1
|
Zhu Z, Nagata S. Allatotropin, DH31, and proctolin reduce chill tolerance in the two-spotted cricket, Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104222. [PMID: 39608734 DOI: 10.1016/j.ibmb.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The ability of insects to tolerate low temperatures, known as chill tolerance, contributes to their global distribution. However, the mechanisms underlying insect chill tolerance remain poorly understood. At low temperatures, insects enter chill coma, a reversible state of paralysis, owing to disrupted ion and water homeostasis. Upon returning to normal temperatures, insects reestablish ion and water homeostasis and recover the ability to move. In this study, we used the two-spotted cricket, Gryllus bimaculatus, as an experimental model and unveiled the roles of neuropeptides in regulating chill tolerance, typically evaluated by the time taken to recover from chill coma. Screening of 37 neuropeptides revealed that Allatotropin, DH31, and Proctolin inhibited chill coma recovery and decreased the survival rate under cold stress. RT-qPCR analyses revealed that the receptors for Allatotropin and DH31 were predominantly expressed in the hindgut. Injection of the three neuropeptides decreased both hemolymph mass and gut water content at low temperatures, most likely by increasing water excretion from the hindgut due to their effects on the rectum contraction. Additionally, Allatotropin and DH31 were produced by the terminal abdominal ganglion (TAG) innervating the hindgut since they were partly co-localized in the TAG, and their mature peptides were detected in the TAG-hindgut nerves. Moreover, the transcriptional levels of the neuropeptides in the TAG and receptors in the hindgut changed with cold exposure and rewarming. Based on these findings, we propose that Allatotropin, DH31, and Proctolin affect the physiological activities of the gut, probably the hindgut, to disrupt water homeostasis at low temperatures, thereby reducing chill tolerance in crickets.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
2
|
D'Ottavio M, Labrie G, Lucas E. How do outside-hosts-overwintering parasitoids, at the adult stage, cope with cold? J Therm Biol 2024; 124:103940. [PMID: 39146867 DOI: 10.1016/j.jtherbio.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION When overwintering, most endoparasitoids are protected from the cold inside their hosts. However, some endoparasitoids, along with ectoparasitoids, fall into the category called outside-hosts-overwintering parasitoids (OHOP) at immature or adult stages. We compared the cold-hardiness capacity and strategy between adult OHOP and their hosts (HOST) by examining their supercooling points (SCP), with acclimation periods and acclimation temperatures, and their lower lethal temperatures at 50% mortality (LLT50). We hypothesized that OHOP are more cold-hardy than their HOST, with lower SCP and LLT50. MATERIALS AND METHODS Throughout the summers of 2020, 2021, and 2022, adult cabbage seedpod weevils (HOST) were sampled with a sweep net at the canola pod stage, and thousands of pods were collected and placed in emergence boxes to retrieve the adult OHOP Trichomalus perfectus. Regarding SCP measures, OHOP and HOST were separated according to various treatments. Each treatment considered a target exposure temperature (5, 10, or 20 °C) or a target exposure period (5, 15 or 25 days) at 5 °C. Regarding LLT measures, OHOP and HOST were categorized into five treatments, each corresponding to a specific exposure temperature (-5, -10, -15, -20 or -25 °C). RESULTS AND CONCLUSION Acclimations to a lower temperature (5 °C) and a longer period (25 days) led to a significantly lower SCP of OHOP than HOST. Regarding OHOP, the average SCP was -19.71 °C when the acclimation temperature was 20 °C and significantly decreased to -23.20 °C when it was 5 °C. The average SCP was -18.82 °C when the acclimation period was five days and significantly decreased to -23.20 °C when it was 25 days. Conversely, the average SCP for HOST was never below -20 °C. At 20 °C acclimation temperature, HOST exhibited a significantly higher SCP of -14.64 °C compared to acclimations at 5 °C (-19.19 °C) and 10 °C (-20.00 °C), but there were no significant differences between 5 and 10 °C nor between acclimation periods. Therefore, the adult OHOP is more cold-hardy than its HOST. OHOP also exhibited a lower LLT50 than HOST, with -19.20 °C versus -17.59 °C. Finally, OHOP and HOST employ the same freeze-avoidance strategy, as evidenced by their SCP values (-19.57 °C versus -16.80 °C) which closely align with their respective LLT50. Adult OHOP better survive winter than their HOST in cold environments.
Collapse
Affiliation(s)
- Marie D'Ottavio
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal (Qc), H3C 3P8, Canada.
| | - Geneviève Labrie
- Sciences de l'agriculture et de l'alimentation, Pavillon Paul-Comtois, 2425 rue de l'Agriculture (Qc), Canada, G1V 0A6
| | - Eric Lucas
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal (Qc), H3C 3P8, Canada
| |
Collapse
|
3
|
León-Quinto T, Antón-Ruiz N, Madrigal R, Serna A. Experimental evidence of a Neotropical pest insect moderately tolerant to complete freezing. J Therm Biol 2024; 123:103939. [PMID: 39116623 DOI: 10.1016/j.jtherbio.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Due to climate change, many regions are experiencing progressively milder winters. Consequently, pest insects from warm regions, particularly those with some tolerance to low temperatures, could expand their geographic range into these traditionally colder regions. The palm borer moth (Paysandisia archon) is a Neotropical insect that in recent decades has reached Europe and Asia as one of the worst pests of palm trees. Little is known about its ability to tolerate moderately cold winters and, therefore, to colonize new areas. In this work, we characterized the cold tolerance of Paysandisia archon by measuring its thermal limits: median lethal-temperature, LT50, chill-coma onset temperature, CTmin, supercooling point, SCP, freezing time and freezing survival. We found that this species was able to survive short periods of complete freezing, with survival rates of 87% after a 30-min freezing exposure, and 33% for a 1 h-exposure. It is then a moderately freeze-tolerant species, in contrast to all other lepidopterans native to warm areas, which are freeze-intolerant. Additionally, we investigated whether this insect improved its cold tolerance after either short or long pre-exposure to sub-lethal low temperatures. To that end, we studied potential changes in the main thermo-tolerance parameters and, using X-ray Computed Tomography, also in the morphological components of pretreated animals. We found that short pre-exposures did not imply significant changes in the SCP and CTmin values. In contrast, larvae with long pretreatments improved their survival to both freezing and low temperatures, and required longer times for complete freezing than the other groups. These long-term pre-exposed larvae also presented several morphological changes, including a reduction in water content that probably explained, at least in part, their longer freezing time and higher freezing survival. Our results represent the first cold tolerance characterization of this pest insect, which could be relevant to better design strategies to combat it.
Collapse
Affiliation(s)
- Trinidad León-Quinto
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Noelia Antón-Ruiz
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Roque Madrigal
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Arturo Serna
- Departamento de Física Aplicada, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| |
Collapse
|
4
|
Andersen MK, Roe AD, Liu Y, Musso AE, Fudlosid S, Haider F, Evenden ML, MacMillan HA. The freeze-avoiding mountain pine beetle (Dendroctonus ponderosae) survives prolonged exposure to stressful cold by mitigating ionoregulatory collapse. J Exp Biol 2024; 227:jeb247498. [PMID: 38682690 PMCID: PMC11128280 DOI: 10.1242/jeb.247498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.
Collapse
Affiliation(s)
| | - Amanda Diane Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Yuehong Liu
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Antonia E. Musso
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Serita Fudlosid
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Fouzia Haider
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Maya L. Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | | |
Collapse
|
5
|
Allen MC, Ritchie MW, El-Saadi MI, MacMillan HA. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila. J Therm Biol 2024; 119:103789. [PMID: 38340464 DOI: 10.1016/j.jtherbio.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Chill susceptible insects are thought to be injured through different mechanisms depending on the duration and severity of chilling. While chronic chilling causes "indirect" injury through disruption of metabolic and ion homeostasis, acute chilling is suspected to cause "direct" injury, in part through phase transitions of cell membrane lipids. Dietary supplementation of cholesterol can reduce acute chilling injury in Drosophila melanogaster (Shreve et al., 2007), but the generality of this effect and the mechanisms underlying it remain unclear. To better understand how and why cholesterol has this effect, we assessed how a high cholesterol diet and thermal acclimation independently and interactively impact several measures of chill tolerance. Cholesterol supplementation positively affected tolerance to acute chilling in warm-acclimated flies (as reported previously). Conversely, feeding on the high-cholesterol diet negatively affected tolerance to chronic chilling in both cold and warm acclimated flies, as well as tolerance to acute chilling in cold acclimated flies. Cholesterol had no effect on the ability of flies to remain active in the cold or recover movement after a cold stress. Our findings support the idea that dietary cholesterol reduces mechanical injury to membranes caused by direct chilling injury, and that acute and chronic chilling are associated with distinct mechanisms of injury. Feeding on a high-cholesterol diet may interfere with mechanisms involved in cold acclimation, leaving cholesterol augmented flies more susceptible to chilling injury under some conditions.
Collapse
Affiliation(s)
- Mitchell C Allen
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Mahmoud I El-Saadi
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
6
|
Wiil J, Sørensen JG, Colinet H. Exploring cross-protective effects between cold and immune stress in Drosophila melanogaster. Parasite 2023; 30:54. [PMID: 38084935 PMCID: PMC10714677 DOI: 10.1051/parasite/2023055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
It is well established that environmental and biotic stressors like temperature and pathogens/parasites are essential for the life of small ectotherms. There are complex interactions between cold stress and pathogen infection in insects. Possible cross-protective mechanisms occur between both stressors, suggesting broad connectivity in insect stress responses. In this study, the functional significance of these interactions was tested, as well as the potential role of newly uncovered candidate genes, turandot. This was done using an array of factorial experiments exposing Drosophila melanogaster flies to a combination of different cold stress regimes (acute or chronic) and infections with the parasitic fungus Beauveria bassiana. Following these crossed treatments, phenotypic and molecular responses were assessed by measuring 1) induced cold tolerance, 2) immune resistance to parasitic fungus, and 3) activation of turandot genes. We found various responses in the phenotypic outcomes according to the various treatment combinations with higher susceptibility to infection following cold stress, but also significantly higher acute cold survival in flies that were infected. Regarding molecular responses, we found overexpression of turandot genes in response to most treatments, suggesting reactivity to both cold and infection. Moreover, maximum peak expressions were distinctly observed in the combined treatments (infection plus cold), indicating a marked synergistic effect of the stressors on turandot gene expression patterns. These results reflect the great complexity of cross-tolerance reactions between infection and abiotic stress, but could also shed light on the mechanisms underlying the activation of these responses.
Collapse
Affiliation(s)
- Jakob Wiil
-
Université de Rennes, CNRS, ECOBIO [(Écosystèmes, biodiversité, évolution)] – UMR 6553 263 AVE du Général Leclerc 35000 Rennes France
| | | | - Hervé Colinet
-
Université de Rennes, CNRS, ECOBIO [(Écosystèmes, biodiversité, évolution)] – UMR 6553 263 AVE du Général Leclerc 35000 Rennes France
| |
Collapse
|
7
|
Zhao C, Liu Z, Liu Y, Zhan Y. Identification and characterization of cold-responsive aquaporins from the larvae of a crambid pest Agriphila aeneociliella (Eversmann) (Lepidoptera: Crambidae). PeerJ 2023; 11:e16403. [PMID: 38025732 PMCID: PMC10652857 DOI: 10.7717/peerj.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
As small ectotherms, insects need to cope with the challenges of winter cold by regulating the water content through water transport. Aquaporins (AQPs) are key players to enhance the cold resistance by mediating essential homeostatic processes in many animals but remain poorly characterized in insects. Agriphila aeneociliella is a newly discovered winter wheat pest in China, and its early-stage larvae have strong tolerance to low temperature stress. Six AQP genes were identified, which belong to five AQP subfamilies (RPIP, Eglp, AQP12L, PRIP, DRIP). All of them contained six hydrophobic transmembrane helices (TMHs) and two relatively conservative Asparagine-Proline-Alanine motifs. The three-dimensional homology modeling showed that the six TMHs folded into an hourglass-like shape, and the imperceptible replace of four ar/R residues in contraction region had critical effects on changing the pore size of channels. Moreover, the transcript levels of AaAQP 1, 3, and 6 increased significantly with the treatment time below 0 °C. Combined with the results of pore radius variation, it is suggested that AaAQP1 and AaAQP3 may be considered to be the key anti-hypothermia proteins in A. aeneociliella by regulating rapid cell dehydration and allowing the influx of extracellular cold resistance molecules, thus avoiding death in winter.
Collapse
Affiliation(s)
- Chunqing Zhao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhen Liu
- Weihai Huancui District Bureau of Agriculture and Rural Affairs, Weihai, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
8
|
Roberts KT, Szejner-Sigal A, Lehmann P. Seasonal energetics: are insects constrained by energy during dormancy? J Exp Biol 2023; 226:jeb245782. [PMID: 37921417 DOI: 10.1242/jeb.245782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In seasonal environments, many animals, including insects, enter dormancy, where they are limited to a fixed energy budget. The inability to replenish energetic stores during these periods suggests insects should be constrained by pre-dormancy energy stores. Over the last century, the community of researchers working on survival during dormancy has operated under the strong assumption that energy limitation is a key fitness trait driving the evolution of seasonal strategies. That is, energy use has to be minimized during dormancy because insects otherwise run out of energy and die during dormancy, or are left with too little energy to complete development, reproductive maturation or other costly post-dormancy processes such as dispersal or nest building. But if energy is so strongly constrained during dormancy, how can some insects - even within the same species and population - be dormant in very warm environments or show prolonged dormancy for many successive years? In this Commentary, we discuss major assumptions regarding dormancy energetics and outline cases where insects appear to align with our assumptions and where they do not. We then highlight several research directions that could help link organismal energy use with landscape-level changes. Overall, the optimal energetic strategy during dormancy might not be to simply minimize metabolic rate, but instead to maintain a level that matches the demands of the specific life-history strategy. Given the influence of temperature on energy use rates of insects in winter, understanding dormancy energetic strategies is critical in order to determine the potential impacts of climate change on insects in seasonal environments.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andre Szejner-Sigal
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
9
|
Willot Q, Ørsted M, Malte H, Overgaard J. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants. Proc Biol Sci 2023; 290:20230985. [PMID: 37670587 PMCID: PMC10510448 DOI: 10.1098/rspb.2023.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species' climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species' distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species' climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.
Collapse
Affiliation(s)
- Quentin Willot
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ørsted
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg E, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
10
|
Lebenzon JE, Overgaard J, Jørgensen LB. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. CURRENT OPINION IN INSECT SCIENCE 2023:101076. [PMID: 37331596 DOI: 10.1016/j.cois.2023.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Physiological adaptations to tackle cold exposure are crucial for insects living in temperate and arctic environments and here we review how cold adaptation is manifested in terms of mitochondrial function. Cold challenges are diverse, and different insect species have evolved metabolic and mitochondrial adaptations to: i) energize homeostatic regulation at low temperature, ii) stretch energy reserves during prolonged cold exposure, and iii) preserve structural organization of organelles following extracellular freezing. While the literature is still sparse, our review suggests that cold-adapted insects preserve ATP production at low temperatures by maintaining preferred mitochondrial substrate oxidation, which is otherwise challenged in cold-sensitive species. Chronic cold exposure and metabolic depression during dormancy is linked to reduced mitochondrial metabolism and may involve mitochondrial degradation. Finally, adaptation to extracellular freezing could be associated with superior structural integrity of the mitochondrial inner membrane following freezing which is linked to cellular and organismal survival.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
11
|
Drahun I, Poole EA, Hunt KA, van Herk WG, LeMoine CM, Cassone BJ. Seasonal turnover and insights into the overwintering biology of wireworms (Coleoptera: Elateridae) in the Canadian Prairies. PEST MANAGEMENT SCIENCE 2023; 79:526-536. [PMID: 36196672 DOI: 10.1002/ps.7222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The long-lived terricolous larvae of click beetles, colloquially called wireworms, pose a significant threat to agriculture worldwide. Several economically important pest species have been documented in the Canadian Prairies, including Hypnoidus bicolor, Limonius californicus and Hypnoidus abbreviatus. However, most monitoring activities are performed in the early spring and there is evidence from other geographical regions of seasonal shifts in wireworm species composition and prevalence. Further, little is known about the overwintering physiology or behaviors of wireworms, which undoubtedly contribute to their population dynamics. RESULTS We surveyed wireworm populations from four Manitoban fields six times throughout the 2020 and 2021 growing seasons. Both Hypnoidus species were active throughout the spring and summer; however, L. californicus did not become active until later in the spring. Chill-coma recovery assays indicated Hypnoidus species recovered quicker than L. californicus from cold acclimation. Vertical migration assays simulating progressively lower ambient temperatures experienced by overwintering larvae identified H. bicolor throughout the soil profile, with L. californicus preferentially found at cooler, shallower depths. We speculate that these differences in species distribution within the soil column are due to the higher levels of putative cryoprotectants (for example, trehalose, sorbitol, glucose, glycerol) in L. californicus, as identified by targeted liquid chromatography tandem mass spectrometry. CONCLUSION Our findings of a stark seasonal turnover in wireworm species prevalence and composition in the Canadian Prairies should be incorporated into future integrated pest management and surveillance activities. This study also advances our understanding of wireworm overwintering biology, which should be factored into current management approaches. © 2022 His Majesty the King in Right of Canada. Pest Management Science © 2022 Society of Chemical Industry. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.
Collapse
Affiliation(s)
- Ivan Drahun
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Elise A Poole
- Department of Biology, Brandon University, Brandon, MB, Canada
| | | | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | | | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB, Canada
| |
Collapse
|
12
|
Strilbytska OM, Semaniuk UV, Burdyliuk NI, Lushchak OV. Protein content in the parental diet affects cold tolerance and antioxidant system state in the offspring Drosophila. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Manrakhan A, Daneel JH, Stephen PR, Hattingh V. Cold Tolerance of Immature Stages of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:482-492. [PMID: 35024832 DOI: 10.1093/jee/toab263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Bactrocera dorsalis (Hendel) is a new fruit fly pest of some fruit types in the north and north eastern areas of South Africa. In order to determine whether existing cold disinfestation treatment schedules for an indigenous fruit fly pest: Ceratitis capitata (Wiedemann) would be effective for B. dorsalis, cold tolerances of four immature stages of the two species were compared. Studies were done in an artificial carrot-based larval diet. The developmental rates of the immature stages of the two species in the carrot-based larval diet were first determined at a constant temperature of 26°C. The developmental times for eggs and three larval stages were found to be similar for the two species. Incubation times of both species after egg inoculation were determined to be 0, 3, 4, and 6 d for obtaining egg, first larval, second larval, and third larval stages respectively for the cold treatment. At a test temperature of -0.6°C, mortality rates of C. capitata eggs, first instars, second instars, and third instars were lower than those of B. dorsalis. These results demonstrate that the current cold treatment schedules for disinfestation of C. capitata can be used as equally or more efficacious treatments for B. dorsalis.
Collapse
Affiliation(s)
- Aruna Manrakhan
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - John-Henry Daneel
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
| | - Peter R Stephen
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
| | - Vaughan Hattingh
- Citrus Research International, PO Box 28, Nelspruit, 1200, South Africa
- Department of Horticultural Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
14
|
Ngomane NC, Terblanche JS, Conlong DE. The Addition of Sterols and Cryoprotectants to Optimize a Diet Developed for Eldana saccharina Walker (Lepidoptera: Pyralidae) Using the Carcass Milling Technique. INSECTS 2022; 13:insects13040314. [PMID: 35447756 PMCID: PMC9029491 DOI: 10.3390/insects13040314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Various combinations and concentrations of cholesterol (C) and stigmasterol (S) were added into a base diet developed for Eldana saccharina. Survival of inoculated neonate was high on all diets (>92% at day 20 and >95% at day 27). Fastest larval development occurred on the minimum specification (MS) (+1.0 gS) and MS (+0.2 gC: 0.2 gS) diets (72 and 70% pupation respectively at day 20). Significantly slower development (15% pupation) occurred on the control diet at day 20. Female pupal weight increased when larvae fed on the MS (+0.1 gC), (+0.1 gS) and (+0.2 gC:0.2 gS) diets (0.2143 ± 0.00 g, 0.2271 ± 0.01 g and 0.2252 ± 0.01 g, respectively) as compared with the control diet (0.1886 ± 0.00 g). Adult emergence was significantly higher (100%) from the MS (+0.1 gS) and MS (+0.2 gC:0.2 gS) diets, as compared with the remaining sterol (95%) and control diets (97%). To potentially increase E. saccharina’s cold tolerance, inclusion of cryoprotectants L-proline (P) and trehalose (T) into the MS diet was investigated. Males from the MS (0.2 gP:0.2 gT), MS (0.5 gP:0.5 gT) and MS (1.0 gT) diets recovered fastest from chill coma treatment (204 ± 44 s, 215 ± 7 s and 215 ± 9 s, respectively) than those from the remaining cryoprotectant diets (305 ± 22 s). The addition of cryoprotectants severely reduced female fertility (<44%) when mated with non-chill coma exposed males. In contrast, eggs from females not exposed to chilling treatment were 84% fertile when mated with males from the same source. The MS (0.2 gC:0.2 gS) diet is the preferred choice to replace the currently used diet, reducing the larval growth period by 60% without negative effects on key life cycle parameters of E. saccharina.
Collapse
Affiliation(s)
- Nomalizo C. Ngomane
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
- South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe 4300, KwaZulu-Natal, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
| | - Des E. Conlong
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa; (N.C.N.); (J.S.T.)
- South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe 4300, KwaZulu-Natal, South Africa
- Correspondence:
| |
Collapse
|
15
|
Rosendale AJ, Leonard RK, Patterson IW, Arya T, Uhran MR, Benoit JB. Metabolomic and transcriptomic responses of ticks during recovery from cold shock reveal mechanisms of survival. J Exp Biol 2022; 225:275159. [PMID: 35179594 DOI: 10.1242/jeb.236497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Ticks are blood-feeding ectoparasites but spend most of their life off-host where they may have to tolerate low winter temperatures. Rapid cold-hardening (RCH) is a process commonly used by arthropods, including ticks, to improve survival of acute low temperature exposure. However, little is known about the underlying mechanisms in ticks associated with RCH, cold shock, and recovery from these stresses. In the present study, we investigated the extent to which RCH influences gene expression and metabolism during recovery from cold stress in Dermacentor variabilis, the American dog tick, using a combined transcriptomics and metabolomics approach. Following recovery from RCH, 1,860 genes were differentially expressed in ticks, whereas only 99 genes responded during recovery to direct cold shock. Recovery from RCH resulted in an upregulation of various pathways associated with ion binding, transport, metabolism, and cellular structures seen in the response of other arthropods to cold. The accumulation of various metabolites, including several amino acids and betaine, corresponded to transcriptional shifts in the pathways associated with these molecules, suggesting congruent metabolome and transcriptome changes. Ticks receiving exogenous betaine and valine demonstrated enhanced cold tolerance, suggesting cryoprotective effects of these metabolites. Overall, many of the responses during recovery from cold shock in ticks were similar to those observed in other arthropods, but several adjustments may be distinct from other currently examined taxa.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Ryan K Leonard
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Isaac W Patterson
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Melissa R Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
16
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
17
|
Roberts KT, Rank NE, Dahlhoff EP, Stillman JH, Williams CM. Snow modulates winter energy use and cold exposure across an elevation gradient in a montane ectotherm. GLOBAL CHANGE BIOLOGY 2021; 27:6103-6116. [PMID: 34601792 DOI: 10.1111/gcb.15912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Snow insulates the soil from air temperature, decreasing winter cold stress and altering energy use for organisms that overwinter in the soil. As climate change alters snowpack and air temperatures, it is critical to account for the role of snow in modulating vulnerability to winter climate change. Along elevational gradients in snowy mountains, snow cover increases but air temperature decreases, and it is unknown how these opposing gradients impact performance and fitness of organisms overwintering in the soil. We developed experimentally validated ecophysiological models of cold and energy stress over the past decade for the montane leaf beetle Chrysomela aeneicollis, along five replicated elevational transects in the Sierra Nevada mountains in California. Cold stress peaks at mid-elevations, while high elevations are buffered by persistent snow cover, even in dry years. While protective against cold, snow increases energy stress for overwintering beetles, particularly at low elevations, potentially leading to mortality or energetic tradeoffs. Declining snowpack will predominantly impact mid-elevation populations by increasing cold exposure, while high elevation habitats may provide refugia as drier winters become more common.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | | | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
Chipchase KM, Enders AM, Jacobs EG, Hughes MR, Killian KA. Effect of a single cold stress exposure on the reproductive behavior of male crickets. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104287. [PMID: 34302838 DOI: 10.1016/j.jinsphys.2021.104287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Cold stress is an important abiotic factor that can impact insect physiology, behavior, and overall fitness. Upon exposure to cold temperature, many insects enter a reversible state of immobility called chill coma. If the cold stress is brief and mild enough, insects can recover and regain full mobility upon return to warmer temperatures. However, the long-term impact of sublethal cold stress on insect behavior has been understudied. Here, sexually naïve adult male Acheta domesticus crickets were exposed to a single 0 °C cold stress for 6 h. One week later, the ability of these males to mate with a female was examined. For mating trials, a cold stressed male cricket was paired with a non-cold stressed, control female. Control pairs were comprised of a non-cold stressed control male and control female. Cold exposed males were less successful at mating than control males because most did not carry a spermatophore at the time of their mating trials. However, when these cold stressed males were allowed 1 h of chemosensory contact with a female, most produced a spermatophore. Males that produced spermatophores were given the opportunity to mate once with a female, and stressed males that successfully mated sired as many offspring as did control males. However, our results support that a single cold stress exposure can negatively impact the reproductive fitness of male crickets since it reduced their capacity to carry spermatophores and, as a consequence, to attract females.
Collapse
Affiliation(s)
- Kathryn M Chipchase
- Department of Biology, 258 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Alexa M Enders
- Department of Biology, 258 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Elizabeth G Jacobs
- Department of Biology, 258 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Michael R Hughes
- Department of Biology, 258 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Kathleen A Killian
- Department of Biology, 258 Pearson Hall, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
19
|
Pie MR, Divieso R, Caron FS. The evolution of climatic niche breadth in terrestrial vertebrates. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Marcio R. Pie
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | - Raquel Divieso
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | - Fernanda S. Caron
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| |
Collapse
|
20
|
Davies B, Rosendale AJ, Gantz JD, Lee RE, Denlinger DL, Benoit JB. Cross-tolerance and transcriptional shifts underlying abiotic stress in the seabird tick, Ixodes uriae. Polar Biol 2021. [DOI: 10.1007/s00300-021-02887-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Benoit JB, Oyen K, Finch G, Gantz JD, Wendeln K, Arya T, Lee RE. Cold hardening improves larval tick questing under low temperatures at the expense of longevity. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110966. [PMID: 33895321 PMCID: PMC9936387 DOI: 10.1016/j.cbpa.2021.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Questing in ticks is essential for locating a host, and this behavioral response can occur at regionally specific low temperatures for most tick species. Little is known about the dynamics between tick questing behavior and temperature in ticks, specifically how this may impact other aspects of tick biology. Here, we examine whether cold hardening increases questing in three larval tick species (Ixodes uriae, Dermacentor variabilis, and Amblyomma americanum) at low temperatures and whether cold hardening impacts longevity. Rapid cold hardening and prolonged cold acclimation benefitted ticks by decreasing the temperature of chill coma onset, and increased survival, activity, and questing in ticks at low temperatures. Oxygen consumption increased at low temperatures following acclimation in larvae, suggesting this process has a distinct metabolic expense. This increased metabolism associated with hardening led to a substantial reduction in larval longevity as nutrient reserves are limited and cannot be replenished until a host is located. These studies suggest that tick larvae, and likely other developmental stages, require a delicate balance between the need for questing at low temperatures and survival until the first blood meal.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221,Author for correspondence: Joshua B. Benoit, Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, , Phone: 513-556-9714
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - J. D. Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR
| | - Katherine Wendeln
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Richard E. Lee
- Department of Biology, Miami University, Oxford, OH 45056
| |
Collapse
|
22
|
Oyen KJ, Jardine LE, Parsons ZM, Herndon JD, Strange JP, Lozier JD, Dillon ME. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J Comp Physiol B 2021; 191:843-854. [PMID: 34173046 DOI: 10.1007/s00360-021-01385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of performance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been measured in bumble bees (genus Bombus) but may provide insights regarding recent changes in their distributions. We measured CCRT of Bombus vosnesenskii workers reared in common garden laboratory conditions from queens collected across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown in wild-caught Bombus, we predict that variability in CCRT may be strongly influenced by plasticity.
Collapse
Affiliation(s)
- K Jeannet Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Laura E Jardine
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biology, Oklahoma City University, Oklahoma City, OK, USA
| | - Zachary M Parsons
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA
| | - James D Herndon
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA
| | - James P Strange
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA.,Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.
| |
Collapse
|
23
|
Wiberg RAW, Tyukmaeva V, Hoikkala A, Ritchie MG, Kankare M. Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana. Mol Ecol 2021; 30:3783-3796. [PMID: 34047417 DOI: 10.1111/mec.16003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST . This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.
Collapse
Affiliation(s)
- R A W Wiberg
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - V Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - M G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - M Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
24
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
25
|
Cobb T, Damschroder D, Wessells R. Sestrin regulates acute chill coma recovery in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103548. [PMID: 33549817 PMCID: PMC8180487 DOI: 10.1016/j.ibmb.2021.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/09/2021] [Accepted: 01/31/2021] [Indexed: 05/10/2023]
Abstract
When chill-susceptible insects are exposed to low temperatures they enter a temporary state of paralysis referred to as a chill coma. The most well-studied physiological mechanism of chill coma onset and recovery involves regulation of ion homeostasis. Previous studies show that changes in metabolism may also underlie the ability to recovery quickly, but the roles of genes that regulate metabolic homeostasis in chill coma recovery time (CCRT) are not well understood. Here, we investigate the roles of Sestrin and Spargel (Drosophila homolog of PGC-1α), which are involved in metabolic homeostasis and substrate oxidation, on CCRT in Drosophila melanogaster. We find that sestrin and spargel mutants have impaired CCRT. sestrin is required in the muscle and nervous system tissue for normal CCRT and spargel is required in muscle and adipose. On the basis that exercise induces sestrin and spargel, we also test the interaction of cold and exercise. We find that pre-treatment with one of these stressors does not consistently confer acute protection against the other. We conclude that Sestrin and Spargel are important in the chill coma response, independent of their role in exercise.
Collapse
Affiliation(s)
- Tyler Cobb
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA
| | - Deena Damschroder
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA
| | - Robert Wessells
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI, 48201, USA.
| |
Collapse
|
26
|
Davis HE, Cheslock A, MacMillan HA. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci Rep 2021; 11:10876. [PMID: 34035382 PMCID: PMC8149885 DOI: 10.1038/s41598-021-90401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Species from colder climates tend to be more chill tolerant regardless of the chill tolerance trait measured, but for Drosophila melanogaster, population-level differences in chill tolerance among populations are not always found when a single trait is measured in the laboratory. We measured chill coma onset temperature, chill coma recovery time, and survival after chronic cold exposure in replicate lines derived from multiple paired African and European D. melanogaster populations. The populations in our study were previously found to differ in chronic cold survival ability, which is believed to have evolved independently in each population pair; however, they did not differ in chill coma onset temperature and chill coma recovery time in a manner that reflected their geographic origins, even though these traits are known to vary with origin latitude among Drosophila species and are among the most common metrics of thermal tolerance in insects. While it is common practice to measure only one chill tolerance trait when comparing chill tolerance among insect populations, our results emphasise the importance of measuring more than one thermal tolerance trait to minimize the risk of missing real adaptive variation in insect thermal tolerance.
Collapse
Affiliation(s)
- Hannah E Davis
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Alexandra Cheslock
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
27
|
Bayley JS, Overgaard J, Pedersen TH. Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110970. [PMID: 33932565 DOI: 10.1016/j.cbpa.2021.110970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023]
Abstract
Abiotic stressors, such as cold exposure, can depolarize insect cells substantially causing cold coma and cell death. During cold exposure, insect skeletal muscle depolarization occurs through a 2-stage process. Firstly, short-term cold exposure reduces the activity of electrogenic ion pumps, which depolarize insect muscle markedly. Secondly, during long-term cold exposure, extracellular ion homeostasis is disrupted causing further depolarization. Consequently, many cold hardy insects improve membrane potential stability during cold exposure through adaptations that secure maintenance of ion homeostasis during cold exposure. Less is known about the adaptations permitting cold hardy insects to maintain membrane potential stability during the initial phase of cold exposure, before ion balance is disrupted. To address this problem it is critical to understand the membrane components (channels and transporters) that determine the membrane potential and to examine this question the present study constructed a mathematical "charge difference" model of the insect muscle membrane potential. This model was parameterized with known literature values for ion permeabilities, ion concentrations and membrane capacitance and the model was then further developed by comparing model predictions against empirical measurements following pharmacological inhibitors of the Na+/K+ ATPase, Cl- channels and symporters. Subsequently, we compared simulated and recorded membrane potentials at 0 and 31 °C and at 10-50 mM extracellular [K+] to examine if the model could describe membrane potentials during the perturbations occurring during cold exposure. Our results confirm the importance of both Na+/K+ ATPase activity and ion-selective Na+, K+ and Cl- channels, but the model also highlights that additional electroneutral flux of Na+ and K+ is needed to describe how membrane potentials respond to temperature and [K+] in insect muscle. While considerable further work is still needed, we argue that this "charge difference" model can be used to generate testable hypotheses of how insects can preserve membrane polarization in the face of stressful cold exposure.
Collapse
Affiliation(s)
- Jeppe Seamus Bayley
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
28
|
Cheslock A, Andersen MK, MacMillan HA. Thermal acclimation alters Na +/K +-ATPase activity in a tissue-specific manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110934. [PMID: 33684554 DOI: 10.1016/j.cbpa.2021.110934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Insects, like the model species Drosophila melanogaster, lose neuromuscular function and enter a state of paralysis (chill coma) at a population- and species-specific low temperature threshold that is decreased by cold acclimation. Entry into this coma is related to a spreading depolarization in the central nervous system, while recovery involves restoration of electrochemical gradients across muscle cell membranes. The Na+/K+-ATPase helps maintain ion balance and membrane potential in both the brain and hemolymph (surrounding muscles), and changes in thermal tolerance traits have therefore been hypothesized to be closely linked to variation in the expression and/or activity of this pump in multiple tissues. Here, we tested this hypothesis by measuring activity and thermal sensitivity of the Na+/K+-ATPase at the tagma-specific level (head, thorax and abdomen) in warm- (25 °C) and cold-acclimated (15 °C) flies by measuring Na+/K+-ATPase activity at 15, 20, and 25 °C. We relate differences in pump activity to differences in chill coma temperature, spreading depolarization temperature, and thermal dependence of muscle cell polarization. Differences in pump activity and thermal sensitivity induced by cold acclimation varied in a tissue-specific manner: While thermal sensitivity remained unchanged, cold-acclimated flies had decreased Na+/K+-ATPase activity in the thorax (mainly muscle) and head (mainly composed of brain). We argue that these changes may assist in maintenance of K+ homeostasis and membrane potential across muscle membranes, and discuss how reduced Na+/K+-ATPase activity in the brain may counterintuitively help insects delay coma onset in the cold.
Collapse
|
29
|
Smith A, Turnbull KF, Moulton JH, Sinclair BJ. Metabolic cost of freeze-thaw and source of CO 2 production in the freeze-tolerant cricket Gryllus veletis. J Exp Biol 2021; 224:jeb234419. [PMID: 33144372 DOI: 10.1242/jeb.234419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Freeze-tolerant insects can survive the conversion of a substantial portion of their body water to ice. While the process of freezing induces active responses from some organisms, these responses appear absent from freeze-tolerant insects. Recovery from freezing likely requires energy expenditure to repair tissues and re-establish homeostasis, which should be evident as elevations in metabolic rate after thaw. We measured carbon dioxide (CO2) production in the spring field cricket (Gryllus veletis) as a proxy for metabolic rate during cooling, freezing and thawing and compared the metabolic costs associated with recovery from freezing and chilling. We hypothesized that freezing does not induce active responses, but that recovery from freeze-thaw is metabolically costly. We observed a burst of CO2 release at the onset of freezing in all crickets that froze, including those killed by either cyanide or an insecticide (thiacloprid), implying that the source of this CO2 was neither aerobic metabolism nor a coordinated nervous system response. These results suggest that freezing does not induce active responses from G. veletis, but may liberate buffered CO2 from hemolymph. There was a transient 'overshoot' in CO2 release during the first hour of recovery, and elevated metabolic rate at 24, 48 and 72 h, in crickets that had been frozen compared with crickets that had been chilled (but not frozen). Thus, recovery from freeze-thaw and the repair of freeze-induced damage appears metabolically costly in G. veletis, and this cost persists for several days after thawing.
Collapse
Affiliation(s)
- Adam Smith
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Kurtis F Turnbull
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Julian H Moulton
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, CO 80903, USA
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
30
|
Ramadan MM, Abdel-Hady AAA, Guedes RNC, Hashem AS. Low temperature shock and chill-coma consequences for the red flour beetle (Tribolium castaneum) and the rice weevil (Sitophilus oryzae). J Therm Biol 2020; 94:102774. [PMID: 33293005 DOI: 10.1016/j.jtherbio.2020.102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species - the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.
Collapse
Affiliation(s)
- Marwa M Ramadan
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Amira A A Abdel-Hady
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, Egypt.
| |
Collapse
|
31
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
32
|
Tonione MA, Cho SM, Richmond G, Irian C, Tsutsui ND. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis. Ecol Evol 2020; 10:4749-4761. [PMID: 32551058 PMCID: PMC7297759 DOI: 10.1002/ece3.6229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - So Mi Cho
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Preventive MedicineYonsei University College of MedicineSeoulKorea
| | - Gary Richmond
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
- Present address:
Department of Family Health Care NursingUCSF School of NursingSan FranciscoCAUSA
| | - Christian Irian
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCAUSA
| |
Collapse
|
33
|
Lebenzon JE, Des Marteaux LE, Sinclair BJ. Reversing sodium differentials between the hemolymph and hindgut speeds chill coma recovery but reduces survival in the fall field cricket, Gryllus pennsylvanicus. Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110699. [DOI: 10.1016/j.cbpa.2020.110699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022]
|
34
|
El-Saadi MI, Ritchie MW, Davis HE, MacMillan HA. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104055. [PMID: 32380094 DOI: 10.1016/j.jinsphys.2020.104055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In some insects, repeated cold stresses, characterized by warm periods that interrupt a sustained cold period, have been found to yield survival benefits over continuous cold stresses, but at the cost of reproduction. During a cold stress, chill susceptible insects like Drosophila melanogaster suffer from a loss of ion and water balance, and the current model of recovery from chilling posits that re-establishment of ion homeostasis begins upon return to a warm environment, but that it takes minutes to hours for an insect to fully restore homeostasis. Following this ionoregulatory model of chill coma recovery, we predicted that the longer the duration of the warm periods between cold stresses, the better a fly will endure a subsequent chill coma event and the more likely they will be to survive. We also predicted, however, that this recovery may lead to reduced fecundity, possibly due to allocation of energy reserves away from reproduction. Here, female D.melanogaster were treated to a long continuous cold stress (25 h at 0 °C), or experienced the same total time in the cold with repeated short (15 min), or long (120 min) breaks at 22 °C. We found that warm periods in general improved survival outcomes, and individuals that recovered for more time in between cold periods had significantly lower rates of injury, faster recovery from chill coma, and produced greater, rather than fewer, offspring. These improvements in chill tolerance were associated with mitigation of ionoregulatory collapse, as flies that experienced either short or long warm periods better maintained low hemolymph [K+]. Thus, warm periods that interrupt cold periods improve cold tolerance and fertility in D. melanogaster females relative to a single sustained cold stress, potentially because this time allows for recovery of ion and water homeostasis.
Collapse
Affiliation(s)
| | | | - Hannah E Davis
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | | |
Collapse
|
35
|
Lubawy J, Urbański A, Colinet H, Pflüger HJ, Marciniak P. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Front Physiol 2020; 11:376. [PMID: 32390871 PMCID: PMC7190868 DOI: 10.3389/fphys.2020.00376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
- HiProMine S.A., Robakowo, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | | | - Paweł Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| |
Collapse
|
36
|
Gerken AR, Abts SR, Scully ED, Campbell JF. Artificial Selection to a Nonlethal Cold Stress in Trogoderma variabile Shows Associations With Chronic Cold Stress and Body Size. ENVIRONMENTAL ENTOMOLOGY 2020; 49:422-434. [PMID: 31913443 DOI: 10.1093/ee/nvz162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Extreme temperature has been used as an alternative to chemical treatments for stored product pests for years. Resistance to heat or cold treatments has not been documented in stored product insects, but repeated use of ineffective treatments could lead to adaptive tolerance. Trogoderma variabile (Dermestidae) is a common pest of stored products, and the larval stage is highly resistant to cold and destructive. We artificially selected populations by inducing chill coma at four different cold temperature treatments: 3 and 5 h at -10°C and 3 and 5 h at 0°C. Recovery time was highly heritable after selection for seven generations for decreased recovery time (cold tolerance) and increased recovery time (cold susceptibility) at all time and temperature combinations. Three replicate populations for each time and temperature combination varied substantially, suggesting different mutations in each population were probably responsible for selected phenotypes. Body size decreased in populations selected for cold susceptibility compared with those selected for cold tolerance and survivorship to long-term cold stress increased in the cold-tolerant populations compared with the susceptible populations. After the cessation of the selection experiment, cold tolerance dissipated within four generations from the populations at -10°C, but was maintained in populations exposed to 0°C. Our results suggest that warehouse beetles can adapt to cold stress quickly, but in the absence of cold stress, the proportion of cold-tolerant/susceptible individuals is quickly reduced, suggesting that some of the mutations responsible for these phenotypes may be associated with fitness costs under normal conditions.
Collapse
Affiliation(s)
| | - Shelby R Abts
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - Erin D Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - James F Campbell
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| |
Collapse
|
37
|
Nadeau EAW, Teets NM. Evidence for a rapid cold hardening response in cultured Drosophila S2 cells. ACTA ACUST UNITED AC 2020; 223:jeb.212613. [PMID: 31862846 DOI: 10.1242/jeb.212613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
The ability to quickly respond to changes in environmental temperature is critical for organisms living in thermally variable environments. To cope with sudden drops in temperature, insects and other ectotherms are capable of rapid cold hardening (RCH), in which mild chilling significantly enhances cold tolerance within minutes. While the ecological significance of RCH is well established, the mechanisms underlying RCH are still poorly understood. Previous work has demonstrated that RCH is regulated at the cellular level by post-translational signaling mechanisms, and here we tested the hypothesis that cultured cells are capable of RCH. A 2 h cold shock at -8°C significantly reduced the metabolic viability of Drosophila S2 cells, but pre-treatment with RCH at 4°C for 2 h prevented this decrease in viability. Thus, S2 cells are capable of RCH in a similar manner to whole insects and provide a new system for investigating the cell biology of RCH.
Collapse
Affiliation(s)
- Emily A W Nadeau
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
38
|
Cancino J, Leal-Mubarqui R, Angulo R, Pérez C, Tirado L. Effect of Density and Lethargy Duration in Prerelease Packaging of the Fruit Fly (Diptera: Tephritidae) Parasitoid, Diachasmimorpha longicaudata (Hymenoptera: Braconidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5760781. [PMID: 32104893 PMCID: PMC7044671 DOI: 10.1093/jisesa/ieaa004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Different densities prerelease packing and times of lethargy in the fruit fly parasitoids Diachasmimorpha longicaudata (Ashmead) were evaluated in order to standardize the process of chilled insect technique for this species. Adults were kept at densities of 0.048, 0.072, 0.096, 0.120, and 0.144 parasitoids/cm2 before release in a México tower, where thermal lethargy was induced at a temperature of 2 ± 2°C for 45 min. Samples of parasitoids were collected to evaluate mortality, survival, fecundity, and flight capacity. All densities showed a similar mortality, both for males (ca. >10%) and females (ca. <7). There was no effect of density on survival and flight capacity in both sexes. On the other hand, fecundity increased with density, 1.66 sons/♀/day, similar to the control. We conclude that a density of 30,000 pupae per cage (0.144 parasitoids/cm2) is adequate for the massive prerelease packaging of the parasitoid D. longicaudata. Regarding the thermal lethargy period, 180 min under 2 ± 2°C conditions, considered as time for management, does not affect the survival, fecundity, and flight capacity of adults. The results obtained are of great utility to establish prerelease packaging parameters for D. longicaudata used in the biological control of Tephritidae fruit fly populations.
Collapse
Affiliation(s)
- Jorge Cancino
- Programa Moscafrut, Metapa de Domínguez, Chiapas, México
| | - Rubén Leal-Mubarqui
- Servicios Mubarqui S. de R. L. de C. V., Cuidad Victoria, Tamaulipas, México
| | - Roberto Angulo
- Servicios Mubarqui S. de R. L. de C. V., Cuidad Victoria, Tamaulipas, México
| | - Cesar Pérez
- Programa Moscafrut, Metapa de Domínguez, Chiapas, México
- Servicios Mubarqui S. de R. L. de C. V., Cuidad Victoria, Tamaulipas, México
| | - Lucy Tirado
- Programa Moscamed, Tapachula, Chiapas, México
| |
Collapse
|
39
|
Livingston DB, Patel H, Donini A, MacMillan HA. Active transport of brilliant blue FCF across the Drosophila midgut and Malpighian tubule epithelia. Comp Biochem Physiol A Mol Integr Physiol 2020; 239:110588. [DOI: 10.1016/j.cbpa.2019.110588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
|
40
|
Sato N, Shidara H, Ogawa H. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci Rep 2019; 9:18112. [PMID: 31792301 PMCID: PMC6889515 DOI: 10.1038/s41598-019-54555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
41
|
Engell Dahl J, Bertrand M, Pierre A, Curtit B, Pillard C, Tasiemski A, Convey P, Renault D. Thermal tolerance patterns of a carabid beetle sampled along invasion and altitudinal gradients at a sub-Antarctic island. J Therm Biol 2019; 86:102447. [DOI: 10.1016/j.jtherbio.2019.102447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
|
42
|
Williams CM, Rocca JR, Edison AS, Allison DB, Morgan TJ, Hahn DA. Cold adaptation does not alter ATP homeostasis during cold exposure in Drosophila melanogaster. Integr Zool 2019; 13:471-481. [PMID: 29722155 DOI: 10.1111/1749-4877.12326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In insects and other ectotherms, cold temperatures cause a coma resulting from loss of neuromuscular function, during which ionic and metabolic homeostasis are progressively lost. Cold adaptation improves homeostasis during cold exposure, but the ultimate targets of selection are still an open question. Cold acclimation and adaptation remodels mitochondrial metabolism in insects, suggesting that aerobic energy production during cold exposure could be a target of selection. Here, we test the hypothesis that cold adaptation improves the ability to maintain rates of aerobic energy production during cold exposure by using 31 P NMR on live flies. Using lines of Drosophila melanogaster artificially selected for fast and slow recovery from a cold coma, we show that cold exposure does not lower ATP levels and that cold adaptation does not alter aerobic ATP production during cold exposure. Cold-hardy and cold-susceptible lines both experienced a brief transition to anaerobic metabolism during cooling, but this was rapidly reversed during cold exposure, suggesting that oxidative phosphorylation was sufficient to meet energy demands below the critical thermal minimum, even in cold-susceptible flies. We thus reject the hypothesis that performance under mild low temperatures is set by aerobic ATP supply limitations in D. melanogaster, excluding oxygen and capacity limitation as a weak link in energy supply. This work suggests that the modulations to mitochondrial metabolism resulting from cold acclimation or adaptation may arise from selection on a biosynthetic product(s) of those pathways rather than selection on ATP supply during cold exposure.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA.,Departments of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - James R Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Arthur S Edison
- Departments of Entomology and Biochemistry, University of Florida, Gainesville, Florida, USA.,Departments of Genetics and Biochemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Daniel A Hahn
- Departments of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Cremonez PSG, Matsumoto JF, Andrello AC, Roggia S, Pinheiro DO, Neves PMOJ. Macro-elements in the hemolymph of adult Euschistus heros (Fabr.) (Hemiptera: Pentatomidae) treated with pyriproxyfen. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220:47-51. [PMID: 30825637 DOI: 10.1016/j.cbpc.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Euschistus heros is an important pest in many crops in Brazil, and different control strategies, mainly involving chemicals, have been evaluated; however, the side effects of these chemicals on the balance of inorganic element levels in the hemolymph are unknown. Thus, the aim of this work was to determine the concentration of inorganic elements (focusing on macro-elements) in the hemolymph of female and male E. heros adults, after applying pyriproxyfen at a sublethal concentration (LC30 = 6.68 mL L-1 diluted in distilled water) to 4th instar nymphs, which were kept in controlled conditions. The hemolymph pool was removed 48 h after adult emergence, centrifuged and placed on an acrylic disk added with Gallium as internal standard for the analysis of total reflection X-ray fluorescence. Most of the elements in the control treatment did not differ between females and males. However, following insecticide application to females and males, respectively, there was a significant increase in sulfur (19 and 51%), chlorine (33 and 137%) and calcium (47 and 82%) in the hemolymph. The significantly higher increase in macro-elements in males' hemolymph indicates that the action of pyriproxyfen may be sex-specific. Phosphorus and potassium concentrations also differed between females and males in the control and treated groups. The observed variation in inorganic elements in the insect's hemolymph may be related to the unknown effects of pyriproxyfen, mainly on immune and reproductive performance.
Collapse
Affiliation(s)
- Paulo S G Cremonez
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil
| | - Janaina F Matsumoto
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil
| | - Avacir C Andrello
- Department of Physics, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Cx. Postal 10.011, CEP 86057-970 Londrina, PR, Brazil.
| | - Samuel Roggia
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Soja, Rod. Carlos João Strass, PR-545, s/n, Acesso Orlando Amaral, Mailbox: 23, Warta, 86001-970 Londrina, Paraná State, Brazil.
| | - Daniela O Pinheiro
- Department of Histology, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Cx. Postal 10.011, CEP 86057-970 Londrina, PR, Brazil.
| | - Pedro M O J Neves
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid, PR-445, Km 380, Mailbox: 10.011, 86057-970 Londrina, Paraná State, Brazil.
| |
Collapse
|
44
|
Enriquez T, Colinet H. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara). Am J Physiol Regul Integr Comp Physiol 2019; 316:R751-R763. [DOI: 10.1152/ajpregu.00370.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic cold exposure is detrimental to chill susceptible insects that may accumulate chill injuries. To cope with deleterious effects of cold temperature, insects employ a variety of physiological strategies and metabolic adjustments, such as production of cryoprotectants, or remodeling of cellular membranes. Cold tolerance is a key element determining the fundamental niche of species. Because Drosophila suzukii is an invasive fruit pest, originating from East Asia, knowledge about its thermal biology is urgently needed. Physiological mechanisms underlying cold tolerance plasticity remain poorly understood in this species. Here, we explored metabolic and lipidomic modifications associated with the acquisition of cold tolerance in D. suzukii using Omics technologies (LC- and GC-MS/MS). In both cold-acclimated males and females, we observed physiological changes consistent with homeoviscous/homeophasic adaptation of membranes: reshuffling of phospholipid head groups and increasing unsaturation rate of fatty acids. Modification of fatty acids unsaturation were also observed in triacylglycerides, which would likely increase accessibility of lipid reserves. At the metabolic level, we observed clear-cut differentiation of metabolic profiles with cold-acclimated metabotypes showing accumulation of several potential cryoprotectants (sugars and amino acids). Metabolic pathway analyses indicated a remodeling of various processes, including purine metabolism and aminoacyl tRNA biosynthesis. These data provide a large-scale characterization of lipid rearrangements and metabolic pathway modifications in D. suzukii in response to cold acclimation and contribute to characterizing the strategies used by this species to modulate cold tolerance.
Collapse
Affiliation(s)
- Thomas Enriquez
- Université Rennes 1, Centre National de la Recherche Scientifique, Rennes, France
| | - Hervé Colinet
- Université Rennes 1, Centre National de la Recherche Scientifique, Rennes, France
| |
Collapse
|
45
|
Enriquez T, Colinet H. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. BMC Genomics 2019; 20:413. [PMID: 31117947 PMCID: PMC6532241 DOI: 10.1186/s12864-019-5745-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Insects have the capacity to adjust their physiological mechanisms during their lifetime to promote cold tolerance and cope with sublethal thermal conditions, a phenomenon referred to as thermal acclimation. The spotted wing drosophila, Drosophila suzukii, is an invasive fruit pest that, like many other species, enhances its thermotolerance in response to thermal acclimation. However, little is known about the underlying mechanisms of this plastic response. Here, we promoted flies' cold tolerance by gradually increasing acclimation duration (i.e. pre-exposure from 2 h to 9 days at 10 °C), and then compared transcriptomic responses of cold hardy versus cold susceptible phenotypes using RNA sequencing. RESULTS Cold tolerance of D. suzukii increased with acclimation duration; the longer the acclimation, the higher the cold tolerance. Cold-tolerant flies that were acclimated for 9 days were selected for transcriptomic analyses. RNA sequencing revealed a total of 2908 differentially expressed genes: 1583 were up- and 1325 were downregulated in cold acclimated flies. Functional annotation revealed many enriched GO-terms among which ionic transport across membranes and signaling were highly represented in acclimated flies. Neuronal activity and carbohydrate metabolism were also enriched GO-terms in acclimated flies. Results also revealed many GO-terms related to oogenesis which were underrepresented in acclimated flies. CONCLUSIONS Involvement of a large cluster of genes related to ion transport in cold acclimated flies suggests adjustments in the capacity to maintain ion and water homeostasis. These processes are key mechanisms underlying cold tolerance in insects. Down regulation of genes related to oogenesis in cold acclimated females likely reflects that females were conditioned at 10 °C, a temperature that prevents oogenesis. Overall, these results help to understand the molecular underpinnings of cold tolerance acquisition in D. suzukii. These data are of importance considering that the invasive success of D. suzukii in diverse climatic regions relates to its high thermal plasticity.
Collapse
Affiliation(s)
- Thomas Enriquez
- Université de Rennes1, CNRS, ECOBIO - UMR 6553, 263 avenue du Général Leclerc, 35042, Rennes, France.
| | - Hervé Colinet
- Université de Rennes1, CNRS, ECOBIO - UMR 6553, 263 avenue du Général Leclerc, 35042, Rennes, France
| |
Collapse
|
46
|
Andersen MK, Overgaard J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:10-16. [PMID: 30910613 DOI: 10.1016/j.cbpa.2019.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/05/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
When insects are cooled, they initially lose their ability to perform coordinated movements at their critical thermal minima (CTmin). At a slightly lower temperature, they enter a state of complete paralysis (chill coma onset temperature - CCO) and if they are returned to permissive temperatures they regain function after a recovery period which is termed chill coma recovery time (CCRT). These three phenotypes (CTmin, CCO, and CCRT) are all popular measures of insect cold tolerance and it is therefore important to characterize the physiological processes that are responsible for these phenotypes. In the present study we measured extracellular field potentials in the central nervous system (CNS) and muscle membrane potential (Vm) during cooling and recovery in three Drosophila species that have different cold tolerances. With these measurements we assess the role of the CNS and muscle Vm in setting the lower thermal limits (CTmin and CCO) and in delaying chill coma recovery (CCRT). The experiments suggest that entry into chill coma is primarily caused by the onset of a spreading depolarization in the CNS for all three species. In the two most cold-sensitive species we observed that the loss of CNS function was followed closely by a depolarization of muscle Vm which is known to compromise muscle function. When flies are returned to benign temperature after a cold exposure we observe a rapid recovery of CNS function, but functional recovery was delayed by a slower recovery of muscle polarization. Thus, we demonstrate the primacy of different physiological systems (CNS vs. muscle) as determinants of the most commonly used cold tolerance measures for insects (CTmin vs. CCRT).
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
47
|
Ravn MV, Campbell JB, Gerber L, Harrison JF, Overgaard J. Effects of anoxia on ATP, water, ion and pH balance in an insect ( Locusta migratoria). ACTA ACUST UNITED AC 2019; 222:jeb.190850. [PMID: 30630963 DOI: 10.1242/jeb.190850] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/20/2018] [Indexed: 01/05/2023]
Abstract
When exposed to anoxia, insects rapidly go into a hypometabolic coma from which they can recover when exposed to normoxia again. However, prolonged anoxic bouts eventually lead to death in most insects, although some species are surprisingly tolerant. Anoxia challenges ATP, ion, pH and water homeostasis, but it is not clear how fast and to what degree each of these parameters is disrupted during anoxia, nor how quickly they recover. Further, it has not been investigated which disruptions are the primary source of the tissue damage that ultimately causes death. Here, we show, in the migratory locust (Locusta migratoria), that prolonged anoxic exposures are associated with increased recovery time, decreased survival, rapidly disrupted ATP and pH homeostasis and a slower disruption of ion ([K+] and [Na+]) and water balance. Locusts could not fully recover after 4 h of anoxia at 30°C, and at this point hemolymph [K+] was elevated 5-fold and [Na+] was decreased 2-fold, muscle [ATP] was decreased to ≤3% of normoxic values, hemolymph pH had dropped 0.8 units from 7.3 to 6.5, and hemolymph water content was halved. These physiological changes are associated with marked tissue damage in vivo and we show that the isolated and combined effects of hyperkalemia, acidosis and anoxia can all cause muscle tissue damage in vitro to equally large degrees. When locusts were returned to normoxia after a moderate (2 h) exposure of anoxia, ATP recovered rapidly (15 min) and this was quickly followed by recovery of ion balance (30 min), while pH recovery took 2-24 h. Recovery of [K+] and [Na+] coincided with the animals exiting the comatose state, but recovery to an upright position took ∼90 min and was not related to any of the physiological parameters examined.
Collapse
Affiliation(s)
- Mathias V Ravn
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Jacob B Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lucie Gerber
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.,Department of Ocean Sciences, Memorial University of Newfoundland, St John's A1C 5S7, Canada
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
48
|
MacMillan HA. Dissecting cause from consequence: a systematic approach to thermal limits. J Exp Biol 2019; 222:222/4/jeb191593. [DOI: 10.1242/jeb.191593] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT
Thermal limits mark the boundaries of ectotherm performance, and are increasingly appreciated as strong correlates and possible determinants of animal distribution patterns. The mechanisms setting the thermal limits of ectothermic animals are under active study and rigorous debate as we try to reconcile new observations in the lab and field with the knowledge gained from a long history of research on thermal adaptation. Here, I provide a perspective on our divided understanding of the mechanisms setting thermal limits of ectothermic animals. I focus primarily on the fundamental differences between high and low temperatures, and how animal form and environment can place different constraints on different taxa. Together, complexity and variation in animal form drive complexity in the interactions within and among levels of biological organization, creating a formidable barrier to determining mechanistic cause and effect at thermal limits. Progress in our understanding of thermal limits will require extensive collaboration and systematic approaches that embrace this complexity and allow us to separate the causes of failure from the physiological consequences that can quickly follow. I argue that by building integrative models that explain causal links among multiple organ systems, we can more quickly arrive at a holistic understanding of the varied challenges facing animals at extreme temperatures.
Collapse
|
49
|
Grumiaux C, Andersen MK, Colinet H, Overgaard J. Fluctuating thermal regime preserves physiological homeostasis and reproductive capacity in Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2019; 113:33-41. [PMID: 30615858 DOI: 10.1016/j.jinsphys.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Drosophila suzukii, an invasive species recently introduced in Europe, lays eggs in thin-skinned fruits and causes huge financial losses to fruit growers. One potential way to control this pest is the sterile insect technique (SIT) which demands a large stock of reproductive females to produce millions of sterile males to be released on demand. Unfortunately, Drosophila stocks age quickly, show declining fecundity when maintained at warm temperatures and conversely, they die from chill injury if they are maintained at constant low temperature. Here we investigate the potential of fluctuating thermal regime (FTR) as a storage method that harness the benefits of both warm and cold storage. Using a FTR with a daily warm period (1 h 20 at 25 °C) and cold period (20 h at 3 °C), interspaced by gradual heating and cooling, we compared longevity, fecundity and physiological condition between FTR females and females exposed to constant 25 °C and 3 °C. As hypothesised, FTR flies experienced much slower senescence (>3-fold increase in lifespan) and they preserved fecundity to a much higher age than flies from constant 25 °C. Flies maintained at constant 3 °C quickly died from chill injuries caused by a gradual loss of ion and water balance. In contrast, FTR flies were able to maintain ion and water balance (similar to 25 °C flies) as they were allowed to recover homeostasis during the short warm periods. Together these results demonstrate that FTR represents a useful protocol for storage of Drosophila stocks, and more broadly, this shows that the benefits of FTR are tightly linked with the insect ability to recover physiological homeostasis during the short warm periods.
Collapse
Affiliation(s)
- Clayre Grumiaux
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Hervé Colinet
- Université Rennes 1, CNRS, ECOBIO - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
50
|
Garcia MJ, Teets NM. Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:192-200. [PMID: 30609298 DOI: 10.1002/jez.2253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
Tolerance of climatic stressors is an important predictor of the current distribution of insect species, their potential to invade new environments, and their responses to rapid climate change. Cold stress causes acute injury to nerves and muscles, and here we tested the hypothesis that low temperature causes sublethal deficits in locomotor behaviors that are dependent on neuromuscular function. To do so, we applied a previously developed assay, the rapid iterative negative geotaxis (RING) assay, to investigate behavioral consequences of cold stress in Drosophila melanogaster. The RING assay allows for rapid assessment of negative geotaxis behavior by quantifying climbing height and willingness to climb after cold stress. We exposed flies to cold stress at 0°C and assessed the extent to which duration of cold stress, recovery time, and cold acclimation influenced climbing performance. There was a clear dose-response relationship between cold exposure and performance deficits, with climbing height and willingness decreasing as cold exposure increased from 2 to 24 hr. Following cold exposure of an intermediate duration (12 hr), climbing height and willingness gradually improved as recovery time increased from 4 to 72 hr but flies never fully recovered. Finally, cold acclimation improved overall climbing height and willingness in both untreated and cold-stressed flies but did not prevent a reduction in climbing performance. Thus, cold stress causes deficits in locomotor and behavior that are dependent on the dose of cold exposure and persist long after the stress subsides. These results likely have implications for the ecological and evolutionary responses of insect populations to thermally variable environments.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|