells (IC50=40 nM) as well as neuro-2a neuroblastoma cells (IC50=29 nM).
Collapse
Affiliation(s)
| | | | | | | | | | - William H. Gerwick
- To whom correspondence should be addressed. Tel: (858) 534-0578. Fax: (858) 534-0529.
| |
Collapse
|