1
|
Imbert F, Langford D. Comprehensive SUMO Proteomic Analyses Identify HIV Latency-Associated Proteins in Microglia. Cells 2025; 14:235. [PMID: 39937027 DOI: 10.3390/cells14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
SUMOylation, the post-translational modification of proteins by small ubiquitin-like modifiers, plays a critical role in regulating various cellular processes, including innate immunity. This modification is essential for modulating immune responses and influencing signaling pathways that govern the activation and function of immune cells. Recent studies suggest that SUMOylation also contributes to the pathophysiology of central nervous system (CNS) viral infections, where it contributes to the host response and viral replication dynamics. Here, we explore the multifaceted role of SUMOylation in innate immune signaling and its implications for viral infections within the CNS. Notably, we present novel proteomic analyses aimed at elucidating the role of the small ubiquitin-related modifier (SUMO) in human immunodeficiency virus (HIV) latency in microglial cells. Our findings indicate that SUMOylation may regulate key proteins involved in maintaining viral latency, suggesting a potential mechanism by which HIV evades immune detection in the CNS. By integrating insights from proteomics with functional studies, we anticipate these findings to be the groundwork for future studies on HIV-host interactions and the mechanisms that underlie SUMOylation during latent and productive infection.
Collapse
Affiliation(s)
- Fergan Imbert
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Dianne Langford
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
2
|
Gobbini RP, Velardo VG, Sokn C, Liberman AC, Arzt E. SUMO regulation of FKBP51 activity and the stress response. J Cell Biochem 2024; 125:e30411. [PMID: 37098699 DOI: 10.1002/jcb.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Vanina Giselle Velardo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Day JL, Tirard M, Brose N. Deletion of a core APC/C component reveals APC/C function in regulating neuronal USP1 levels and morphology. Front Mol Neurosci 2024; 17:1352782. [PMID: 38932933 PMCID: PMC11199872 DOI: 10.3389/fnmol.2024.1352782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The Anaphase Promoting Complex (APC/C), an E3 ubiquitin ligase, plays a key role in cell cycle control, but it is also thought to operate in postmitotic neurons. Most studies linking APC/C function to neuron biology employed perturbations of the APC/C activators, cell division cycle protein 20 (Cdc20) and Cdc20 homologue 1 (Cdh1). However, multiple lines of evidence indicate that Cdh1 and Cdc20 can function in APC/C-independent contexts, so that the effects of their perturbation cannot strictly be linked to APC/C function. Methods We therefore deleted the gene encoding Anaphase Promoting Complex 4 (APC4), a core APC/C component, in neurons cultured from conditional knockout (cKO) mice. Results Our data indicate that several previously published substrates are actually not APC/C substrates, whereas ubiquitin specific peptidase 1 (USP1) protein levels are altered in APC4 knockout (KO) neurons. We propose a model where the APC/C ubiquitylates USP1 early in development, but later ubiquitylates a substrate that directly or indirectly stabilizes USP1. We further discovered a novel role of the APC/C in regulating the number of neurites exiting somata, but we were unable to confirm prior data indicating that the APC/C regulates neurite length, neurite complexity, and synaptogenesis. Finally, we show that APC4 SUMOylation does not impact the ability of the APC/C to control the number of primary neurites or USP1 protein levels. Discussion Our data indicate that perturbation studies aimed at dissecting APC/C biology must focus on core APC/C components rather than the APC/C activators, Cdh20 and Cdh1.
Collapse
Affiliation(s)
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
4
|
Liu ML, Ma S, Tai W, Zhong X, Ni H, Zou Y, Wang J, Zhang CL. Screens in aging-relevant human ALS-motor neurons identify MAP4Ks as therapeutic targets for the disease. Cell Death Dis 2024; 15:4. [PMID: 38177100 PMCID: PMC10766628 DOI: 10.1038/s41419-023-06395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients. Mechanistically, it works as an inhibitor of MAP4Ks, regulates the MAP4Ks-HDAC6-TUBA4A-RANGAP1 pathway, and normalizes subcellular distribution of RANGAP1 and TDP-43. Finally, in an ALS mouse model we show that inhibiting MAP4Ks preserves motor neurons and significantly extends animal lifespan.
Collapse
Affiliation(s)
- Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Haoqi Ni
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jingcheng Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Liu ML, Ma S, Tai W, Zhong X, Ni H, Zou Y, Wang J, Zhang CL. Chemical screens in aging-relevant human motor neurons identify MAP4Ks as therapeutic targets for amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538014. [PMID: 37162962 PMCID: PMC10168247 DOI: 10.1101/2023.04.24.538014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients. Mechanistically, it works as an inhibitor of MAP4Ks, regulates the MAP4Ks-HDAC6-TUBA4A-RANGAP1 pathway, and normalizes subcellular distribution of RANGAP1 and TDP-43. Finally, in an ALS mouse model we show that inhibiting MAP4Ks preserves motor neurons and significantly extends animal lifespan.
Collapse
Affiliation(s)
- Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoqi Ni
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingcheng Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Daniel JA, Elizarova S, Shaib AH, Chouaib AA, Magnussen HM, Wang J, Brose N, Rhee J, Tirard M. An intellectual-disability-associated mutation of the transcriptional regulator NACC1 impairs glutamatergic neurotransmission. Front Mol Neurosci 2023; 16:1115880. [PMID: 37533751 PMCID: PMC10393139 DOI: 10.3389/fnmol.2023.1115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.
Collapse
Affiliation(s)
- James A. Daniel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sofia Elizarova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ali H. Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Abed A. Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Helge M. Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
7
|
Garvin AJ, Lanz AJ, Morris JR. SUMO monoclonal antibodies vary in sensitivity, specificity, and ability to detect types of SUMO conjugate. Sci Rep 2022; 12:21343. [PMID: 36494414 PMCID: PMC9734647 DOI: 10.1038/s41598-022-25665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibodies (MAb) to members of the Small Ubiquitin-like modifier (SUMO) family are essential tools in the study of cellular SUMOylation. However, many anti-SUMO MAbs are poorly validated, and antibody matching to detection format is without an evidence base. Here we test the specificity and sensitivity of twenty-four anti-SUMO MAbs towards monomeric and polymeric SUMO1-4 in dot-blots, immunoblots, immunofluorescence and immunoprecipitation. We find substantial variability between SUMO MAbs for different conjugation states, for detecting increased SUMOylation in response to thirteen different stress agents, and as enrichment reagents for SUMOylated RanGAP1 or KAP1. All four anti-SUMO4 monoclonal antibodies tested cross-reacted wit SUMO2/3, and several SUMO2/3 monoclonal antibodies cross-reacted with SUMO4. These data characterize the specificity of twenty-four anti-SUMO antibodies across commonly used assays, creating an enabling resource for the SUMO research community.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Alexander J Lanz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
9
|
Studying the ubiquitin code through biotin-based labelling methods. Semin Cell Dev Biol 2022; 132:109-119. [PMID: 35181195 DOI: 10.1016/j.semcdb.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of cellular substrates by members of the ubiquitin (Ub) and ubiquitin-like (UbL) family are crucial for regulating protein homeostasis in organisms. The term "ubiquitin code" encapsulates how this diverse family of modifications, via adding single UbLs or different types of UbL chains, leads to specific fates for substrates. Cancer, neurodegeneration and other conditions are sometimes linked to underlying errors in this code. Studying these modifications in cells is particularly challenging since they are usually transient, scarce, and compartment-specific. Advances in the use of biotin-based methods to label modified proteins, as well as their proximally-located interactors, facilitate isolation and identification of substrates, modification sites, and the enzymes responsible for writing and erasing these modifications, as well as factors recruited as a consequence of the substrate being modified. In this review, we discuss site-specific and proximity biotinylation approaches being currently applied for studying modifications by UbLs, highlighting the pros and cons, with mention of complementary methods when possible. Future improvements may come from bioengineering and chemical biology but even now, biotin-based technology is uncovering new substrates and regulators, expanding potential therapeutic targets to manipulate the Ub code.
Collapse
|
10
|
García-Gutiérrez P, García-Domínguez M. SUMO control of nervous system development. Semin Cell Dev Biol 2022; 132:203-212. [PMID: 34848148 DOI: 10.1016/j.semcdb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
In the last decades, the post-translational modification system by covalent attachment of the SUMO polypeptide to proteins has emerged as an essential mechanism controlling virtually all the physiological processes in the eukaryotic cell. This includes vertebrate development. In the nervous system, SUMO plays crucial roles in synapse establishment and it has also been linked to a variety of neurodegenerative diseases. However, to date, the involvement of the modification of specific targets in key aspects of nervous system development, like patterning and differentiation, has remained largely elusive. A number of recent works confirm the participation of target-specific SUMO modification in critical aspects of nervous system development. Here, we review pioneering and new findings demonstrating the essential role SUMO plays in neurogenesis and other facets of neurodevelopment, which will help to precisely understand the variety of mechanisms SUMO utilizes to control most fundamental processes in the cell.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
11
|
Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells. Nat Commun 2022; 13:5726. [PMID: 36175410 PMCID: PMC9522831 DOI: 10.1038/s41467-022-33147-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/05/2022] [Indexed: 01/12/2023] Open
Abstract
Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.
Collapse
|
12
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
13
|
Thirouin ZS, Figueiredo M, Hleihil M, Gill R, Bosshard G, McKinney RA, Tyagarajan SK. Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. J Biol Chem 2022; 298:101840. [PMID: 35307349 PMCID: PMC9019257 DOI: 10.1016/j.jbc.2022.101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen–glucose deprivation as an in vitro model for ischemia, we show that BDNF–tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Waters E, Wilkinson KA, Harding AL, Carmichael RE, Robinson D, Colley HE, Guo C. The SUMO protease SENP3 regulates mitochondrial autophagy mediated by Fis1. EMBO Rep 2022; 23:e48754. [PMID: 34994490 PMCID: PMC8811651 DOI: 10.15252/embr.201948754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy.
Collapse
Affiliation(s)
- Emily Waters
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Amy L Harding
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | | | | | - Helen E Colley
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Chun Guo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
15
|
Pronot M, Kieffer F, Gay AS, Debayle D, Forquet R, Poupon G, Schorova L, Martin S, Gwizdek C. Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain. Front Mol Neurosci 2021; 14:780535. [PMID: 34887727 PMCID: PMC8650717 DOI: 10.3389/fnmol.2021.780535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.
Collapse
Affiliation(s)
- Marie Pronot
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Félicie Kieffer
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Anne-Sophie Gay
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Delphine Debayle
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Raphaël Forquet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Gwénola Poupon
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Lenka Schorova
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Stéphane Martin
- Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| | - Carole Gwizdek
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Nice, France
| |
Collapse
|
16
|
Ning W, Ma Y, Li S, Wang X, Pan H, Wei C, Zhang S, Bai D, Liu X, Deng Y, Acharya A, Pelekos G, Savkovic V, Li H, Gaus S, Haak R, Schmalz G, Ziebolz D, Ma Y, Xu Y. Shared Molecular Mechanisms between Atherosclerosis and Periodontitis by Analyzing the Transcriptomic Alterations of Peripheral Blood Monocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1498431. [PMID: 34899963 PMCID: PMC8664523 DOI: 10.1155/2021/1498431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the nature of shared transcriptomic alterations in PBMs from periodontitis and atherosclerosis to unravel molecular mechanisms underpinning their association. METHODS Gene expression data from PBMs from patients with periodontitis and those with atherosclerosis were each downloaded from the GEO database. Differentially expressed genes (DEGs) in periodontitis and atherosclerosis were identified through differential gene expression analysis. The disease-related known genes related to periodontitis and atherosclerosis each were downloaded from the DisGeNET database. A Venn diagram was constructed to identify crosstalk genes from four categories: DEGs expressed in periodontitis, periodontitis-related known genes, DEGs expressed in atherosclerosis, and atherosclerosis-related known genes. A weighted gene coexpression network analysis (WGCNA) was performed to identify significant coexpression modules, and then, coexpressed gene interaction networks belonging to each significant module were constructed to identify the core crosstalk genes. RESULTS Functional enrichment analysis of significant modules obtained by WGCNA analysis showed that several pathways might play the critical crosstalk role in linking both diseases, including bacterial invasion of epithelial cells, platelet activation, and Mitogen-Activated Protein Kinases (MAPK) signaling. By constructing the gene interaction network of significant modules, the core crosstalk genes in each module were identified and included: for GSE23746 dataset, RASGRP2 in the blue module and VAMP7 and SNX3 in the green module, as well as HMGB1 and SUMO1 in the turquoise module were identified; for GSE61490 dataset, SEC61G, PSMB2, SELPLG, and FIBP in the turquoise module were identified. CONCLUSION Exploration of available transcriptomic datasets revealed core crosstalk genes (RASGRP2, VAMP7, SNX3, HMGB1, SUMO1, SEC61G, PSMB2, SELPLG, and FIBP) and significant pathways (bacterial invasion of epithelial cells, platelet activation, and MAPK signaling) as top candidate molecular linkage mechanisms between atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongying Pan
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Chenxuan Wei
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dongying Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Aneesha Acharya
- Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - George Pelekos
- Faculty of Dentistry, University of Hong Kong, Hong KongChina
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Yanbo Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| |
Collapse
|
17
|
Imbert F, Langford D. Viruses, SUMO, and immunity: the interplay between viruses and the host SUMOylation system. J Neurovirol 2021; 27:531-541. [PMID: 34342851 PMCID: PMC8330205 DOI: 10.1007/s13365-021-00995-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
The conjugation of small ubiquitin-like modifier (SUMO) proteins to substrates is a well-described post-translational modification that regulates protein activity, subcellular localization, and protein-protein interactions for a variety of downstream cellular activities. Several studies describe SUMOylation as an essential post-translational modification for successful viral infection across a broad range of viruses, including RNA and DNA viruses, both enveloped and un-enveloped. These viruses include but are not limited to herpes viruses, human immunodeficiency virus-1, and coronaviruses. In addition to the SUMOylation of viral proteins during infection, evidence shows that viruses manipulate the SUMO pathway for host protein SUMOylation. SUMOylation of host and viral proteins greatly impacts host innate immunity through viral manipulation of the host SUMOylation machinery to promote viral replication and pathogenesis. Other post-translational modifications like phosphorylation can also modulate SUMO function. For example, phosphorylation of COUP-TF interacting protein 2 (CTIP2) leads to its SUMOylation and subsequent proteasomal degradation. The SUMOylation of CTIP2 and subsequent degradation prevents CTIP2-mediated recruitment of a multi-enzymatic complex to the HIV-1 promoter that usually prevents the transcription of integrated viral DNA. Thus, the "SUMO switch" could have implications for CTIP2-mediated transcriptional repression of HIV-1 in latency and viral persistence. In this review, we describe the consequences of SUMO in innate immunity and then focus on the various ways that viral pathogens have evolved to hijack the conserved SUMO machinery. Increased understanding of the many roles of SUMOylation in viral infections can lead to novel insight into the regulation of viral pathogenesis with the potential to uncover new targets for antiviral therapies.
Collapse
Affiliation(s)
- Fergan Imbert
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, PA, 19140, Philadelphia, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, PA, 19140, Philadelphia, USA.
| |
Collapse
|
18
|
Lork M, Lieber G, Hale BG. Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses. Viruses 2021; 13:528. [PMID: 33806893 PMCID: PMC8004987 DOI: 10.3390/v13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.
Collapse
Affiliation(s)
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland; (M.L.); (G.L.)
| |
Collapse
|
19
|
Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: An update. J Neurochem 2021; 156:145-161. [PMID: 32538470 PMCID: PMC8218484 DOI: 10.1111/jnc.15103] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.
Collapse
Affiliation(s)
- Jeremy M. Henley
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Richard Seager
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Yasuko Nakamura
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Karolina Talandyte
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Jithin Nair
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Kevin A. Wilkinson
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| |
Collapse
|
20
|
Neuronal Localization of SENP Proteins with Super Resolution Microscopy. Brain Sci 2020; 10:brainsci10110778. [PMID: 33113832 PMCID: PMC7693135 DOI: 10.3390/brainsci10110778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023] Open
Abstract
SUMOylation of proteins plays a key role in modulating neuronal function. For this reason, the balance between protein SUMOylation and deSUMOylation requires fine regulation to guarantee the homeostasis of neural tissue. While extensive research has been carried out on the localization and function of small ubiquitin-related modifier (SUMO) variants in neurons, less attention has been paid to the SUMO-specific isopeptidases that constitute the human SUMO-specific isopeptidase (SENP)/Ubiquitin-Specific Protease (ULP) cysteine protease family (SENP1-3 and SENP5-7). Here, for the first time, we studied the localization of SENP1, SENP6, and SENP7 in cultured hippocampal primary neurons at a super resolution detail level, with structured illumination microscopy (SIM). We found that the deSUMOylases partially colocalize with pre- and post-synaptic markers such as synaptophysin and drebrin. Thus, further confirming the presence with synaptic markers of the negative regulators of the SUMOylation machinery.
Collapse
|
21
|
Yu S, Galeffi F, Rodriguiz RM, Wang Z, Shen Y, Lyu J, Li R, Bernstock JD, Johnson KR, Liu S, Sheng H, Turner DA, Wetsel WC, Paschen W, Yang W. Small ubiquitin-like modifier 2 (SUMO2) is critical for memory processes in mice. FASEB J 2020; 34:14750-14767. [PMID: 32910521 DOI: 10.1096/fj.202000850rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation (SUMOylation), a posttranslational modification, modulates almost all major cellular processes. Mounting evidence indicates that SUMOylation plays a crucial role in maintaining and regulating neural function, and importantly its dysfunction is implicated in cognitive impairment in humans. We have previously shown that simultaneously silencing SUMO1-3 expression in neurons negatively affects cognitive function. However, the roles of the individual SUMOs in modulating cognition and the mechanisms that link SUMOylation to cognitive processes remain unknown. To address these questions, in this study, we have focused on SUMO2 and generated a new conditional Sumo2 knockout mouse line. We found that conditional deletion of Sumo2 predominantly in forebrain neurons resulted in marked impairments in various cognitive tests, including episodic and fear memory. Our data further suggest that these abnormalities are attributable neither to constitutive changes in gene expression nor to alterations in neuronal morphology, but they involve impairment in dynamic SUMOylation processes associated with synaptic plasticity. Finally, we provide evidence that dysfunction on hippocampal-based cognitive tasks was associated with a significant deficit in the maintenance of hippocampal long-term potentiation in Sumo2 knockout mice. Collectively, these data demonstrate that protein conjugation by SUMO2 is critically involved in cognitive processes.
Collapse
Affiliation(s)
- Shu Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Francesca Galeffi
- Research and Surgery Services, Durham VAMC, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
| | - Zhuoran Wang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yuntian Shen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingjun Lyu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ran Li
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Shuai Liu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Research and Surgery Services, Durham VAMC, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
23
|
Ripamonti S, Shomroni O, Rhee JS, Chowdhury K, Jahn O, Hellmann KP, Bonn S, Brose N, Tirard M. SUMOylation controls the neurodevelopmental function of the transcription factor Zbtb20. J Neurochem 2020; 154:647-661. [PMID: 32233089 DOI: 10.1111/jnc.15008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.
Collapse
Affiliation(s)
- Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kamal Chowdhury
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Peter Hellmann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
24
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
25
|
Sheng Z, Wang X, Ma Y, Zhang D, Yang Y, Zhang P, Zhu H, Xu N, Liang S. MS-based strategies for identification of protein SUMOylation modification. Electrophoresis 2019; 40:2877-2887. [PMID: 31216068 PMCID: PMC6899701 DOI: 10.1002/elps.201900100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
Protein SUMOylation modification conjugated with small ubiquitin-like modifiers (SUMOs) is one kind of PTMs, which exerts comprehensive roles in cellular functions, including gene expression regulation, DNA repair, intracellular transport, stress responses, and tumorigenesis. With the development of the peptide enrichment approaches and MS technology, more than 6000 SUMOylated proteins and about 40 000 SUMO acceptor sites have been identified. In this review, we summarize several popular approaches that have been developed for the identification of SUMOylated proteins in human cells, and further compare their technical advantages and disadvantages. And we also introduce identification approaches of target proteins which are co-modified by both SUMOylation and ubiquitylation. We highlight the emerging trends in the SUMOylation field as well. Especially, the advent of the clustered regularly interspaced short palindromic repeats/ Cas9 technique will facilitate the development of MS for SUMOylation identification.
Collapse
Affiliation(s)
- Zenghua Sheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| | - Yanni Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| | - Peng Zhang
- Department of Urinary SurgeryWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular OncologyCancer Institute & Cancer HospitalChinese Academy of Medical SciencesBeijingP. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular OncologyCancer Institute & Cancer HospitalChinese Academy of Medical SciencesBeijingP. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalCollaborative Innovation Center for BiotherapySichuan UniversityChengduP. R. China
| |
Collapse
|
26
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is a pioneer transcription factor that activates a program of gene expression during early human development, after which its expression is silenced in most somatic cells. When misexpressed in FSHD skeletal muscle, the DUX4 program leads to accumulated muscle pathology. Epigenetic regulators of the disease locus represent particularly attractive therapeutic targets for FSHD, as many are not global modifiers of the genome, and altering their expression or activity should allow correction of the underlying defect.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 4
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing
- Genetic Loci
- Genome, Human
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/classification
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Mutation
- Severity of Illness Index
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| | - Peter L Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| |
Collapse
|
27
|
Dumontet T, Sahut‐Barnola I, Dufour D, Lefrançois‐Martinez A, Berthon A, Montanier N, Ragazzon B, Djari C, Pointud J, Roucher‐Boulez F, Batisse‐Lignier M, Tauveron I, Bertherat J, Val P, Martinez A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J 2019; 33:10218-10230. [DOI: 10.1096/fj.201900557r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Typhanie Dumontet
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Isabelle Sahut‐Barnola
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Damien Dufour
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Anne‐Marie Lefrançois‐Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Annabel Berthon
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Nathanaëlle Montanier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieCentre Hospitalier Régional (CHR)Hôpital de la Source Orléans France
| | - Bruno Ragazzon
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
| | - Cyril Djari
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Jean‐Christophe Pointud
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Florence Roucher‐Boulez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Endocrinologie Moléculaire et Maladies RaresCHUUniversité Claude Bernard Lyon 1 Bron France
| | - Marie Batisse‐Lignier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Igor Tauveron
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Jérôme Bertherat
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
- Centre Maladies Rares de la SurrénaleService d'EndocrinologieHôpital CochinAssistance Publique Hôpitaux de Paris Paris France
| | - Pierre Val
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Antoine Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| |
Collapse
|
28
|
Mattern M, Sutherland J, Kadimisetty K, Barrio R, Rodriguez MS. Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends Biochem Sci 2019; 44:599-615. [PMID: 30819414 DOI: 10.1016/j.tibs.2019.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.
Collapse
Affiliation(s)
- Michael Mattern
- Progenra Inc., 277 Great Valley Parkway, Malvern 19355, Pennsylvania, USA; These authors contributed equally
| | - James Sutherland
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain; These authors contributed equally
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Malvern 19355, Pennsylvania, USA
| | - Rosa Barrio
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain
| | - Manuel S Rodriguez
- ITAV-IPBS-UPS CNRS USR3505, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France.
| |
Collapse
|
29
|
Abstract
Protein regulation by reversible attachment of SUMO (small ubiquitin-related modifier) plays an important role in several cellular processes such as transcriptional regulation, nucleo-cytoplasmic transport, cell-cycle progression, meiosis, and DNA repair. However, most sumoylated proteins are of marginal abundance at steady state levels, which is due to strict regulation and/or rapid turnover of modification and de-modification. Consequently, analysis of protein sumoylation in vivo is very challenging. Nonetheless, a novel method was established that allows detection of sumoylated proteins at endogenous levels from vertebrate cells and tissues. This approach involves the enrichment of sumoylated proteins by immunoprecipitation followed by peptide elution. After endogenous substrate sumoylation is verified, addressing its functional consequences is the next logical step. This requires SUMO site mapping that benefits from larger quantities of modified protein. Here, we shortly describe strategies to achieve efficient in vitro sumoylation of many substrates.
Collapse
Affiliation(s)
- Jan Breucker
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
30
|
Stankova T, Piepkorn L, Bayer TA, Jahn O, Tirard M. SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. Aging Cell 2018; 17:e12760. [PMID: 29633471 PMCID: PMC6052395 DOI: 10.1111/acel.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
A proper equilibrium of post-translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6 -HA-SUMO1 knock-in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1-conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age-related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.
Collapse
Affiliation(s)
- Trayana Stankova
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Lars Piepkorn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry; Department of Psychiatry and Psychotherapy; University Medical Center Göttingen (UMG); Göttingen Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
31
|
Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 2018; 9:2456. [PMID: 29942033 PMCID: PMC6018634 DOI: 10.1038/s41467-018-04957-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions. Proteomics is a powerful method to study protein SUMOylation, but system-wide insights into endogenous SUMO2/3 modification events are still sparse. Here, the authors develop a more sensitive SUMO proteomics approach, providing detailed maps of endogenous SUMO2/3 sites in human cells and mouse tissues.
Collapse
|
32
|
Daniel JA, Cooper BH, Palvimo JJ, Zhang FP, Brose N, Tirard M. Response: Commentary: Analysis of SUMO1-conjugation at synapses. Front Cell Neurosci 2018; 12:117. [PMID: 29766991 PMCID: PMC5938361 DOI: 10.3389/fncel.2018.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/12/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- James A Daniel
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
33
|
Zhang Y, Li Y, Tang B, Zhang CY. The strategies for identification and quantification of SUMOylation. Chem Commun (Camb) 2018; 53:6989-6998. [PMID: 28589199 DOI: 10.1039/c7cc00901a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMOylation is a post-translational modification that plays critical roles in a multitude of cellular processes including transcription, cellular localization, DNA repair and cell cycle progression. Similar to ubiquitin, the small ubiquitin-like modifiers (SUMOs) are covalently attached to the epsilon amino group of lysine residues in the substrates. To understand the regulation and the dynamics of post-translational modifications (PTMs), the identification and quantification of SUMOylation is strictly needed. Although numerous proteomic approaches have been developed to identify hundreds of SUMO target proteins, the number of SUMOylation signatures identified from endogenous modified proteins is limited, and the identification of precise acceptor sites remains a challenge due to the low abundance of in vivo SUMO-modified proteins and the high activity of SUMO-specific proteases in cell lysates. In particular, very few sensitive strategies are available for accurate quantification of SUMO target proteins. Within the past decade, mass spectrometry-based strategies have been the most popular technologies for proteome-wide studies of SUMOylation. Recently, some new approaches such as single-molecule detection have been introduced. In this review, we summarize the strategies that have been exploited for enrichment, purification and identification of SUMOylation substrates and acceptor sites as well as ultrasensitive quantification of SUMOylation. We highlight the emerging trends in this field as well.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | |
Collapse
|
34
|
Abstract
Post-translational modification of substrate proteins by SUMO conjugation regulates a diverse array of cellular processes. While predominantly a nuclear protein modification, there is a growing appreciation that SUMOylation of proteins outside the nucleus plays direct roles in controlling synaptic transmission, neuronal excitability, and adaptive responses to cell stress. Furthermore, alterations in protein SUMOylation are observed in a wide range of neurological and neurodegenerative diseases, and several extranuclear disease-associated proteins have been shown to be directly SUMOylated. Here, focusing mainly on SUMOylation of synaptic and mitochondrial proteins, we outline recent developments and discoveries, and present our opinion as to the most exciting avenues for future research to define how SUMOylation of extranuclear proteins regulates neuronal and synaptic function.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
35
|
Neuronal Proteomic Analysis of the Ubiquitinated Substrates of the Disease-Linked E3 Ligases Parkin and Ube3a. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3180413. [PMID: 29693004 PMCID: PMC5859835 DOI: 10.1155/2018/3180413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Both Parkin and UBE3A are E3 ubiquitin ligases whose mutations result in severe brain dysfunction. Several of their substrates have been identified using cell culture models in combination with proteasome inhibitors, but not in more physiological settings. We recently developed the bioUb strategy to isolate ubiquitinated proteins in flies and have now identified by mass spectrometry analysis the neuronal proteins differentially ubiquitinated by those ligases. This is an example of how flies can be used to provide biological material in order to reveal steady state substrates of disease causing genes. Collectively our results provide new leads to the possible physiological functions of the activity of those two disease causing E3 ligases. Particularly, in the case of Parkin the novelty of our data originates from the experimental setup, which is not overtly biased by acute mitochondrial depolarisation. In the case of UBE3A, it is the first time that a nonbiased screen for its neuronal substrates has been reported.
Collapse
|
36
|
Wagner T, Godmann M, Heinzel T. Analysis of Histone Deacetylases Sumoylation by Immunoprecipitation Techniques. Methods Mol Biol 2018; 1510:339-351. [PMID: 27761833 DOI: 10.1007/978-1-4939-6527-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Histone deacetylases (HDACs) are controlling dynamic protein acetylation by removing acetyl moieties from lysine. Histone deacetylases themselves are regulated on the posttranslational level, including modifications with small ubiquitin-like modifier (SUMO) proteins. Detecting SUMO modifications of deacetylases by immunoblotting is technically challenging due to the typically low ratio of the modified compared to the unmodified species. Here, we describe a set of methods for the detection of endogenous sumoylated HDACs by immunoprecipitation and immunoblotting techniques.
Collapse
Affiliation(s)
- Tobias Wagner
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Maren Godmann
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Thorsten Heinzel
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
| |
Collapse
|
37
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
38
|
Komiya M, Ito A, Endo M, Hiruma D, Hattori M, Saitoh H, Yoshida M, Ozawa T. A genetic screen to discover SUMOylated proteins in living mammalian cells. Sci Rep 2017; 7:17443. [PMID: 29234079 PMCID: PMC5727073 DOI: 10.1038/s41598-017-17450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for diverse biological mechanisms. Although various attempts have been made to discover novel SUMO substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in various biological contexts.
Collapse
Affiliation(s)
- Maki Komiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mizuki Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Hiruma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Biomolecular Science and Engineering, The Institute of Scientific & Industrial Research, Osaka University, Osaka, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Wilkinson KA, Martin S, Tyagarajan SK, Arancio O, Craig TJ, Guo C, Fraser PE, Goldstein SAN, Henley JM. Commentary: Analysis of SUMO1-conjugation at synapses. Front Cell Neurosci 2017; 11:345. [PMID: 29163056 PMCID: PMC5670122 DOI: 10.3389/fncel.2017.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Stéphane Martin
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, IPMC, Université Côte d'Azur, Nice, France
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ottavio Arancio
- Taub Institute and Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Tim J Craig
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Chun Guo
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
40
|
Daniel JA, Cooper BH, Palvimo JJ, Zhang FP, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. eLife 2017; 6. [PMID: 28598330 PMCID: PMC5493437 DOI: 10.7554/elife.26338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
SUMO1-conjugation of proteins at neuronal synapses is considered to be a major post-translational regulatory process in nerve cell and synapse function, but the published evidence for SUMO1-conjugation at synapses is contradictory. We employed multiple genetic mouse models for stringently controlled biochemical and immunostaining analyses of synaptic SUMO1-conjugation. By using a knock-in reporter mouse line expressing tagged SUMO1, we could not detect SUMO1-conjugation of seven previously proposed synaptic SUMO1-targets in the brain. Further, immunostaining of cultured neurons from wild-type and SUMO1 knock-out mice showed that anti-SUMO1 immunolabelling at synapses is non-specific. Our findings indicate that SUMO1-conjugation of synaptic proteins does not occur or is extremely rare and hence not detectable using current methodology. Based on our data, we discuss a set of experimental strategies and minimal consensus criteria for the validation of SUMOylation that can be applied to any SUMOylation substrate and SUMO isoform. DOI:http://dx.doi.org/10.7554/eLife.26338.001
Collapse
Affiliation(s)
- James A Daniel
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Benjamin H Cooper
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nils Brose
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Marilyn Tirard
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| |
Collapse
|
41
|
Nair RR, Patil S, Tiron A, Kanhema T, Panja D, Schiro L, Parobczak K, Wilczynski G, Bramham CR. Dynamic Arc SUMOylation and Selective Interaction with F-Actin-Binding Protein Drebrin A in LTP Consolidation In Vivo. Front Synaptic Neurosci 2017; 9:8. [PMID: 28553222 PMCID: PMC5426369 DOI: 10.3389/fnsyn.2017.00008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIβ), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP.
Collapse
Affiliation(s)
- Rajeevkumar R Nair
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Adrian Tiron
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Tambudzai Kanhema
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Debabrata Panja
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Lars Schiro
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Grzegorz Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| |
Collapse
|
42
|
Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun 2016; 7:13365. [PMID: 27819299 PMCID: PMC5103071 DOI: 10.1038/ncomms13365] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
GABAA receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the brain via synergistic association with the postsynaptic scaffolding protein gephyrin and its interaction partners. However, unlike their counterparts at glutamatergic synapses, gephyrin and its binding partners lack canonical protein interaction motifs; hence, the molecular basis for gephyrin scaffolding has remained unclear. In this study, we identify and characterize two new posttranslational modifications of gephyrin, SUMOylation and acetylation. We demonstrate that crosstalk between SUMOylation, acetylation and phosphorylation pathways regulates gephyrin scaffolding. Pharmacological intervention of SUMO pathway or transgenic expression of SUMOylation-deficient gephyrin variants rescued gephyrin clustering in CA1 or neocortical neurons of Gabra2-null mice, which otherwise lack gephyrin clusters, indicating that gephyrin SUMO modification is an essential determinant for scaffolding at GABAergic synapses. Together, our results demonstrate that concerted modifications on a protein scaffold by evolutionarily conserved yet functionally diverse signalling pathways facilitate GABAergic transmission. Gephyrin is a cytoplasmic scaffolding protein that selectively forms postsynaptic scaffolds at GABAergic and glycinergic synapses. Here the authors characterize regulatory mechanisms determining gephyrin scaffolding and GABAA receptor synaptic transmission that involve acetylation, SUMOylation and phosphorylation.
Collapse
Affiliation(s)
- Himanish Ghosh
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Luca Auguadri
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sereina Battaglia
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Zahra Simone Thirouin
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Khaled Zemoura
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Simon Messner
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Gonzalo E Yévenes
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Andrea Dieter
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, CH 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, CH 8093 Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.,Center for Neuroscience Zurich, CH 8057 Zurich, Switzerland
| |
Collapse
|
43
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
44
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
45
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|
46
|
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction. Front Synaptic Neurosci 2016; 8:9. [PMID: 27199730 PMCID: PMC4848311 DOI: 10.3389/fnsyn.2016.00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| |
Collapse
|
47
|
Cuomo O, Pignataro G, Sirabella R, Molinaro P, Anzilotti S, Scorziello A, Sisalli MJ, Di Renzo G, Annunziato L. Sumoylation of LYS590 of NCX3 f-Loop by SUMO1 Participates in Brain Neuroprotection Induced by Ischemic Preconditioning. Stroke 2016; 47:1085-93. [PMID: 26979866 DOI: 10.1161/strokeaha.115.012514] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.
Collapse
Affiliation(s)
- Ornella Cuomo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Giuseppe Pignataro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Rossana Sirabella
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Pasquale Molinaro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Serenella Anzilotti
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Antonella Scorziello
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Maria Josè Sisalli
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Gianfranco Di Renzo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Lucio Annunziato
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.).
| |
Collapse
|
48
|
Ramirez J, Min M, Barrio R, Lindon C, Mayor U. Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples. Methods Mol Biol 2016; 1449:193-202. [PMID: 27613036 DOI: 10.1007/978-1-4939-3756-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.g., neurotransmitter release is only carried out in neuronal cells). Moreover, these processes are often highly temporally dynamic. It is essential therefore to use the right system for each biological question, so that we can characterize pathways specifically in the tissue or cells of interest. However, low stoichiometry, and the unstable nature of many ubiquitin conjugates, presents a technical barrier to studying this modification in vivo. Here, we describe two approaches to isolate ubiquitinated proteins to high purity. The first one favors isolation of the whole mixture of ubiquitinated material from a given tissue or cell type, generating a survey of the ubiquitome landscape for a specific condition. The second one favors the isolation of just one specific protein, in order to facilitate the characterization of its ubiquitinated fraction. In both cases, highly stringent denaturing buffers are used to minimize the presence of contaminating material in the sample.
Collapse
Affiliation(s)
- Juanma Ramirez
- Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia Fakultatea, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Mingwei Min
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Catherine Lindon
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Ugo Mayor
- Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia Fakultatea, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
49
|
Tirard M, Brose N. Systematic Localization and Identification of SUMOylation Substrates in Knock-In Mice Expressing Affinity-Tagged SUMO1. Methods Mol Biol 2016; 1475:291-301. [PMID: 27631813 DOI: 10.1007/978-1-4939-6358-4_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein SUMOylation is a posttranslational protein modification that is emerging as a key regulatory process in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice expressing His6-HA-SUMO1 from the Sumo1 locus allow for the highly specific localization and identification of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets can be specifically localized in and purified from cultured mouse nerve cells and mouse tissues.
Collapse
Affiliation(s)
- Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| |
Collapse
|
50
|
Raghunayakula S, Subramonian D, Dasso M, Kumar R, Zhang XD. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells. PLoS One 2015; 10:e0144508. [PMID: 26642330 PMCID: PMC4671610 DOI: 10.1371/journal.pone.0144508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/19/2015] [Indexed: 01/26/2023] Open
Abstract
Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological significance of the interaction between annulate lamellae pore complexes and nuclear transport complexes in mammalian cells.
Collapse
Affiliation(s)
- Sarita Raghunayakula
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Divya Subramonian
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Rita Kumar
- Departments of Emergency Medicine and Physiology, Wayne State University, Detroit, Michigan, United States of America
| | - Xiang-Dong Zhang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|