1
|
Talukdar S, Mal S, Kundu P. Physico-chemical features and functional relevance of tomato rhomboid proteases. Int J Biol Macromol 2024; 272:132681. [PMID: 38806088 DOI: 10.1016/j.ijbiomac.2024.132681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In plants, regulated intramembrane proteolysis (RIP) is crucial for proper growth, development, and stress management. Rhomboid proteases (RPs) residing in the membrane play a vital role in orchestrating RIP. Although RPs can be found in most sequenced genomes, tomato rhomboids (SlRPs) have not yet been studied. Using alternative and comprehensive strategies, we found ten SlRPs encoded in the tomato genome. These SlRPs possess signature motifs and transmembrane domains, showing structural similarity to other members of the RP family. Also, SlRPs are genetically related to other known RPs of the Solanaceae family. Seven of the SlRPs retain serine-histidine catalytic dyads, making them proteolytically active, while three iRhoms lack the dyad and other structural motifs. Although SlRPs could have functional redundancy, their distribution and expression pattern indicate tissue specificity and responsiveness to specific external stimuli. The presence of development and stress-response-related cis-elements in the promoters of SlRPs supports this view. Furthermore, our strategically designed substrate-reporter assay shows that SlRPs have proteolytic activity similar to that of known RPs. This study provides a detailed understanding of all SlRPs and their physico-chemical features, shedding light on their involvement in physiological processes.
Collapse
Affiliation(s)
- Sushmita Talukdar
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Sayan Mal
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India.
| |
Collapse
|
2
|
Yang J, Carvalho LAR, Ji S, Chen S, Moreira R, Verhelst SHL. 4-Oxo-β-Lactams as Novel Inhibitors for Rhomboid Proteases. Chembiochem 2023; 24:e202300418. [PMID: 37671979 DOI: 10.1002/cbic.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Intramembrane serine proteases (rhomboid proteases) are involved in a variety of biological processes and are implicated in several diseases. Here, we report 4-oxo-β-lactams as a novel scaffold for inhibition of rhomboids. We show that they covalently react with the active site and that the covalent bond is sufficiently stable for detection of the covalent rhomboid-lactam complex. 4-Oxo-β-lactams may therefore find future use as both inhibitors and activity-based probes for rhomboid proteases.
Collapse
Affiliation(s)
- Jian Yang
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Luís A R Carvalho
- Department of Pharmaceutical Sciences and Medicines, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shanping Ji
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Rui Moreira
- Department of Pharmaceutical Sciences and Medicines, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Steven H L Verhelst
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. MASS SPECTROMETRY REVIEWS 2023; 42:1008-1031. [PMID: 34549449 DOI: 10.1002/mas.21733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and β-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, and CATRIN, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
4
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
5
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Parsons WH, Rutland NT, Crainic JA, Cardozo JM, Chow AS, Andrews CL, Sheehan BK. Development of succinimide-based inhibitors for the mitochondrial rhomboid protease PARL. Bioorg Med Chem Lett 2021; 49:128290. [PMID: 34311087 DOI: 10.1016/j.bmcl.2021.128290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023]
Abstract
While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.
Collapse
Affiliation(s)
- William H Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States.
| | - Nicholas T Rutland
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Jennifer A Crainic
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Joaquin M Cardozo
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Alyssa S Chow
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Charlotte L Andrews
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Brendan K Sheehan
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| |
Collapse
|
7
|
Van Kersavond T, Konopatzki R, van der Plassche MAT, Yang J, Verhelst SHL. Rapid synthesis of internal peptidyl α-ketoamides by on resin oxidation for the construction of rhomboid protease inhibitors. RSC Adv 2021; 11:4196-4199. [PMID: 35424368 PMCID: PMC8694341 DOI: 10.1039/d0ra10614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Rhomboid proteases are intramembrane serine proteases, which are involved in a wide variety of biological processes and have been implied in various human diseases. Recently, peptidyl α-ketoamides have been reported as rhomboid inhibitors with high potency and selectivity – owing to their interaction with both the primed and non-primed site of the target protease. However, their synthesis has been performed by solution phase chemistry. Here, we report a solid phase strategy towards ketoamides as rhomboid protease inhibitors, allowing rapid synthesis and optimization. We found that the primed site binding part of inhibitors is crucial for potency. Rhomboid intramembrane serine proteases are involved in various biological processes. A solid phase synthesis of internal α-ketoamides reported here shows that primed site elements are crucial for rhomboid protease inhibition.![]()
Collapse
Affiliation(s)
| | | | | | - Jian Yang
- KU Leuven
- Department of Cellular and Molecular Medicine
- Laboratory of Chemical Biology
- 3000 Leuven
- Belgium
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS
- 44227 Dortmund
- Germany
- KU Leuven
- Department of Cellular and Molecular Medicine
| |
Collapse
|
8
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Faucher F, Bennett JM, Bogyo M, Lovell S. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases. Cell Chem Biol 2020; 27:937-952. [PMID: 32726586 PMCID: PMC7484133 DOI: 10.1016/j.chembiol.2020.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Serine hydrolases comprise a large family of enzymes that have diverse roles in key cellular processes, such as lipid metabolism, cell signaling, and regulation of post-translation modifications of proteins. They are also therapeutic targets for multiple human pathologies, including viral infection, diabetes, hypertension, and Alzheimer disease; however, few have well-defined substrates and biological functions. Activity-based probes (ABPs) have been used as effective tools to both profile activity and screen for selective inhibitors of serine hydrolases. One broad-spectrum ABP containing a fluorophosphonate electrophile has been used extensively to advance our understanding of diverse serine hydrolases. Due to the success of this single reagent, several robust chemistries have been developed to further diversify and tune the selectivity of ABPs used to target serine hydrolases. In this review, we highlight approaches to identify selective serine hydrolase ABPs and suggest new synthetic methodologies that could be applied to further advance probe development.
Collapse
Affiliation(s)
- Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Lysyk L, Brassard R, Touret N, Lemieux MJ. PARL Protease: A Glimpse at Intramembrane Proteolysis in the Inner Mitochondrial Membrane. J Mol Biol 2020; 432:5052-5062. [DOI: 10.1016/j.jmb.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
|
11
|
Barniol-Xicota M, Verhelst SHL. Isolation of intramembrane proteases in membrane-like environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183193. [PMID: 31945321 DOI: 10.1016/j.bbamem.2020.183193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Intramembrane proteases (IMPs) are proteolytic enzymes embedded in the lipid bilayer, where they cleave transmembrane substrates. The importance of IMPs relies on their role in a wide variety of cellular processes and diseases. In order to study the activity and function of IMPs, their purified form is often desired. The production of pure and active IMPs has proven to be a challenging task. This process unavoidably requires the use of solubilizing agents that will, to some extent, alter the native environment of these proteases. In this review we present the current solubilization and reconstitution techniques that have been applied to IMPs. In addition, we describe how these techniques had an influence on the activity and structural studies of IMPs, focusing on rhomboid proteases and γ-secretase.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium.
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium; Leibniz Institute for Analytical Sciences, ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| |
Collapse
|
12
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Ling L, Xiao C, Wang S, Guo L, Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta 2019; 200:236-241. [DOI: 10.1016/j.talanta.2019.03.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
14
|
Structural basis of Notch recognition by human γ-secretase. Nature 2018; 565:192-197. [PMID: 30598546 DOI: 10.1038/s41586-018-0813-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/01/2018] [Indexed: 11/08/2022]
Abstract
Aberrant cleavage of Notch by γ-secretase leads to several types of cancer, but how γ-secretase recognizes its substrate remains unknown. Here we report the cryo-electron microscopy structure of human γ-secretase in complex with a Notch fragment at a resolution of 2.7 Å. The transmembrane helix of Notch is surrounded by three transmembrane domains of PS1, and the carboxyl-terminal β-strand of the Notch fragment forms a β-sheet with two substrate-induced β-strands of PS1 on the intracellular side. Formation of the hybrid β-sheet is essential for substrate cleavage, which occurs at the carboxyl-terminal end of the Notch transmembrane helix. PS1 undergoes pronounced conformational rearrangement upon substrate binding. These features reveal the structural basis of Notch recognition and have implications for the recruitment of the amyloid precursor protein by γ-secretase.
Collapse
|
15
|
Amaral PDA, Autheman D, de Melo GD, Gouault N, Cupif JF, Goyard S, Dutra P, Coatnoan N, Cosson A, Monet D, Saul F, Haouz A, Uriac P, Blondel A, Minoprio P. Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography. PLoS Negl Trop Dis 2018; 12:e0006853. [PMID: 30372428 PMCID: PMC6224121 DOI: 10.1371/journal.pntd.0006853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/08/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects millions of people in South America and no satisfactory therapy exists, especially for its life threatening chronic phase. We targeted the Proline Racemase of T. cruzi, which is present in all stages of the parasite life cycle, to discover new inhibitors against this disease. The first published crystal structures of the enzyme revealed that the catalytic site is too small to allow any relevant drug design. In previous work, to break through the chemical space afforded to virtual screening and drug design, we generated intermediate models between the open (ligand free) and closed (ligand bound) forms of the enzyme. In the present work, we co-crystallized the enzyme with the selected inhibitors and found that they were covalently bound to the catalytic cysteine residues in the active site, thus explaining why these compounds act as irreversible inhibitors. These results led us to the design of a novel, more potent specific inhibitor, NG-P27. Co-crystallization of this new inhibitor with the enzyme allowed us to confirm the predicted protein functional motions and further characterize the chemical mechanism. Hence, the catalytic Cys300 sulfur atom of the enzyme attacks the C2 carbon of the inhibitor in a coupled, regiospecific—stereospecific Michael reaction with trans-addition of a proton on the C3 carbon. Strikingly, the six different conformations of the catalytic site in the crystal structures reported in this work had key similarities to our intermediate models previously generated by inference of the protein functional motions. These crystal structures span a conformational interval covering roughly the first quarter of the opening mechanism, demonstrating the relevance of modeling approaches to break through chemical space in drug design. There is an urgent need to develop innovative medicines addressing neglected diseases, multi-drug resistance and other unmet therapeutic needs. To create new drug design opportunities, we attempted to exploit protein functional motions by using a rational approach to model structural intermediates of a therapeutic target. After successfully designing inhibitors based on modeled intermediates of T. Cruzi proline racemase, the determination of crystal structures of the target protein in complex with the inhibitors revealed conformations that were strikingly close to the predicted models. Thus, beyond the discovery of compounds establishing a novel mode of action that can lead to innovative treatments of Chagas disease, we illustrate how modeling protein functional motions can be exploited in a rational approach to create opportunities in drug design.
Collapse
Affiliation(s)
- Patricia de Aguiar Amaral
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Delphine Autheman
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Gouault
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Jean-François Cupif
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Sophie Goyard
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Patricia Dutra
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Coatnoan
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Alain Cosson
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Damien Monet
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Philippe Uriac
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
- * E-mail: (PU); (AB); (PM)
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
- * E-mail: (PU); (AB); (PM)
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
- * E-mail: (PU); (AB); (PM)
| |
Collapse
|
16
|
Barniol-Xicota M, Verhelst SHL. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J Am Chem Soc 2018; 140:14557-14561. [PMID: 30347979 DOI: 10.1021/jacs.8b08441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rhomboid proteases form a paradigm for intramembrane proteolysis and have been implicated in several human diseases. However, their study is hampered by difficulties in solubilization and purification. We here report on the use of polymers composed of maleic acid and either diisobutylene or styrene for solubilization of rhomboid proteases in lipid nanodiscs, which proceeds with up to 48% efficiency. We show that the activity of rhomboids in lipid nanodiscs is closer to that in the native membrane than rhomboids in detergent. Moreover, a rhomboid that was proteolytically unstable in detergent turned out to be stable in lipid nanodiscs, underlining the benefit of using these polymer-stabilized nanodiscs. The systems are also compatible with the use of activity-based probes and can be used for small molecule inhibitor screening, allowing several downstream applications.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine , KU Leuven - University of Leuven , Herestraat 49 box 802 , 3000 Leuven , Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine , KU Leuven - University of Leuven , Herestraat 49 box 802 , 3000 Leuven , Belgium.,AG Chemical Proteomics , Leibniz Institute for Analytical Sciences - ISAS , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| |
Collapse
|
17
|
The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem Sci 2018; 43:726-739. [DOI: 10.1016/j.tibs.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/27/2022]
|
18
|
Yang J, Barniol-Xicota M, Nguyen MT, Ticha A, Strisovsky K, Verhelst SH. Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases. Bioorg Med Chem Lett 2018; 28:1423-1427. [DOI: 10.1016/j.bmcl.2017.12.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
|
19
|
Goel P, Jumpertz T, Tichá A, Ogorek I, Mikles DC, Hubalek M, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors. Bioorg Med Chem Lett 2018; 28:1417-1422. [DOI: 10.1016/j.bmcl.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
20
|
Sharifzadeh S, Shirley JD, Carlson EE. Activity-Based Protein Profiling Methods to Study Bacteria: The Power of Small-Molecule Electrophiles. Curr Top Microbiol Immunol 2018; 420:23-48. [PMID: 30232601 DOI: 10.1007/82_2018_135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABPP methods have been utilized for the last two decades as a means to investigate complex proteomes in all three domains of life. Extensive use in eukaryotes has provided a more fundamental understanding of the biological processes involved in numerous diseases and has driven drug discovery and treatment campaigns. However, the use of ABPP in prokaryotes has been less common, although it has gained more attention over the last decade. The urgent need for understanding bacteriophysiology and bacterial pathogenicity at a foundational level has never been more apparent, as the rise in antibiotic resistance has resulted in the inadequate and ineffective treatment of infections. This is not only a result of resistance to clinically used antibiotics, but also a lack of new drugs and equally as important, new drug targets. ABPP provides a means for which new, clinically relevant drug targets may be identified through gaining insight into biological processes. In this chapter, we place particular focus on the discussion of ABPP strategies that have been applied to study different classes of bacterial enzymes.
Collapse
Affiliation(s)
- Shabnam Sharifzadeh
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA. .,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017; 56:6713-6725. [PMID: 29185711 DOI: 10.1021/acs.biochem.7b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.
Collapse
Affiliation(s)
- Parul Goel
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany.,Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Thorsten Jumpertz
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Minh T N Nguyen
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven Verhelst
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven , Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Boris Schmidt
- Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
22
|
Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol 2017; 24:1523-1536.e4. [PMID: 29107700 PMCID: PMC5746060 DOI: 10.1016/j.chembiol.2017.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery. N-substituted peptidyl α-ketoamides are nanomolar inhibitors of rhomboid proteases Peptidyl ketoamides inhibit rhomboids covalently, reversibly, and non-competitively The peptide and ketoamide substituent independently modulate potency and selectivity Peptidyl ketoamides are selective for rhomboids, sparing most human serine proteases
Collapse
Affiliation(s)
- Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kutti R Vinothkumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| | - Kateřina Švehlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Minh T N Nguyen
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven H L Verhelst
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany; KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
23
|
Wu Y, Nizam MN, Ding X, Xu FJ. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomater Sci Eng 2017; 4:2018-2025. [DOI: 10.1021/acsbiomaterials.7b00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
25
|
Wu Y, Wang A, Ding X, Xu FJ. Versatile Functionalization of Poly(methacrylic acid) Brushes with Series of Proteolytically Cleavable Peptides for Highly Sensitive Protease Assay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:127-135. [PMID: 27959488 DOI: 10.1021/acsami.6b12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of new materials for fast and sensitive protease assay is in demand for timely diagnosis of diseases, such as cardiovascular disease, cancers, and Alzheimer disease. Herein, poly(methacrylic acid) (PMAA) brushes were synthesized from the surfaces of silica nanoparticles via surface-initiated atom transfer radical polymerization (ATRP), and functionalized with series of proteolytically cleavable peptides for highly sensitive protease assay. Upon the proteolytic cleavage of the peptides, a short peptide fragment with fluorescent tag (GGK-FITC) is released to the solution, which can be easily detected with a benchtop fluorescence microscope. The grafting densities of PMAA brushes and peptides can be readily tuned by controlling the monomer concentrations of sodium methacrylate in the ATRP reaction. Because of the three-dimensional architecture of PMAA brushes, the loading amount of peptides can reach 21.4% of the total weight of functionalized silica particles (22.4 peptides/nm2), which is much higher than direct immobilization on silica nanoparticles without polymer brushes. Because of the high loading density of peptides, the limit of detection (LOD) of trypsin can reach 1.4 pM in buffer solution or 2.6 nM in nondiluted serum. By rational design of peptide substrates, the peptide-functionalized PMAA brushes can be readily expanded to detect other proteases, such as matrix metalloproteinase-2 (MMP-2), a virtual biomarker for many cancers, with an LOD of 1.1 pM. The proteolytically cleavable peptide-functionalized PMAA brushes offer a starting point for fast and sensitive protease assay.
Collapse
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
26
|
Tichá A, Stanchev S, Škerle J, Began J, Ingr M, Švehlová K, Polovinkin L, Růžička M, Bednárová L, Hadravová R, Poláchová E, Rampírová P, Březinová J, Kašička V, Majer P, Strisovsky K. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J Biol Chem 2017; 292:2703-2713. [PMID: 28069810 DOI: 10.1074/jbc.m116.762849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
Rhomboid proteases are increasingly being explored as potential drug targets, but their potent and specific inhibitors are not available, and strategies for inhibitor development are hampered by the lack of widely usable and easily modifiable in vitro activity assays. Here we address this bottleneck and report on the development of new fluorogenic transmembrane peptide substrates, which are cleaved by several unrelated rhomboid proteases, can be used both in detergent micelles and in liposomes, and contain red-shifted fluorophores that are suitable for high-throughput screening of compound libraries. We show that nearly the entire transmembrane domain of the substrate is important for efficient cleavage, implying that it extensively interacts with the enzyme. Importantly, we demonstrate that in the detergent micelle system, commonly used for the enzymatic analyses of intramembrane proteolysis, the cleavage rate strongly depends on detergent concentration, because the reaction proceeds only in the micelles. Furthermore, we show that the catalytic efficiency and selectivity toward a rhomboid substrate can be dramatically improved by targeted modification of the sequence of its P5 to P1 region. The fluorogenic substrates that we describe and their sequence variants should find wide use in the detection of activity and development of inhibitors of rhomboid proteases.
Collapse
Affiliation(s)
- Anežka Tichá
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, and
| | - Stancho Stanchev
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Jan Škerle
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Jakub Began
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44
| | - Marek Ingr
- the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43.,the Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Faculty of Technology, nám. T.G. Masaryka 5555, 76001, Zlín, Czech Republic
| | - Kateřina Švehlová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Lucie Polovinkin
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Martin Růžička
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Lucie Bednárová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Romana Hadravová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Edita Poláchová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Petra Rampírová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Jana Březinová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Václav Kašička
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Pavel Majer
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Kvido Strisovsky
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10,
| |
Collapse
|
27
|
Verhelst SHL. Intramembrane proteases as drug targets. FEBS J 2017; 284:1489-1502. [PMID: 27889944 DOI: 10.1111/febs.13979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Proteases are considered attractive drug targets. Various drugs targeting classical, soluble proteases have been approved for treatment of human disease. Intramembrane proteases (IMPs) are a more recently discovered group of proteolytic enzymes. They are embedded in lipid bilayers and their active sites are located in the plane of a membrane. All four mechanistic families of IMPs have been linked to disease, but currently, no drugs against IMPs have entered the market. In this review, I will outline the function of IMPs with a focus on the ones involved in human disease, which includes Alzheimer's disease, cancer, and infectious diseases by microorganisms. Inhibitors of IMPs are known for all mechanistic classes, but are not yet very potent or selective - aside from those targeting γ-secretase. I will here describe the different features of IMP inhibitors and discuss a list of issues that need attention in the near future in order to improve the drug development for IMPs.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| |
Collapse
|
28
|
Cordier B, Lemberg M. Probing the Activity of Eukaryotic Rhomboid Proteases In Vitro. Methods Enzymol 2017; 584:99-126. [DOI: 10.1016/bs.mie.2016.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Abstract
Rhomboids are ubiquitous intramembrane serine proteases that are involved in various signaling pathways. This fascinating class of proteases harbors an active site buried within the lipid milieu. High-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed the catalytic mechanism for rhomboid-mediated proteolysis; however, a quantitative characterization was lacking. Assessing an enzyme's catalytic parameters is important for understanding the details of its proteolytic reaction and regulatory mechanisms. To assay rhomboid protease activity, many challenges exist such as the lipid environment and lack of known substrates. Here, we summarize various enzymatic assays developed over the last decade to study rhomboid protease activity. We present detailed protocols for gel-shift and FRET-based assays, and calculation of KM and Vmax to measure catalytic parameters, using detergent solubilized rhomboids with TatA, the only known substrate for bacterial rhomboids, and the model substrate fluorescently labeled casein.
Collapse
|
30
|
Abstract
Intramembrane serine proteases of the rhomboid family are widespread, and their gradually uncovered functions in different organisms already suggest medical relevance for infectious diseases and cancer. However, selective inhibitors that could serve as research tools for rhomboids, for validation of their disease relevance, or as templates for drug development are lacking. Here I summarize the current knowledge about rhomboid protease mechanism and specificity, overview the currently used inhibitors, and conclude by proposing avenues for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- K Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
31
|
Zer Aviv P, Shubely M, Moskovits Y, Viskind O, Albeck A, Vertommen D, Ruthstein S, Shokhen M, Gruzman A. A New Oxopiperazin-Based Peptidomimetic Molecule Inhibits Prostatic Acid Phosphatase Secretion and Induces Prostate Cancer Cell Apoptosis. ChemistrySelect 2016. [DOI: 10.1002/slct.201600987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pinchas Zer Aviv
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Moran Shubely
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Yoni Moskovits
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Amnon Albeck
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Didier Vertommen
- de Duve Institute; Université catholique de Louvain; Brussels 1200 Belgium
| | - Sharon Ruthstein
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Michael Shokhen
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Arie Gruzman
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
32
|
Arutyunova E, Smithers CC, Corradi V, Espiritu AC, Young HS, Tieleman DP, Lemieux MJ. Probing catalytic rate enhancement during intramembrane proteolysis. Biol Chem 2016; 397:907-19. [DOI: 10.1515/hsz-2016-0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/06/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6–3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis.
Collapse
|
33
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
34
|
Parsons WH, Kolar MJ, Kamat SS, Cognetta AB, Hulce JJ, Saez E, Kahn BB, Saghatelian A, Cravatt BF. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat Chem Biol 2016; 12:367-372. [PMID: 27018888 PMCID: PMC4837090 DOI: 10.1038/nchembio.2051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/05/2016] [Indexed: 12/04/2022]
Abstract
Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty-acid esters of hydroxy-fatty acids (FAHFAs), but not other major classes of lipids. We discover multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent/parallel protein evolution that defy conventional sequence- and structure-based predictions.
Collapse
Affiliation(s)
- William H Parsons
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Matthew J Kolar
- Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, La Jolla, California 92037, United States
| | - Siddhesh S Kamat
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Armand B Cognetta
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jonathan J Hulce
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Enrique Saez
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Alan Saghatelian
- Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
35
|
Guo R, Gaffney K, Yang Z, Kim M, Sungsuwan S, Huang X, Hubbell WL, Hong H. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nat Chem Biol 2016; 12:353-360. [PMID: 26999782 PMCID: PMC4837050 DOI: 10.1038/nchembio.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
Membrane proteins are assembled through balanced interactions among protein, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements in membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. The methods are based on steric trapping which couples unfolding of a doubly-biotinylated protein to binding of monovalent streptavidin (mSA). We further advanced this technology for general application by developing versatile biotin probes possessing spectroscopic reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to an intramembrane protease GlpG of Escherichia coli, we elucidated a widely unraveled unfolded state, subglobal unfolding of the region encompassing the active site, and a network of cooperative and localized interactions to maintain the stability. These findings provide crucial insights into the folding energy landscape of membrane proteins.
Collapse
Affiliation(s)
- Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kristen Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Suttipun Sungsuwan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
|
37
|
Chinthakindi PK, Kruger HG, Govender T, Naicker T, Arvidsson PI. On-Water Synthesis of Biaryl Sulfonyl Fluorides. J Org Chem 2016; 81:2618-23. [PMID: 26900892 DOI: 10.1021/acs.joc.5b02770] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report an efficient, ligand-free, and additive-free Suzuki-Miyaura coupling that is compatible with the aromatic sulfonyl fluoride functional group. The protocol proceeds at room temperature, on water, and offers facile access to a wide range of biaryl sulfonyl fluorides as bioorthogonal "click" reagents.
Collapse
Affiliation(s)
- Praveen K Chinthakindi
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban, 4041, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban, 4041, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban, 4041, South Africa
| | - Per I Arvidsson
- Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , SE-171 21 Stockholm, Sweden
| |
Collapse
|
38
|
Cho S, Dickey SW, Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol Cell 2016; 61:329-340. [PMID: 26805573 DOI: 10.1016/j.molcel.2015.12.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
Intramembrane proteases signal by releasing proteins from the membrane, but despite their importance, their enzymatic mechanisms remain obscure. We probed rhomboid proteases with reversible, mechanism-based inhibitors that allow precise kinetic analysis and faithfully mimic the transition state structurally. Unexpectedly, inhibition by peptide aldehydes is non-competitive, revealing that in the Michaelis complex, substrate does not contact the catalytic center. Structural analysis in a membrane revealed that all extracellular loops of rhomboid make stabilizing interactions with substrate, but mainly through backbone interactions, explaining rhomboid's broad sequence selectivity. At the catalytic site, the tetrahedral intermediate lies covalently attached to the catalytic serine alone, with the oxyanion stabilized by unusual tripartite interactions with the side chains of H150, N154, and the backbone of S201. We also visualized unexpected substrate-enzyme interactions at the non-essential P2/P3 residues. These "extra" interactions foster potent rhomboid inhibition in living cells, thereby opening avenues for rational design of selective rhomboid inhibitors.
Collapse
Affiliation(s)
- Sangwoo Cho
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, Maryland, USA, 21205
| | - Seth W Dickey
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, Maryland, USA, 21205
| | - Siniša Urban
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, Maryland, USA, 21205
| |
Collapse
|
39
|
Chen B, Ge SS, Zhao YC, Chen C, Yang S. Activity-based protein profiling: an efficient approach to study serine hydrolases and their inhibitors in mammals and microbes. RSC Adv 2016. [DOI: 10.1039/c6ra20006k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review focuses on the identification of serine hydrolases and their inhibitors in mammals and microbes with activity-based protein profiling (ABPP).
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Yuan-Chao Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Chong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| |
Collapse
|
40
|
Uritsky N, Shokhen M, Albeck A. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases. Angew Chem Int Ed Engl 2015; 55:1680-4. [DOI: 10.1002/anie.201507772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Neta Uritsky
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| | - Michael Shokhen
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| |
Collapse
|
41
|
Uritsky N, Shokhen M, Albeck A. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neta Uritsky
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| | - Michael Shokhen
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory; Department of Chemistry; Bar Ilan University; Ramat Gan 5290002 Israel
| |
Collapse
|
42
|
Nguyen MTN, Kersavond TV, Verhelst SHL. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem Biol 2015; 10:2423-34. [PMID: 26473325 DOI: 10.1021/acschembio.5b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.
Collapse
Affiliation(s)
- Minh T. N. Nguyen
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Tim Van Kersavond
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
- KU Leuven − University of Leuven, Department
of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 Box 802, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast. Biochem Biophys Res Commun 2015; 468:606-10. [PMID: 26545776 DOI: 10.1016/j.bbrc.2015.10.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/31/2015] [Indexed: 01/23/2023]
Abstract
Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs.
Collapse
|
44
|
Wolf EV, Zeissler A, Verhelst SHL. Inhibitor Fingerprinting of Rhomboid Proteases by Activity-Based Protein Profiling Reveals Inhibitor Selectivity and Rhomboid Autoprocessing. ACS Chem Biol 2015. [PMID: 26218717 DOI: 10.1021/acschembio.5b00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhomboid proteases were discovered almost 15 years ago and are structurally the best characterized intramembrane proteases. Apart from the general serine protease inhibitor 3,4-dichloro-isocoumarin (DCI) and a few crystal structures of the Escherichia coli rhomboid GlpG with other inhibitors, there is surprisingly little information about inhibitors of rhomboids from other species, probably because of a lack of general methods to measure inhibition against different rhomboid species. We here present activity-based protein profiling (ABPP) as a general method to screen rhomboids for their activity and inhibition. Using ABPP, we compare the inhibitory capacity of 50 small molecules against 13 different rhomboids. We find one new pan rhomboid inhibitor and several inhibitors that display selectivity. We also demonstrate that inhibition profile and sequence similarity of rhomboids are not related, which suggests that related rhomboids may be selectively inhibited. Finally, by making use of the here discovered inhibitors, we were able to show that two bacterial rhomboids autoprocess themselves in their N-terminal part.
Collapse
Affiliation(s)
- Eliane V. Wolf
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Annett Zeissler
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Steven H. L. Verhelst
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Wolf EV, Seybold M, Hadravová R, Strisovsky K, Verhelst SHL. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes. Chembiochem 2015; 16:1616-21. [PMID: 26032951 DOI: 10.1002/cbic.201500213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Although activity-based protein profiling (ABPP) has been used to study a variety of enzyme classes, its application to intramembrane proteases is still in its infancy. Intramembrane proteolysis is an important biochemical mechanism for activating proteins residing within the membrane in a dormant state. Rhomboid proteases (intramembrane serine proteases) are embedded in the lipid bilayers of membranes and occur in all phylogenetic domains. The study of purified rhomboid proteases has mainly been performed in detergent micelle environments. Here we report on the reconstitution of rhomboids in liposomes. Using ABPP, we have been able to detect active rhomboids in large and giant unilamellar vesicles. We have found that the inhibitor profiles of rhomboids in micelles and liposomes are similar, thus validating previous inhibitor screenings. Moreover, fluorescence microscopy experiments on the liposomes constitute the first steps towards activity-based imaging of rhomboid proteases in membrane environments.
Collapse
Affiliation(s)
- Eliane V Wolf
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany)
| | - Martin Seybold
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany)
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague, 166 10 (Czech Republic)
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague, 166 10 (Czech Republic)
| | - Steven H L Verhelst
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany). .,Leibniz Institut für Analytische Wissenschaften, ISAS, e.V. Otto-Hahn-Strasse 6b, 44227 Dortmund (Germany). .,Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, Box 802, 3000 Leuven (Belgium).
| |
Collapse
|
46
|
Detection of protease activity in cells and animals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:130-42. [PMID: 25960278 DOI: 10.1016/j.bbapap.2015.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 01/05/2023]
Abstract
Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
47
|
Narayanan A, Jones LH. Sulfonyl fluorides as privileged warheads in chemical biology. Chem Sci 2015; 6:2650-2659. [PMID: 28706662 PMCID: PMC5489032 DOI: 10.1039/c5sc00408j] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023] Open
Abstract
The use of sulfonyl fluoride probes in chemical biology is reviewed.
Sulfonyl fluoride electrophiles have found significant utility as reactive probes in chemical biology and molecular pharmacology. As warheads they possess the right balance of biocompatibility (including aqueous stability) and protein reactivity. Their functionality is privileged in this regard as they are known to modify not only reactive serines (resulting in their common use as protease inhibitors), but also context-specific threonine, lysine, tyrosine, cysteine and histidine residues. This review describes the application of sulfonyl fluoride probes across various areas of research and explores new approaches that could further enhance the chemical biology toolkit. We believe that sulfonyl fluoride probes will find greater utility in areas such as covalent enzyme inhibition, target identification and validation, and the mapping of enzyme binding sites, substrates and protein–protein interactions.
Collapse
Affiliation(s)
- Arjun Narayanan
- Chemical Biology Group , BioTherapeutics Chemistry , WorldWide Medicinal Chemistry , Pfizer , 610 Main Street , Cambridge , MA 02139 , USA .
| | - Lyn H Jones
- Chemical Biology Group , BioTherapeutics Chemistry , WorldWide Medicinal Chemistry , Pfizer , 610 Main Street , Cambridge , MA 02139 , USA .
| |
Collapse
|
48
|
Gilfillan L, Artschwager R, Harkiss AH, Liskamp RMJ, Sutherland A. Synthesis of pyrazole containing α-amino acids via a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones. Org Biomol Chem 2015; 13:4514-23. [DOI: 10.1039/c5ob00364d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new class of α-amino acid incorporating 5-aryl pyrazole units have been prepared using a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Lynne Gilfillan
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Raik Artschwager
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Alexander H. Harkiss
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Rob M. J. Liskamp
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Andrew Sutherland
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| |
Collapse
|
49
|
Ding X, Yang KL. Quantitative serine protease assays based on formation of copper(ii)–oligopeptide complexes. Analyst 2015; 140:340-5. [DOI: 10.1039/c4an01731e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of a copper(ii)–oligopeptide complex is exploited for real-time detection of serine proteases.
Collapse
Affiliation(s)
- Xiaokang Ding
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
50
|
Zoll S, Stanchev S, Began J, Skerle J, Lepšík M, Peclinovská L, Majer P, Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J 2014; 33:2408-21. [PMID: 25216680 PMCID: PMC4253528 DOI: 10.15252/embj.201489367] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.
Collapse
Affiliation(s)
- Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Skerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Peclinovská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|