1
|
Faillace MP, Ortiz J, Rocco L, Bernabeu R. Histone Methyltransferase G9a Plays an Essential Role on Nicotine Preference in Zebrafish. Mol Neurobiol 2024; 61:6245-6263. [PMID: 38289455 DOI: 10.1007/s12035-024-03961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/12/2024] [Indexed: 08/22/2024]
Abstract
Psychostimulants regulate behavioral responses in zebrafish via epigenetic mechanisms. We have previously shown that DNA methylation and histone deacetylase (HDAC) inhibition abolish nicotine-induced conditioned place preference (CPP) but little is known about the role of histone methylation in addictive-like behaviors. To assess the influence of histone methylation on nicotine-CPP, zebrafish were treated with a histone (H3) lysine-9 (K9) dimethyltransferase G9a/GLP inhibitor, BIX-01294 (BIX), which was administered before conditioning sessions. We observed a dual effect of the inhibitor BIX: at high doses inhibited while at low doses potentiated nicotine reward. Transcriptional expression of α6 and α7 subunits of the nicotinic acetylcholine receptor and of G9a, DNA methyl transferase-3, and HDAC-1 was upregulated in zebrafish with positive scores for nicotine-CPP. Changes in relative levels of these mRNA molecules reflected the effects of BIX on nicotine reward. BIX treatment per sé did not affect transcriptional levels of epigenetic enzymes that regulate trimethylation or demethylation of H3. BIX reduced H3K9me2 protein levels in a dose-dependent manner in key structures of the reward pathway. Thus, our findings indicated that different doses of BIX differentially affect nicotine CPP via strong or weak inhibition of G9a/GLP activity. Additionally, we found that the lysine demethylase inhibitor daminozide abolished nicotine-CPP and drug seeking. Our data demonstrate that H3 methylation catalyzed by G9a/GLP is involved in nicotine-CPP induction. Dimethylation of K9 at H3 is an important epigenetic modification that should be considered as a potential therapeutic target to treat nicotine reward and perhaps other drug addictions.
Collapse
Affiliation(s)
- Maria Paula Faillace
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO-Houssay, UBA-CONICET), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Joaquin Ortiz
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO-Houssay, UBA-CONICET), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Rocco
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO-Houssay, UBA-CONICET), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramon Bernabeu
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO-Houssay, UBA-CONICET), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
4
|
Zhao Y, Ai W, Zheng J, Hu X, Zhang L. A bibliometric and visual analysis of epigenetic research publications for Alzheimer's disease (2013-2023). Front Aging Neurosci 2024; 16:1332845. [PMID: 38292341 PMCID: PMC10824959 DOI: 10.3389/fnagi.2024.1332845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Background Currently, the prevalence of Alzheimer's disease (AD) is progressively rising, particularly in developed nations. There is an escalating focus on the onset and progression of AD. A mounting body of research indicates that epigenetics significantly contributes to AD and holds substantial promise as a novel therapeutic target for its treatment. Objective The objective of this article is to present the AD areas of research interest, comprehend the contextual framework of the subject research, and investigate the prospective direction for future research development. Methods ln Web of Science Core Collection (WOSCC), we searched documents by specific subject terms and their corresponding free words. VOSviewer, CiteSpace and Scimago Graphica were used to perform statistical analysis on measurement metrics such as the number of published papers, national cooperative networks, publishing countries, institutions, authors, co-cited journals, keywords, and visualize networks of related content elements. Results We selected 1,530 articles from WOSCC from January 2013 to June 2023 about epigenetics of AD. Based on visual analysis, we could get that China and United States were the countries with the most research in this field. Bennett DA was the most contributed and prestigious scientist. The top 3 cited journals were Journal of Alzheimer's Disease, Neurobiology of Aging and Molecular Neurobiology. According to the analysis of keywords and the frequency of citations, ncRNAs, transcription factor, genome, histone modification, blood DNA methylation, acetylation, biomarkers were hot research directions in AD today. Conclusion According to bibliometric analysis, epigenetic research in AD was a promising research direction, and epigenetics had the potential to be used as AD biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- YaPing Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - WenJing Ai
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - JingFeng Zheng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - XianLiang Hu
- Chengdu Eighth People’s Hospital, Geriatric Hospital of Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Sichuan Key Laboratory of Development and Regeneration, Department of Neurobiology, Chengdu Medical College, Chengdu, China
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Pollin G, De Assuncao T, Doria Jorge S, Chi YI, Charlesworth M, Madden B, Iovanna J, Zimmermann M, Urrutia R, Lomberk G. Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry. Biosci Rep 2023; 43:BSR20231093. [PMID: 37782747 PMCID: PMC10611923 DOI: 10.1042/bsr20231093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Thiago M. De Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Salomao Doria Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN, U.S.A
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
6
|
Zhang SM, Cao J, Yan Q. KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:113-137. [PMID: 37751138 DOI: 10.1007/978-3-031-38176-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Collapse
Affiliation(s)
- Shang-Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
7
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
8
|
Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers (Basel) 2022; 14:cancers14133270. [PMID: 35805040 PMCID: PMC9265395 DOI: 10.3390/cancers14133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are crucial for chromatin remodeling and transcriptional regulation. Post-translational modifications of histones are epigenetic processes that are fine-tuned by writer and eraser enzymes, and the disorganization of these enzymes alters the cellular state, resulting in human diseases. The KDM5 family is an enzymatic family that removes di- and tri-methyl groups (me2 and me3) from lysine 4 of histone H3 (H3K4), and its dysregulation has been implicated in cancer. Although H3K4me3 is an active chromatin marker, KDM5 proteins serve as not only transcriptional repressors but also transcriptional activators in a demethylase-dependent or -independent manner in different contexts. Notably, KDM5 proteins regulate the H3K4 methylation cycle required for active transcription. Here, we review the recent findings regarding the mechanisms of transcriptional regulation mediated by KDM5 in various contexts, with a focus on cancer, and further shed light on the potential of targeting KDM5 for cancer therapy.
Collapse
|
9
|
Gouda MBY, Zidane MA, Abdelhady AS, Hassan NM. Expression and prognostic significance of chromatin modulators EHMT2/G9a and KDM2b in acute myeloid leukemia. J Cell Biochem 2022; 123:1340-1355. [PMID: 35696556 DOI: 10.1002/jcb.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Epigenetics factors are critical for normal cell function and their regulation is sensitive to malignancy development. EHMT2/G9a and KDM2b are key epigenetics players in different cancer types. However, their expression profiles and related consequences in acute myeloid leukemia (AML) patients have not been known yet. In addition to routine lab work, expression levels of EHMT2/G9a and KDM2b were determined in 110 adult and pediatric patients with De Novo AML. Relations between their expression and patients' clinical data were tested by statistical methods. EHMT2/G9a and KDM2b were highly expressed in AML patients against control cases and associated with the presence of adverse genomic alterations. In response to induction chemotherapy, EHMT2/G9a and KDM2b showed to be significantly high in resistant and relapsed patients in comparison to the complete remission group. KDM2b overexpression was associated with CD11c (integrin alpha X) downregulation. Kaplan-Meier analysis indicated that EHMT2/G9a and KDM2b overexpression was correlated with poor survival status in AML patients. We conclude that EHMT2/G9a and KDM2b expression levels could be used as independent prognostic factors for AML disease.
Collapse
Affiliation(s)
- Mahmoud B Y Gouda
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed A Zidane
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Naglaa M Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
11
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
12
|
Imgruet MK, Lutze J, An N, Hu B, Khan S, Kurkewich J, Martinez TC, Wolfgeher D, Gurbuxani SK, Kron SJ, McNerney ME. Loss of a 7q gene, CUX1, disrupts epigenetically driven DNA repair and drives therapy-related myeloid neoplasms. Blood 2021; 138:790-805. [PMID: 34473231 PMCID: PMC8414261 DOI: 10.1182/blood.2020009195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases. We report that CUX1 has a critical early role in the DNA repair process in HSPCs. Mechanistically, CUX1 recruits the histone methyltransferase EHMT2 to DNA breaks to promote downstream H3K9 and H3K27 methylation, phosphorylated ATM retention, subsequent γH2AX focus formation and propagation, and, ultimately, 53BP1 recruitment. Despite significant unrepaired DNA damage sustained in CUX1-deficient murine HSPCs after cytotoxic exposures, they continue to proliferate and expand, mimicking clonal hematopoiesis in patients postchemotherapy. As a consequence, preexisting CUX1 deficiency predisposes mice to highly penetrant and rapidly fatal therapy-related erythroleukemias. These findings establish the importance of epigenetic regulation of HSPC DNA repair and position CUX1 as a gatekeeper in myeloid transformation.
Collapse
MESH Headings
- Animals
- Chromosomes, Mammalian/genetics
- Chromosomes, Mammalian/metabolism
- Clonal Hematopoiesis
- DNA Repair
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Mice
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
| | - Julian Lutze
- Department of Molecular Genetics and Cell Biology
- Committee on Cancer Biology
| | | | | | | | | | | | | | - Sandeep K Gurbuxani
- Department of Pathology
- The University of Chicago Medicine Comprehensive Cancer Center, and
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology
- Committee on Cancer Biology
- The University of Chicago Medicine Comprehensive Cancer Center, and
| | - Megan E McNerney
- Department of Pathology
- Committee on Cancer Biology
- The University of Chicago Medicine Comprehensive Cancer Center, and
- Section of Pediatric Hematology/Oncology and Stem Cell Transplantation, Department of Pediatrics, The University of Chicago, Chicago, IL
| |
Collapse
|
13
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
14
|
J. Verheul TC, Trinh VT, Vázquez O, Philipsen S. Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem 2020; 15:2436-2443. [PMID: 33002296 PMCID: PMC7756256 DOI: 10.1002/cmdc.202000574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The level of fetal hemoglobin (HbF) is an important disease modifier for β-thalassemia and sickle cell disease patients. Indeed, genetic tinkering with the HbF repression machinery has demonstrated great potential for disease mitigation. Such genetic treatments are costly and the high incidence of β-hemoglobinopathies in low-income countries, therefore, calls for the development of affordable, off-the-shelf, oral treatments. The use of PROTAC (PRoteolysis TArgeting Chimeras) technology to influence the epigenetic mechanisms involved in HbF suppression may provide a solution. In this minireview, we briefly explain the HbF repression network highlighting the epigenetic factors that could be targeted for degradation by PROTACs. We hope that this review will inspire clinicians, molecular and chemical biologists to collaborate and contribute to this fascinating field, which should ultimately deliver drugs that reactivate HbF expression with high specificity and low toxicity.
Collapse
Affiliation(s)
- Thijs C. J. Verheul
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| | - Van Tuan Trinh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Olalla Vázquez
- SYNMIKRO Research CenterUniversity of Marburg35043MarburgGermany
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Sjaak Philipsen
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| |
Collapse
|
15
|
Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis : Role of G9a signaling during lung epithelial-mesenchymal transition. Toxicol In Vitro 2020; 70:105037. [PMID: 33148527 DOI: 10.1016/j.tiv.2020.105037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer patients who have undergone radiotherapy developed severe complications such as pneumonitis and fibrosis. Upon irradiation, epithelial cells acquire mesenchymal phenotype via a process called epithelial to mesenchymal transition (EMT), which plays a vital role in organ fibrosis. Several mechanisms have been studied on EMT, however, the correlation between radiation-induced EMT and epigenetic changes are not well known. In the present study, we investigated the role of histone methyltransferase G9a on radiation-induced EMT signaling. There was an increase in total global histone methylation level in irradiated epithelial cells. Western blot analysis on irradiated cells showed an increased expression of H3K9me2/3. The pre-treatment of G9a inhibitor enhanced E-cadherin expression and decreased the mesenchymal markers like N-cadherin, vimentin in the radiated group. Surprisingly, radiation-induced ROS generation and pERK1/2 levels were also inhibited by G9a inhibitor BIX01294, which is showing its antioxidant potential. The ChIP-qPCR analysis on the E-cadherin promoter suggested that G9a and Snail might have formed complex to enrich suppressive marker H3K9me2/3. On the whole, our present study suggested that 1] ROS could modify H3K9 methylation via G9a and promote radiation-induced lung EMT in Beas2B and A549 cells 2] E-cadherin promoter enrichment with heterochromatin mark H3K9me2 expression upon irradiation could be modified by regulating G9a methyltransferase.
Collapse
|
16
|
Pande P, Zhong XB, Ku WW. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis. Drug Metab Dispos 2020; 48:1321-1329. [DOI: 10.1124/dmd.120.000195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
|
17
|
Kirtana R, Manna S, Patra SK. Molecular mechanisms of KDM5A in cellular functions: Facets during development and disease. Exp Cell Res 2020; 396:112314. [PMID: 33010254 DOI: 10.1016/j.yexcr.2020.112314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
Gene expression is influenced at many layers by a fine-tuned crosstalk between multiple extrinsic signalling pathways and intrinsic regulatory molecules that respond to environmental stimuli. Epigenetic modifiers like DNA methyltransferases, histone modifying enzymes and chromatin remodellers are reported to act as triggering factors in many scenarios by exhibiting their control over most of the cellular processes. These epigenetic players can either directly regulate gene expression or interact with some effector molecules that harmonize the expression of downstream genes. One such epigenetic regulator which exhibits multifaceted regulation over gene expression is KDM5A. It is classically a transcriptional repressor acting as H3K4me3 demethylase, but also is reported to act as an activator in many contexts either by loss of activity due to inhibition manifested by other interacting proteins or by downregulating the negative players of a given physiological process thereby escalating the framework. Through this review, we draw attention to the remarkable modes of functioning laid by KDM5A on transcriptional and translational processes, affecting gene expression during differentiation and development and finally summing up on role in disease causation (Fig. 1). We also shed light on different orthologs of KDM5A and their organism specific roles, along with comparison of the sequence similarity to extrapolate some unanswered questions about this protein.
Collapse
Affiliation(s)
- R Kirtana
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
18
|
Liu J, Zhao H, Zhang Q, Shi Z, Zhang Y, Zhao L, Ren Y, Ou R, Xu Y. Human papillomavirus type 16 E7 oncoprotein-induced upregulation of lysine-specific demethylase 5A promotes cervical cancer progression by regulating the microRNA-424-5p/suppressor of zeste 12 pathway. Exp Cell Res 2020; 396:112277. [PMID: 32918895 DOI: 10.1016/j.yexcr.2020.112277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) infection and viral protein expression cause several epigenetic alterations that lead to cervical carcinogenesis. Our previous study identified that upregulated lysine-specific demethylase (KDM) 2 A promotes cervical cancer progression by inhibiting mircoRNA (miR)-132 function. However, the roles of histone methylation modifiers in HPV-related cervical cancer remain unclear. In the present study, changes in the expression of 48 histone methylation modifiers were assessed following knockdown of HPV16 E6/E7 in CaSki cells. The dysregulated expression of KDM5A was identified, and its function in cervical cancer was investigated in vitro and in vivo. E7 oncoprotein-induced upregulation of KDM5A promoted cervical cancer cell proliferation and invasiveness in vitro and in vivo, which was correlated with poor prognosis in patients with cervical cancer. KDM5A was found to physically interact with the promoter region of miR-424-5p, and to suppress its expression by removing the tri- and di-methyl groups from H3K4 at the miR-424-5p locus. Furthermore, miR-424-5p repressed cancer cell proliferation and invasiveness by targeting suppressor of zeste 12 (Suz12). KDM5A upregulation promoted cervical cancer progression by repressing miR-424-5p, which resulted in a decrease in Suz12. Therefore, KDM5A functions as a tumor activator in cervical cancer pathogenesis by binding to the miR-424-5p promoter and inhibiting its tumor-suppressive function. These results indicate a function for KDM5A in cervical cancer progression and suggest its candidacy as a novel prognostic biomarker and target for the clinical management of this malignancy.
Collapse
Affiliation(s)
- Jia Liu
- Department of Plastic and Cosmetic Center, The Affiliated Eye Hospital of Wenzhou Medical University, PR China
| | - Hongqin Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Qian Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhengzheng Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Yuyang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, PR China.
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
19
|
Sunnaghatta Nagaraja S, Raviraj R, Selvakumar I, Dharmalingam D, Ramadas N, Chellappan DR, Ponnachipudhur Chinnaswamy P, Nagarajan D. Radiation-induced H3K9 tri-methylation in E-cadherin promoter during lung EMT: in vitro and in vivo approaches using vanillin. Free Radic Res 2020; 54:540-555. [PMID: 32842802 DOI: 10.1080/10715762.2020.1814274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiotherapy is an important treatment regime for lung cancer, worldwide. However, radiation-induced pneumonitis and fibrosis are the treatment-limiting toxicities among patients who have undergone radiotherapy. The epithelial cells via epithelial to mesenchymal transition [EMT] acquires mesenchymal phenotype, which ultimately leads to fibrosis. Many investigations are focussed on understanding the signalling pathways mediating in EMT, however, the role of histone methylation is less understood in radiation-induced lung EMT. In the present study, we analysed the effect of vanillin, an antioxidant, on histone methylation during radiation-induced EMT. The thoracic region of Wistar rats was irradiated with a fractionated dose of X-ray (3 Gy/day) for two weeks (total of 30 Gy). The irradiated animals were sacrificed at the 8th and 16th weeks and tissues were used for analyses. Our data showed that radiation decreased the level of antioxidant enzymes such as SOD, catalase and reduced glutathione that would ultimately enhance oxidative stress in the tissues. Histopathological analysis revealed that radiation increased the infiltration of inflammatory cells to the tissue injury site. Total global histone methylation was increased upon irradiation, which was effectively prevented by vanillin administration. Vanillin enhanced E-cadherin expression and decreased the mesenchymal markers N-cadherin and vimentin in the irradiated lung tissue. The ChIP-qPCR analysis suggested that snail expression in the nucleus might involve in the enrichment of suppressive marker H3K9me3 on the E-cadherin promoter. Finally, we suggested that vanillin administration decreased radiation-induced oxidative stress and EMT expression. Additionally, irradiation increased the H3K9 methylation status with nuclear translocation of snail during lung EMT.
Collapse
Affiliation(s)
| | - Raghavi Raviraj
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ilakya Selvakumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | | - Nirupama Ramadas
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | | | | - Devipriya Nagarajan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
20
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
21
|
Chen Y, Liu Y, Zhang J, Li LI, Wang S, Gao M. Lack of the Histone Methyltransferase Gene Ash2 Results in the Loss of Citrinin Production in Monascus purpureus. J Food Prot 2020; 83:702-709. [PMID: 32221575 DOI: 10.4315/0362-028x.jfp-19-407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/14/2019] [Indexed: 01/11/2023]
Abstract
ABSTRACT Absent, small, or homeotic discs 2 (Ash2), a histone H3K4 methyltransferase complex, has been implicated in the control of hyphal development and secondary metabolism in many kinds of filamentous fungi. We constructed an Ash2 deletion mutant (ΔAsh2) by using an Agrobacterium-mediated gene knockout method to investigate the function of the Ash2 gene in the mold Monascus purpureus. Lack of the Ash2 gene resulted in the formation of a lower colony phenotype with fluffy aerial hyphae that autolyzed as the colony grew on potato dextrose agar at 30°C. The production of pigments and the number of conidia were significantly lower in the ΔAsh2 than in the wild type. Citrinin production by the ΔAsh2 was not detected during 15 days of fermentation. Relative expression levels of secondary metabolite regulatory genes PigR and CTNR, secondary metabolite synthesizing genes PKSPT and CTN, key genes of mitogen-activated protein kinase pathway Spk1 and its downstream gene mam2, the conidium development control gene BrlA, and global regulatory genes LaeA and VeA were detected by the quantitative real-time PCR. These results indicate that the Ash2 gene is involved in conidial germination, pigment production, and citrinin production and plays a key role in development and secondary metabolism in M. purpureus. HIGHLIGHTS
Collapse
Affiliation(s)
- Yufeng Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Jialan Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | | | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-7272-1304 [M.G.])
| |
Collapse
|
22
|
Huang H, Kong W, Jean M, Fiches G, Zhou D, Hayashi T, Que J, Santoso N, Zhu J. A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Res 2019; 47:7333-7347. [PMID: 31165872 PMCID: PMC6698651 DOI: 10.1093/nar/gkz493] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone demethylase, MINA53, is potentially a novel HIV-1 latency-promoting gene (LPG). We next validated MINA53’s function in maintenance of HIV-1 latency by depleting MINA53 using the alternative RNAi approach. We further identified that in vitro MINA53 preferentially demethylates the histone substrate, H3K36me3 and that in cells MINA53 depletion by RNAi also increases the local level of H3K36me3 at LTR. The effort to map the downstream effectors unraveled that H3K36me3 has the cross-talk with another epigenetic mark H4K16ac, mediated by KAT8 that recognizes the methylated H3K36 and acetylated H4K16. Removing the MINA53-mediated latency mechanisms could benefit the reversal of post-integrated latent HIV-1 proviruses for purging of reservoir cells. We further demonstrated that a pan jumonji histone demethylase inhibitor, JIB-04, inhibits MINA53-mediated demethylation of H3K36me3, and JIB-04 synergizes with other latency-reversing agents (LRAs) to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Huachao Huang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Weili Kong
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maxime Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tsuyoshi Hayashi
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Karl M, Sommer C, Gabriel CH, Hecklau K, Venzke M, Hennig AF, Radbruch A, Selbach M, Baumgrass R. Recruitment of Histone Methyltransferase Ehmt1 to Foxp3 TSDR Counteracts Differentiation of Induced Regulatory T Cells. J Mol Biol 2019; 431:3606-3625. [PMID: 31362003 DOI: 10.1016/j.jmb.2019.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Differentiation toward CD4+ regulatory T (Treg) cells is essentially dependent on an epigenetic program at Treg signature genes, which involves remodeling of the Treg-specific demethylated regions (TSDRs). In particular, the epigenetic status of the conserved non-coding sequence 2 of Foxp3 (Foxp3 TSDR) determines expression stability of the master transcription factor and thus Treg lineage identity. However, the molecular mechanisms controlling the epigenetic remodeling at TSDRs in Treg and conventional T cells are largely unknown. Using a combined approach of DNA pull-down and mass spectrometric analysis, we report a novel regulatory mechanism in which transcription factor Wiz recruits the histone methyltransferase Ehmt1 to Foxp3 TSDR. We show that both Wiz and Ehmt1 are crucial for shaping the region with the repressive histone modification H3K9me2 in conventional T cells. Consistently, knocking out either Ehmt1 or Wiz by CRISPR/Cas resulted in the loss of H3K9me2 and enhanced Foxp3 expression during iTreg differentiation. Moreover, the essential role of the Wiz-Ehmt1 interaction as observed at several TSDRs indicates a global function of Ehmt1 in the Treg differentiation program.
Collapse
Affiliation(s)
- Martin Karl
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Sommer
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christian H Gabriel
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Hecklau
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Melanie Venzke
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Anna Floriane Hennig
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Charité-University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ria Baumgrass
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
24
|
Watts AJ, Storey KB. Hibernation impacts lysine methylation dynamics in the 13-lined ground squirrel, Ictidomys tridecemlineatus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:234-244. [PMID: 30767414 DOI: 10.1002/jez.2259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/11/2022]
Abstract
During winter hibernation in mammals, body temperature falls to near-ambient levels, metabolism shifts to favor lipid oxidation, and metabolic rate is strongly suppressed by inhibiting many ATP-expensive processes (e.g., transcription, translation) for animals in order to survive for many months on limited reserves of body fuels. Regulation of such profound changes (i.e., metabolic rate depression) requires rapid and reversible controls provided by protein posttranslational modifications. Protein lysine methylation provides one mechanism by which the functionality, activity, and stability of cellular proteins and enzymes can be modified for the needs of the hibernator. The present study reports the responses of seven lysine methyltransferases (SMYD2, SUV39H1, SET8, SET7/9, G9a, ASH2L, and RBBP5) in skeletal muscle and liver over seven stages of the torpor/arousal cycle in 13-lined ground squirrels (Ictidomys tridecemlineatus). A tissue-specific and stage-specific analysis revealed significant changes in the protein levels of lysine methyltransferases, methylation patterns on histone H3, histone methyltransferase activity, and methylation of the p53 transcription factor. Enzymes typically increased in protein amount in either torpor, arousal, or the transitory periods. Methylation of histone H3 and p53 typically followed the patterns of the methyltransferase enzymes. Overall, these data show that protein lysine methylation is an important regulator of the mammalian hibernation phenotype.
Collapse
Affiliation(s)
- Alexander J Watts
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
25
|
Liu P, Zhang S, Zhou B, Luo X, Zhou XF, Cai B, Jin YH, Niu D, Lin J, Cao X, Jin JB. The Histone H3K4 Demethylase JMJ16 Represses Leaf Senescence in Arabidopsis. THE PLANT CELL 2019; 31:430-443. [PMID: 30712008 PMCID: PMC6447021 DOI: 10.1105/tpc.18.00693] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/07/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
Leaf senescence is governed by a complex regulatory network involving the dynamic reprogramming of gene expression. Age-dependent induction of senescence-associated genes (SAGs) is associated with increased levels of trimethylation of histone H3 at Lys4 (H3K4me3), but the regulatory mechanism remains elusive. Here, we found that JMJ16, an Arabidopsis (Arabidopsis thaliana) JmjC-domain containing protein, is a specific H3K4 demethylase that negatively regulates leaf senescence through its enzymatic activity. Genome-wide analysis revealed a widespread coordinated upregulation of gene expression and hypermethylation of H3K4me3 at JMJ16 binding genes associated with leaf senescence in the loss-of-function jmj16 mutant as compared with the wild type. Genetic analysis indicated that JMJ16 negatively regulates leaf senescence, at least partly through repressing the expression of positive regulators of leaf senescence, WRKY53 and SAG201 JMJ16 associates with WRKY53 and SAG201 and represses their precocious expression in mature leaves by reducing H3K4me3 levels at these loci. The protein abundance of JMJ16 gradually decreases during aging, which is correlated with increased H3K4me3 levels at WRKY53 and SAG201, suggesting that the age-dependent downregulation of JMJ16 is required for the precise transcriptional activation of SAGs during leaf senescence. Thus, JMJ16 is an important regulator of leaf senescence that demethylates H3K4 at SAGs in an age-dependent manner.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Luo
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Feng Zhou
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yin Hua Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
26
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee S, Lee J, Chae S, Moon Y, Lee HY, Park B, Yang EG, Hwang D, Park H. Multi-dimensional histone methylations for coordinated regulation of gene expression under hypoxia. Nucleic Acids Res 2017; 45:11643-11657. [PMID: 28977425 PMCID: PMC5714201 DOI: 10.1093/nar/gkx747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxia increases both active and repressive histone methylation levels via decreased activity of histone demethylases. However, how such increases coordinately regulate induction or repression of hypoxia-responsive genes is largely unknown. Here, we profiled active and repressive histone tri-methylations (H3K4me3, H3K9me3, and H3K27me3) and analyzed gene expression profiles in human adipocyte-derived stem cells under hypoxia. We identified differentially expressed genes (DEGs) and differentially methylated genes (DMGs) by hypoxia and clustered the DEGs and DMGs into four major groups. We found that each group of DEGs was predominantly associated with alterations in only one type among the three histone tri-methylations. Moreover, the four groups of DEGs were associated with different TFs and localization patterns of their predominant types of H3K4me3, H3K9me3 and H3K27me3. Our results suggest that the association of altered gene expression with prominent single-type histone tri-methylations characterized by different localization patterns and with different sets of TFs contributes to regulation of particular sets of genes, which can serve as a model for coordinated epigenetic regulation of gene expression under hypoxia.
Collapse
Affiliation(s)
- Seongyeol Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Jieon Lee
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Sehyun Chae
- Department of New Biology and Center for Plant Aging Research, Institute of Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Ho-Youl Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Bongju Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea.,Department of New Biology and Center for Plant Aging Research, Institute of Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
29
|
Choi HJ, Joo HS, Won HY, Min KW, Kim HY, Son T, Oh YH, Lee JY, Kong G. Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer. J Natl Cancer Inst 2017; 110:4443110. [DOI: 10.1093/jnci/djx207] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hee-Joo Choi
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyeong-Seok Joo
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Young Won
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyung-Yong Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Young-Ha Oh
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
32
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
33
|
Tomaz RA, Harman JL, Karimlou D, Weavers L, Fritsch L, Bou-Kheir T, Bell E, Del Valle Torres I, Niakan KK, Fisher C, Joshi O, Stunnenberg HG, Curry E, Ait-Si-Ali S, Jørgensen HF, Azuara V. Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development 2017; 144:567-579. [PMID: 28087629 PMCID: PMC5312034 DOI: 10.1242/dev.142489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Jmjd2 H3K9 demethylases cooperate in promoting mouse embryonic stem cell (ESC) identity. However, little is known about their importance at the exit of ESC pluripotency. Here, we reveal that Jmjd2c facilitates this process by stabilising the assembly of mediator-cohesin complexes at lineage-specific enhancers. Functionally, we show that Jmjd2c is required in ESCs to initiate appropriate gene expression programs upon somatic multi-lineage differentiation. In the absence of Jmjd2c, differentiation is stalled at an early post-implantation epiblast-like stage, while Jmjd2c-knockout ESCs remain capable of forming extra-embryonic endoderm derivatives. Dissection of the underlying molecular basis revealed that Jmjd2c is re-distributed to lineage-specific enhancers during ESC priming for differentiation. Interestingly, Jmjd2c-bound enhancers are co-occupied by the H3K9-methyltransferase G9a (also known as Ehmt2), independently of its H3K9-modifying activity. Loss of Jmjd2c abrogates G9a recruitment and further destabilises loading of the mediator and cohesin components Med1 and Smc1a at newly activated and poised enhancers in ESC-derived epiblast-like cells. These findings unveil Jmjd2c and G9a as novel enhancer-associated factors, and implicate Jmjd2c as a molecular scaffold for the assembly of essential enhancer-protein complexes with an impact on timely gene activation.
Collapse
Affiliation(s)
- Rute A Tomaz
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jennifer L Harman
- Cardiovascular Medicine Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Donja Karimlou
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Lauren Weavers
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Lauriane Fritsch
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris 75013, France
| | - Tony Bou-Kheir
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Emma Bell
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - Cynthia Fisher
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Onkar Joshi
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen 6525GA, The Netherlands
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen 6525GA, The Netherlands
| | - Edward Curry
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris 75013, France
| | - Helle F Jørgensen
- Cardiovascular Medicine Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Véronique Azuara
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
34
|
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:41-53. [PMID: 27614255 DOI: 10.1016/j.pbi.2016.08.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/17/2023]
Abstract
Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Un-Sa Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Qiu MT, Fan Q, Zhu Z, Kwan SY, Chen L, Chen JH, Ying ZL, Zhou Y, Gu W, Wang LH, Cheng WW, Zeng J, Wan XP, Mok SC, Wong KK, Bao W. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget 2016; 6:31702-20. [PMID: 26397136 PMCID: PMC4741634 DOI: 10.18632/oncotarget.5165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity.
Collapse
Affiliation(s)
- Mei-Ting Qiu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Fan
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Zhu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suet-Ying Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Hong Chen
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zuo-Lin Ying
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zhou
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Gu
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Hua Wang
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Cheng
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Zeng
- Department of Laboratory Medicine and the Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao-Ping Wan
- Departments of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, China
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Bao
- Departments of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene 2016; 36:922-932. [PMID: 27452519 DOI: 10.1038/onc.2016.258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Abstract
p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.
Collapse
|
37
|
Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, Tremblay V, Rakopoulos P, Singh K, Huang S, Pflumio F, Hébert J, Couture JF, Perkins TJ, Ge K, Dilworth FJ, Brand M. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev 2016; 30:508-21. [PMID: 26944678 PMCID: PMC4782046 DOI: 10.1101/gad.276790.115] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Benyoucef et al. reveal the existence of a subtype-specific epigenetic vulnerability in T-cell acute lymphoblastic leukemia (T-ALL) by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.
Collapse
Affiliation(s)
- Aissa Benyoucef
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Carmen G Palii
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Alphonse Chu
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Fengtao Dai
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Véronique Tremblay
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Patricia Rakopoulos
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Kulwant Singh
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Francoise Pflumio
- Commissariat á l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant (DSV)-Institut de Recherche en Radiobiologie Cellulaire et Moléculaire (IRCM)-Stem Cells and Radiation Department (SCSR)-Laboratory of Hematopoietic Stem Cells and Leukemia (LSHL), U967, Fontenay-aux-Roses 92265, Paris, France; Institut National de la Santé et de la Recherche Médicale, U967, Fontenay-aux-Roses 92265, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, UMR 967, Fontenay-aux-Roses 92265, Paris, France
| | - Josée Hébert
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Jean-Francois Couture
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Theodore J Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
38
|
Evensen NA, Li Y, Kuscu C, Liu J, Cathcart J, Banach A, Zhang Q, Li E, Joshi S, Yang J, Denoya PI, Pastorekova S, Zucker S, Shroyer KR, Cao J. Hypoxia promotes colon cancer dissemination through up-regulation of cell migration-inducing protein (CEMIP). Oncotarget 2016; 6:20723-39. [PMID: 26009875 PMCID: PMC4653038 DOI: 10.18632/oncotarget.3978] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic stress drives cancer progression by causing a transcriptional reprogramming. Recently, KIAA1199 was discovered to be a cell-migration inducing protein (renamed CEMIP) that is upregulated in human cancers. However, the mechanism of induction of CEMIP in cancer was hitherto unknown. Here we demonstrate that hypoxia induces CEMIP expression leading to enhanced cell migration. Immunohistochemistry of human colon cancer tissues revealed that CEMIP is upregulated in cancer cells located at the invasive front or in the submucosa. CEMIP localization inversely correlated with E-cadherin expression, which is characteristic of the epithelial-to-mesenchymal transition. Mechanistically, hypoxia-inducible-factor-2α (HIF-2α), but not HIF-1α binds directly to the hypoxia response element within the CEMIP promoter region resulting in increased CEMIP expression. Functional characterization reveals that CEMIP is a downstream effector of HIF-2α-mediated cell migration. Expression of CEMIP was demonstrated to negatively correlate with the expression of Jarid1A, a histone demethylase that removes methyl groups from H3K4me3 (an activation marker for transcription), resulting in altered gene repression. Low oxygen tension inhibits the function of Jarid1A, leading to increased presence of H3K4me3 within the CEMIP promoter. These results provide insight into the upregulation of CEMIP within cancer and can lead to novel treatment strategies targeting this cancer cell migration-promoting gene.
Collapse
Affiliation(s)
- Nikki A Evensen
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Pediatrics, NYU Medical School, New York, NY 10016, USA
| | - Yiyi Li
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cem Kuscu
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jingxuan Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jillian Cathcart
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anna Banach
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ellen Li
- Department of Medicine/Division of Gastroenterology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sonia Joshi
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jie Yang
- Department of Preventative Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Paula I Denoya
- Department of Surgery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic
| | - Stanley Zucker
- Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jian Cao
- Department of Medicine/Division of Cancer Prevention, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
39
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
40
|
Wu X, Fang Z, Yang B, Zhong L, Yang Q, Zhang C, Huang S, Xiang R, Suzuki T, Li LL, Yang SY. Discovery of KDM5A inhibitors: Homology modeling, virtual screening and structure-activity relationship analysis. Bioorg Med Chem Lett 2016; 26:2284-8. [PMID: 27020306 DOI: 10.1016/j.bmcl.2016.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023]
Abstract
Herein we report the discovery of a series of new KDM5A inhibitors. A three-dimensional (3D) structure model of KDM5A jumonji domain was firstly established based on homology modeling. Molecular docking-based virtual screening was then performed against commercial chemical databases. A number of hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the most active hit compound, 9 (IC50: 2.3 μM), which led to the discovery of several new KDM5A inhibitors. Among them, compound 15e is the most potent one with an IC50 value of 0.22 μM against KDM5A. This compound showed good selectivity for KDM5A and considerable ability to suppress the demethylation of H3K4me3 in intact cells. Compound 15e could be taken as a good lead compound for further studies.
Collapse
Affiliation(s)
- Xiaoai Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China; Department of Nuclear Medicine, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Zhen Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China
| | - Bo Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China; Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, China
| | - Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China
| | - Qiuyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China
| | - Chunhui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China
| | - Shenzhen Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Taishogun Nishitakatsukasa-Cho, Kita-ku, Kyoto 403-8334, Japan
| | - Lin-Li Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
41
|
Laumet G, Garriga J, Chen SR, Zhang Y, Li DP, Smith TM, Dong Y, Jelinek J, Cesaroni M, Issa JP, Pan HL. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci 2015; 18:1746-55. [PMID: 26551542 PMCID: PMC4661086 DOI: 10.1038/nn.4165] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K+ channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. Here we show that nerve injury increased H3K9me2 occupancy at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect DNA methylation levels of these genes in DRGs. Nerve injury increased activity of G9a, histone deacetylases and EZH2, but only G9a inhibition consistently restored K+ channel expression. Selective G9a knockout in DRG neurons completely blocked K+ channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced K+ channel genes but also normalized 638 genes down- or up-regulated by nerve injury. Thus G9a plays a dominant role in transcriptional repression of K+ channels and in acute-to-chronic pain transition after nerve injury.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuhao Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - De-Pei Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trevor M Smith
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matteo Cesaroni
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Bockmühl Y, Patchev AV, Madejska A, Hoffmann A, Sousa JC, Sousa N, Holsboer F, Almeida OFX, Spengler D. Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics 2015; 10:247-57. [PMID: 25793778 PMCID: PMC4622987 DOI: 10.1080/15592294.2015.1017199] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a key role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the endocrine response to stress. We here show that ELS programs the expression of the GR gene (Nr3c1) by site-specific hypermethylation at the CpG island (CGI) shore in hypothalamic neurons that produce corticotropin-releasing hormone (Crh), thus preventing Crh upregulation under conditions of chronic stress. CpGs mapping to the Nr3c1 CGI shore region are dynamically regulated by ELS and underpin methylation-sensitive control of this region's insulation-like function via Ying Yang 1 (YY1) binding. Our results provide new insight into how a genomic element integrates experience-dependent epigenetic programming of the composite proximal Nr3c1 promoter, and assigns an insulating role to the CGI shore.
Collapse
Key Words
- Avp, arginine vasopressin
- BPD, borderline personal disorder
- CGI, CpG island
- CUS, chronic unpredictable stress
- ChIP, chromatin immunoprecipitation
- CpG island shore
- Crh, corticotropin releasing hormone
- DNA methylation
- Dusp1, dual specificity phosphatase 1
- ELS, early-life stress
- EMSA, electrophoretic mobility shift assay
- Fkbp5, FK506 binding protein 51
- GC, glucocorticoid
- GR, glucocorticoid receptor
- GRE, glucocorticoid response element
- HPA, hypothalamic-pituitary-adrenal
- MDD, major depressive disorder
- PTSD, posttraumatic stress disorder
- PVN, paraventricular nucleus
- Pomc, pro-opiomelanocortin
- Sgk1, serum glucocorticoid kinase 1
- YY1, Yin Yang
- Yin Yang
- early-life stress
- glucocorticoid receptor
- insulator
Collapse
|
43
|
Lee JY, Lee SH, Heo SH, Kim KS, Kim C, Kim DK, Ko JJ, Park KS. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability. PLoS One 2015; 10:e0141118. [PMID: 26492085 PMCID: PMC4619656 DOI: 10.1371/journal.pone.0141118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
G9a is a lysine methyltransferase (KMTase) for histone H3 lysine 9 that plays critical roles in a number of biological processes. Emerging evidence suggests that aberrant expression of G9a contributes to tumor metastasis and maintenance of a malignant phenotype in cancer by inducing epigenetic silencing of tumor suppressor genes. Here, we show that G9a regulates Sox2 protein stability in breast cancer cells. When G9a lysine methyltransferase activity was chemically inhibited in the ER(+) breast cancer cell line MCF7, Sox2 protein levels were decreased. In addition, ectopic overexpression of G9a induced accumulation of Sox2. Changes in cell migration, invasion, and mammosphere formation by MCF7 cells were correlated with the activity or expression level of G9a. Ectopic expression of G9a also increased Sox2 protein levels in another ER(+) breast cancer cell line, ZR-75-1, whereas it did not affect Sox2 expression in MDA-MB-231 cells, an ER(-) breast cancer cell line, or in glioblastoma cell lines. Furthermore, treatment of mouse embryonic stem cells with a KMT inhibitor, BIX-01294, resulted in a rapid reduction in Sox2 protein expression despite increased Sox2 transcript levels. This finding suggests that G9a has a novel function in the regulation of Sox2 protein stability in a cell type-dependent manner.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Se-Hwan Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Sun-Hee Heo
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Changhoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Dae-Kwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Jeong-Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- * E-mail:
| |
Collapse
|
44
|
Zhang Z, He L, Hu S, Wang Y, Lai Q, Yang P, Yu Q, Zhang S, Xiong F, Simsekyilmaz S, Ning Q, Li J, Zhang D, Zhang H, Xiang X, Zhou Z, Sun H, Wang CY. AAL exacerbates pro-inflammatory response in macrophages by regulating Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome assembly. Am J Transl Res 2015; 7:1812-1825. [PMID: 26692926 PMCID: PMC4656759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
Previously, we demonstrated that Agrocybe aegerita lectin (AAL), a galectin isolated from edible mushroom Agrocybe aegerita, exerts potent anti-tumor activity, while the mechanisms by which AAL suppresses tumor growth are yet to be elucidated. Here, we conducted studies with focus for its impact on the cecal ligation and puncture (CLP)-induced innate immune response. Administration of AAL significantly exacerbated the severity of CLP-induced septic shock as manifested the increased lethality. AAL promoted inflammatory cytokine production by preferentially regulating macrophage activation and recruitment. Mechanistic studies revealed that AAL likely targets macrophages through receptor Mincle to activate Syk/Card9 signaling, which then couples to the Nlrp3 inflammasome assembly. It was further noted that AAL markedly promotes H3K4 di- and trimethylation, by which it enhances Hmgb1 expression. Specifically, AAL induced macrophages secretion of copious amount of Hmgb1 as manifested the Hmgb1 cytoplasmic translocation along with the detection of extracellular Hmgb1. AAL also stimulated a significant increase for nuclear Hmgb1, which then formed a complex with RelA, and thereby enhancing NF-κB transcriptional activity. Together, our data suggest that AAL may possess important pharmaceutical properties in the regulation of innate immune response.
Collapse
Affiliation(s)
- Zhijun Zhang
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Long He
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Shuang Hu
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Qiaohong Lai
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Sakine Simsekyilmaz
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Jinxiu Li
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hongliang Zhang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Zhiguang Zhou
- Diabetes Center, Key Laboratory of Diabetes Immunology, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Hui Sun
- College of Life Sciences, Wuhan UniversityWuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
45
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
46
|
EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 2015; 126:1930-9. [PMID: 26320100 DOI: 10.1182/blood-2015-06-649087] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA-mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD.
Collapse
|
47
|
Wu H, Lee J, Vincent LG, Wang Q, Gu M, Lan F, Churko JM, Sallam KI, Matsa E, Sharma A, Gold JD, Engler AJ, Xiang YK, Bers DM, Wu JC. Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell 2015; 17:89-100. [PMID: 26095046 DOI: 10.1016/j.stem.2015.04.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/01/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
β-adrenergic signaling pathways mediate key aspects of cardiac function. Its dysregulation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). Previously, we established an iPSC model of familial DCM from patients with a mutation in TNNT2, a sarcomeric protein. Here, we found that the β-adrenergic agonist isoproterenol induced mature β-adrenergic signaling in iPSC-derived cardiomyocytes (iPSC-CMs) but that this pathway was blunted in DCM iPSC-CMs. Although expression levels of several β-adrenergic signaling components were unaltered between control and DCM iPSC-CMs, we found that phosphodiesterases (PDEs) 2A and PDE3A were upregulated in DCM iPSC-CMs and that PDE2A was also upregulated in DCM patient tissue. We further discovered increased nuclear localization of mutant TNNT2 and epigenetic modifications of PDE genes in both DCM iPSC-CMs and patient tissue. Notably, pharmacologic inhibition of PDE2A and PDE3A restored cAMP levels and ameliorated the impaired β-adrenergic signaling of DCM iPSC-CMs, suggesting therapeutic potential.
Collapse
Affiliation(s)
- Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jaecheol Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ludovic G Vincent
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Mingxia Gu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Lan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karim I Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arun Sharma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Kramer JM. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem Cell Biol 2015. [PMID: 26198080 DOI: 10.1139/bcb-2015-0017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The euchromatin histone methyltransferases (EHMTs) are an evolutionarily conserved protein family that are known for their ability to dimethylate histone 3 at lysine 9 in euchromatic regions of the genome. In mammals there are two EHMT proteins, G9a, encoded by EHMT2, and GLP, encoded by EHMT1. EHMTs have diverse roles in the differentiation of different tissues and cell types and are involved in adult-specific processes like memory, drug addiction, and immune response. This review discusses recent findings from rodent and Drosophila models that are beginning to reveal the broad biological role and complex mechanistic functioning of EHMT proteins.
Collapse
Affiliation(s)
- Jamie M Kramer
- Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
49
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
50
|
Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood 2015; 126:665-72. [PMID: 25979948 DOI: 10.1182/blood-2015-02-629972] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and β-thalassemia. Transcription of β-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates fetal and represses adult β-globin gene expression in adult human hematopoietic precursor cells, but the underlying mechanisms are unclear. Here we studied UNC0638 effects on β-globin gene expression using ex vivo differentiation of CD34(+) erythroid progenitor cells from peripheral blood of healthy adult donors. UNC0638 inhibition of G9a caused dosed accumulation of HbF up to 30% of total hemoglobin in differentiated cells. Elevation of HbF was associated with significant activation of fetal γ-globin and repression of adult β-globin transcription. Changes in gene expression were associated with widespread loss of H3K9me2 in the locus and gain of LDB1 complex occupancy at the γ-globin promoters as well as de novo formation of LCR/γ-globin contacts. Our findings demonstrate that G9a establishes epigenetic conditions preventing activation of γ-globin genes during differentiation of adult erythroid progenitor cells. In this view, manipulation of G9a represents a promising epigenetic approach for treatment of β-hemoglobinopathies.
Collapse
|