1
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. Nat Commun 2024; 15:8336. [PMID: 39333151 PMCID: PMC11437063 DOI: 10.1038/s41467-024-52664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
Affiliation(s)
- Sudiksha Sridhar
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Howard J Gritton
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer Freire
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Pharmacology, Boston University, Boston, MA, USA
| | - Chengqian Zhou
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Florence Liang
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xue Han
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Wu Y, Lu L, Qing T, Shi S, Fang G. Transient Increases in Neural Oscillations and Motor Deficits in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:9545. [PMID: 39273491 PMCID: PMC11394686 DOI: 10.3390/ijms25179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms like tremors and bradykinesia. PD's pathology involves the aggregation of α-synuclein and loss of dopaminergic neurons, leading to altered neural oscillations in the cortico-basal ganglia-thalamic network. Despite extensive research, the relationship between the motor symptoms of PD and transient changes in brain oscillations before and after motor tasks in different brain regions remain unclear. This study aimed to investigate neural oscillations in both healthy and PD model mice using local field potential (LFP) recordings from multiple brain regions during rest and locomotion. The histological evaluation confirmed the significant dopaminergic neuron loss in the injection side in 6-OHDA lesioned mice. Behavioral tests showed motor deficits in these mice, including impaired coordination and increased forelimb asymmetry. The LFP analysis revealed increased delta, theta, alpha, beta, and gamma band activity in 6-OHDA lesioned mice during movement, with significant increases in multiple brain regions, including the primary motor cortex (M1), caudate-putamen (CPu), subthalamic nucleus (STN), substantia nigra pars compacta (SNc), and pedunculopontine nucleus (PPN). Taken together, these results show that the motor symptoms of PD are accompanied by significant transient increases in brain oscillations, especially in the gamma band. This study provides potential biomarkers for early diagnosis and therapeutic evaluation by elucidating the relationship between specific neural oscillations and motor deficits in PD.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lidi Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Guangzhan Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602408. [PMID: 39026712 PMCID: PMC11257482 DOI: 10.1101/2024.07.07.602408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
|
4
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
5
|
Bandarabadi M, Li S, Aeschlimann L, Colombo G, Tzanoulinou S, Tafti M, Becchetti A, Boutrel B, Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol Psychiatry 2024; 29:327-341. [PMID: 38123729 PMCID: PMC11116111 DOI: 10.1038/s41380-023-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sha Li
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lea Aeschlimann
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Boutrel
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Chaudhary R, Singh R. Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:488-503. [PMID: 37202886 DOI: 10.2174/1871527322666230518111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. OBJECTIVE This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson's disease. METHODS Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. RESULTS Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson's locomotion in rats. CONCLUSION This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
7
|
Mesgar S, Eskandari K, Karimian-Sani-Varjovi H, Salemi-Mokri-Boukani P, Haghparast A. The Dopaminergic System Modulates the Electrophysiological Activity of the Suprachiasmatic Nucleus Dependent on the Circadian Cycle. Neurochem Res 2023; 48:3420-3429. [PMID: 37452257 DOI: 10.1007/s11064-023-03988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) controls mammalian circadian rhythms. Circadian rhythms influence the dopaminergic system, and dopaminergic tone impresses the physiology and behavior of the circadian clock. However, little is known about the effect of dopamine and dopamine receptors, especially D1-like dopamine receptors (D1Rs), in regulating the circadian rhythm and the SCN neuron's activity. Therefore, the present study aimed to investigate the role of the D1Rs in SCN neural oscillations during the 24-h light-dark cycle using local field potential (LFP) recording. To this end, two groups of rats were given the SKF-38393 (1 mg/kg; i.p.) as a D1-like receptor agonist in the morning or night. LFP recording was performed for ten minutes before and two hours after the SKF-38393 injection. The obtained results showed that diurnal changes affect LFP oscillations so that delta relative power declined substantially, whereas upper-frequency bands and Lempel-Ziv complexity (LZC) index increased at night, which is consistent with rodents' activity cycles. The D1Rs agonist administration in the morning dramatically altered these intrinsic oscillations, decreasing delta and theta relative power, and most of the higher frequency bands and LZC index were promoted. Some of these effects were reversed at the night after the SKF-38393 injection. In conclusion, findings showed that the SCN's neuronal activities are regulated based on the light-dark cycle in terms of population neural oscillatory activity which could be affected by dopaminergic stimulation in a time-dependent way.
Collapse
Affiliation(s)
- Somaye Mesgar
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
- Biology and Anatomical Sciences Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Habib Karimian-Sani-Varjovi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Paria Salemi-Mokri-Boukani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kim Y, Jung D, Oya M, Kennedy M, Lence T, Alberico SL, Narayanan NS. Phase-adaptive brain stimulation of striatal D1 medium spiny neurons in dopamine-depleted mice. Sci Rep 2022; 12:21780. [PMID: 36526822 PMCID: PMC9758228 DOI: 10.1038/s41598-022-26347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Brain rhythms are strongly linked with behavior, and abnormal rhythms can signify pathophysiology. For instance, the basal ganglia exhibit a wide range of low-frequency oscillations during movement, but pathological "beta" rhythms at ~ 20 Hz have been observed in Parkinson's disease (PD) and in PD animal models. All brain rhythms have a frequency, which describes how often they oscillate, and a phase, which describes the precise time that peaks and troughs of brain rhythms occur. Although frequency has been extensively studied, the relevance of phase is unknown, in part because it is difficult to causally manipulate the instantaneous phase of ongoing brain rhythms. Here, we developed a phase-adaptive, real-time, closed-loop algorithm to deliver optogenetic stimulation at a specific phase with millisecond latency. We combined this Phase-Adaptive Brain STimulation (PABST) approach with cell-type-specific optogenetic methods to stimulate basal ganglia networks in dopamine-depleted mice that model motor aspects of human PD. We focused on striatal medium spiny neurons expressing D1-type dopamine receptors because these neurons can facilitate movement. We report three main results. First, we found that our approach delivered PABST within system latencies of 13 ms. Second, we report that closed-loop stimulation powerfully influenced the spike-field coherence of local brain rhythms within the dorsal striatum. Finally, we found that both 4 Hz PABST and 20 Hz PABST improved movement speed, but we found differences between phase only with 4 Hz PABST. These data provide causal evidence that phase is relevant for brain stimulation, which will allow for more precise, targeted, and individualized brain stimulation. Our findings are applicable to a broad range of preclinical brain stimulation approaches and could also inform circuit-specific neuromodulation treatments for human brain disease.
Collapse
Affiliation(s)
- Youngcho Kim
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| | - Dennis Jung
- grid.412750.50000 0004 1936 9166University of Rochester Medical Center, Rochester, New York, NY 14642 USA
| | - Mayu Oya
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| | - Morgan Kennedy
- grid.214572.70000 0004 1936 8294Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Tomas Lence
- grid.214572.70000 0004 1936 8294Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | | | - Nandakumar S. Narayanan
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| |
Collapse
|
9
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
10
|
Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun 2022; 4:fcac136. [PMID: 35702730 PMCID: PMC9188323 DOI: 10.1093/braincomms/fcac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain-computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain-computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain-computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain-computer interface therapy are associated with alterations in phase-amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain-computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain-computer interface therapy and once every 4 weeks after the therapy. Changes in phase-amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta-gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain-computer interface therapy sessions. Importantly, an increase in theta-gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta-gamma coupling increase following brain-computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta-gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha-gamma coupling was not altered by brain-computer interface therapy. Power spectra did not change significantly over the course of the brain-computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain-computer interface therapy was strongly correlated with increased theta-gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph Humphries
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Alexandre Carter
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
11
|
Miyahara K, Nishimaru H, Matsumoto J, Setogawa T, Taguchi T, Ono T, Nishijo H. Involvement of Parvalbumin-Positive Neurons in the Development of Hyperalgesia in a Mouse Model of Fibromyalgia. FRONTIERS IN PAIN RESEARCH 2022; 2:627860. [PMID: 35295447 PMCID: PMC8915639 DOI: 10.3389/fpain.2021.627860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Fibromyalgia (FM) presents as chronic systemic pain, which might be ascribed to central sensitization, in which pain information processing is amplified in the central nervous system. Since patients with FM display elevated gamma oscillations in the pain matrix and parvalbumin (PV)-positive neurons play a critical role in induction of gamma oscillations, we hypothesized that changes in PV-positive neurons are involved in hyperalgesia in fibromyalgia. In the present study, to investigate a role of PV-positive neurons in neuropathic pain, mice received reserpine administration for 3 consecutive days as an animal model of FM (RES group), while control mice received vehicle injections in the same way (VEH group). The mice were subjected to hot-plate and forced swim tests, and immuno-stained PV-positive neurons were counted in the pain matrix. We investigated relationships between PV-positive neuron density in the pain matrix and pain avoidance behaviors. The results indicated that the mice in the RES group showed transient bodyweight loss and longer immobility time in the forced swim test than the mice in the VEH group. In the hot-plate test, the RES group showed shorter response latencies and a larger number of jumps in response to nociceptive thermal stimulus than the VEH group. Histological examination indicated an increase in the density of PV-positive neurons in the primary somatosensory cortex (S1) in the RES group. Furthermore, response latencies to the hot-plate were significantly and negatively correlated with the density of PV-positive neurons in the S1. These results suggest a critical role for PV-positive neurons in the S1 to develop hyperalgesia in FM.
Collapse
Affiliation(s)
- Kenichiro Miyahara
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. PARKINSON'S DISEASE 2022; 2022:7524066. [PMID: 35251590 PMCID: PMC8896962 DOI: 10.1155/2022/7524066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with motor and nonmotor symptoms. Exaggerated beta band (15–30 Hz) neuronal oscillations are widely observed in corticobasal ganglia (BG) circuits during parkinsonism. Abnormal beta oscillations have been linked to motor symptoms of PD, but their exact relationship is poorly understood. Nevertheless, reduction of beta oscillations can induce therapeutic effects in PD patients. While it is widely believed that the external globus pallidus (GPe) and subthalamic nucleus (STN) are jointly responsible for abnormal rhythmogenesis in the parkinsonian BG, the role of other cortico-BG circuits cannot be ignored. To shed light on the origin of abnormal beta oscillations in PD, here we review changes of neuronal activity observed in experimental PD models and discuss how the cortex and different BG nuclei cooperate to generate and stabilize abnormal beta oscillations during parkinsonism. This may provide further insights into the complex relationship between abnormal beta oscillations and motor dysfunction in PD, which is crucial for potential target-specific therapeutic interventions in PD patients.
Collapse
|
13
|
Wenger N, Vogt A, Skrobot M, Garulli EL, Kabaoglu B, Salchow-Hömmen C, Schauer T, Kroneberg D, Schuhmann M, Ip CW, Harms C, Endres M, Isaias I, Tovote P, Blum R. Rodent models for gait network disorders in Parkinson's disease - a translational perspective. Exp Neurol 2022; 352:114011. [PMID: 35176273 DOI: 10.1016/j.expneurol.2022.114011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer the opportunity to investigate gait network activity at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. Gait impairments with hypo-, bradykinesia and altered limb rhythmicity were successfully modelled in rodents. However, clear evidence for the presence of freezing of gait was missing. The identification of reliable neural biomarkers for gait impairments has remained challenging in both animals and humans. Moving forward, we expect that the ongoing investigation of circuit specific neuromodulation strategies in animal models will lead to future optimizations of gait therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaus Wenger
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany.
| | - Arend Vogt
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matej Skrobot
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa L Garulli
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burce Kabaoglu
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Salchow-Hömmen
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Schauer
- Technische Universität Berlin, Control Systems Group, 10587 Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany
| | - Michael Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Christoph Harms
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Endres
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin Site, Germany; DZNE (German Center for Neurodegenerative Disease), Berlin Site, Germany
| | - Ioannis Isaias
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| |
Collapse
|
14
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
15
|
Dopamine depletion selectively disrupts interactions between striatal neuron subtypes and LFP oscillations. Cell Rep 2022; 38:110265. [PMID: 35045299 PMCID: PMC8820590 DOI: 10.1016/j.celrep.2021.110265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine degeneration in Parkinson’s disease (PD) dysregulates the striatal neural network and causes motor deficits. However, it is unclear how altered striatal circuits relate to dopamine-acetylcholine chemical imbalance and abnormal local field potential (LFP) oscillations observed in PD. We perform a multimodal analysis of the dorsal striatum using cell-type-specific calcium imaging and LFP recording. We reveal that dopamine depletion selectively enhances LFP beta oscillations during impaired locomotion, supporting beta oscillations as a biomarker for PD. We further demonstrate that dynamic cholinergic interneuron activity during locomotion remains unaltered, even though cholinergic tone is implicated in PD. Instead, dysfunctional striatal output arises from elevated coordination within striatal output neurons, which is accompanied by reduced locomotor encoding of parvalbumin interneurons and transient pathological LFP high-gamma oscillations. These results identify a pathological striatal circuit state following dopamine depletion where distinct striatal neuron subtypes are selectively coordinated with LFP oscillations during locomotion. Zemel et al. demonstrate that dopamine loss disrupts striatal neural network and enhances local field potential beta oscillations during impaired locomotion. Specifically, striatal projecting neuron activation is abnormally coordinated and accompanied by pathological high-gamma oscillations. While parvalbumin interneurons reduce locomotor encoding, cholinergic interneurons strengthen their interactions with projecting neurons.
Collapse
|
16
|
Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience 2021; 467:201-217. [PMID: 34048797 DOI: 10.1016/j.neuroscience.2021.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023]
Abstract
Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.
Collapse
|
17
|
Kim B, Im HI. Chronic nicotine impairs sparse motor learning via striatal fast-spiking parvalbumin interneurons. Addict Biol 2021; 26:e12956. [PMID: 32767546 PMCID: PMC8243919 DOI: 10.1111/adb.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long-term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast-spiking parvalbumin interneurons, which mediate nicotine-induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single-unit recording revealed that mice show reduced activity of fast-spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast-spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety-like behavior. Lastly, the excitatory DREADD hM3Dq-mediated activation of striatal fast-spiking parvalbumin interneurons reversed the chronic nicotine withdrawal-induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast-spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast-spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.
Collapse
Affiliation(s)
- Baeksun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
18
|
Hudson R, Green M, Wright DJ, Renard J, Jobson CEL, Jung T, Rushlow W, Laviolette SR. Adolescent nicotine induces depressive and anxiogenic effects through ERK 1-2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict Biol 2021; 26:e12891. [PMID: 32135573 DOI: 10.1111/adb.12891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/16/2022]
Abstract
Long-term tobacco dependence typically develops during adolescence and neurodevelopmental nicotine exposure is associated with affective disturbances that manifest as a variety of neuropsychiatric comorbidities in clinical and preclinical studies, including mood and anxiety-related disorders. The nucleus accumbens shell (NASh) is critically involved in regulating emotional processing, and both molecular and neuronal disturbances in this structure are associated with mood and anxiety-related pathologies. In the present study, we used a rodent model of adolescent neurodevelopmental nicotine exposure to examine the expression of several molecular biomarkers associated with mood/anxiety-related phenotypes. We report that nicotine exposure during adolescence (but not adulthood) induces profound upregulation of the ERK 1-2 and Akt-GSK-3 signalling pathways directly within the NASh, as well as downregulation of local D1R expression that persists into adulthood. These adaptations were accompanied by decreases in τ, α, β, and γ-band oscillatory states, hyperactive medium spiny neuron activity with depressed bursting rates, and anxiety and depressive-like behavioural abnormalities. Pharmacologically targeting these molecular and neuronal adaptations revealed that selective inhibition of local ERK 1-2 and Akt-GSK-3 signalling cascades rescued nicotine-induced high-γ-band oscillatory signatures and phasic bursting rates in the NASh, suggesting that they are involved in mediating adolescent nicotine-induced depressive and anxiety-like neuropathological trajectories.
Collapse
Affiliation(s)
- Roger Hudson
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Matthew Green
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Daniel J Wright
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Justine Renard
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Christina E L Jobson
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Tony Jung
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
| | - Walter Rushlow
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, London, Ontario, Canada
| | - Steven R Laviolette
- Addiction Research Group, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario London, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, London, Ontario, Canada
| |
Collapse
|
19
|
Goodman J. Place vs. Response Learning: History, Controversy, and Neurobiology. Front Behav Neurosci 2021; 14:598570. [PMID: 33643005 PMCID: PMC7904695 DOI: 10.3389/fnbeh.2020.598570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023] Open
Abstract
The present article provides a historical review of the place and response learning plus-maze tasks with a focus on the behavioral and neurobiological findings. The article begins by reviewing the conflict between Edward C. Tolman's cognitive view and Clark L. Hull's stimulus-response (S-R) view of learning and how the place and response learning plus-maze tasks were designed to resolve this debate. Cognitive learning theorists predicted that place learning would be acquired faster than response learning, indicating the dominance of cognitive learning, whereas S-R learning theorists predicted that response learning would be acquired faster, indicating the dominance of S-R learning. Here, the evidence is reviewed demonstrating that either place or response learning may be dominant in a given learning situation and that the relative dominance of place and response learning depends on various parametric factors (i.e., amount of training, visual aspects of the learning environment, emotional arousal, et cetera). Next, the neurobiology underlying place and response learning is reviewed, providing strong evidence for the existence of multiple memory systems in the mammalian brain. Research has indicated that place learning is principally mediated by the hippocampus, whereas response learning is mediated by the dorsolateral striatum. Other brain regions implicated in place and response learning are also discussed in this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex. An exhaustive review of the neurotransmitter systems underlying place and response learning is subsequently provided, indicating important roles for glutamate, dopamine, acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the historical importance of the place and response learning tasks in resolving problems in learning theory, as well as for examining the behavioral and neurobiological mechanisms of multiple memory systems. How the place and response learning tasks may be employed in the future for examining extinction, neural circuits of memory, and human psychopathology is also briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| |
Collapse
|
20
|
Taghizadeh B, Foley NC, Karimimehr S, Cohanpour M, Semework M, Sheth SA, Lashgari R, Gottlieb J. Reward uncertainty asymmetrically affects information transmission within the monkey fronto-parietal network. Commun Biol 2020; 3:594. [PMID: 33087809 PMCID: PMC7578031 DOI: 10.1038/s42003-020-01320-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
A central hypothesis in research on executive function is that controlled information processing is costly and is allocated according to the behavioral benefits it brings. However, while computational theories predict that the benefits of new information depend on prior uncertainty, the cellular effects of uncertainty on the executive network are incompletely understood. Using simultaneous recordings in monkeys, we describe several mechanisms by which the fronto-parietal network reacts to uncertainty. We show that the variance of expected rewards, independently of the value of the rewards, was encoded in single neuron and population spiking activity and local field potential (LFP) oscillations, and, importantly, asymmetrically affected fronto-parietal information transmission (measured through the coherence between spikes and LFPs). Higher uncertainty selectively enhanced information transmission from the parietal to the frontal lobe and suppressed it in the opposite direction, consistent with Bayesian principles that prioritize sensory information according to a decision maker’s prior uncertainty. Bahareh Taghizadeh and Nicholas Foley et al. show that individual neuronal responses, population spiking activity, and local field potential oscillations encode the variance of expected rewards independent of their value. They also demonstrate that reward uncertainty asymmetrically affects neuronal transmission within the monkey fronto-parietal network.
Collapse
Affiliation(s)
- Bahareh Taghizadeh
- Brain Engineering Research Center, Institute for Research in Fundamental Sciences, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Nicholas C Foley
- Department of Neuroscience, Columbia University, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Saeed Karimimehr
- Brain Engineering Research Center, Institute for Research in Fundamental Sciences, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Michael Cohanpour
- Department of Neuroscience, Columbia University, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mulugeta Semework
- Department of Neuroscience, Columbia University, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Reza Lashgari
- Brain Engineering Research Center, Institute for Research in Fundamental Sciences, Tehran, Iran.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jacqueline Gottlieb
- Department of Neuroscience, Columbia University, New York, NY, USA. .,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. .,The Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Goldenberg JE, Lentzou S, Ackert-Smith L, Knowlton H, Dash MB. Interindividual differences in memory system local field potential activity predict behavioral strategy on a dual-solution T-maze. Hippocampus 2020; 30:1313-1326. [PMID: 32894595 DOI: 10.1002/hipo.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Individuals can use diverse behavioral strategies to navigate their environment including hippocampal-dependent place strategies reliant upon cognitive maps and striatal-dependent response strategies reliant upon egocentric body turns. The existence of multiple memory systems appears to facilitate successful navigation across a wide range of environmental and physiological conditions. The mechanisms by which these systems interact to ultimately generate a unitary behavioral response, however, remain unclear. We trained 20 male, Sprague-Dawley rats on a dual-solution T-maze while simultaneously recording local field potentials that were targeted to the dorsolateral striatum and dorsal hippocampus. Eight rats spontaneously exhibited a place strategy while the remaining 12 rats exhibited a response strategy. Interindividual differences in behavioral strategy were associated with distinct patterns of LFP activity between the dorsolateral striatum and dorsal hippocampus. Specifically, striatal-hippocampal theta activity was in-phase in response rats and out-of-phase in place rats and response rats exhibited elevated striatal-hippocampal coherence across a wide range of frequency bands. These contrasting striatal-hippocampal activity regimes were (a) present during both maze-learning and a 30 min premaze habituation period and (b) could be used to train support vector machines to reliably predict behavioral strategy. Distinct patterns of neuronal activity across multiple memory systems, therefore, appear to bias behavioral strategy selection and thereby contribute to interindividual differences in behavior.
Collapse
Affiliation(s)
| | - Stergiani Lentzou
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lyn Ackert-Smith
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Harrison Knowlton
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Michael B Dash
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA.,Department of Psychology, Middlebury College, Middlebury, Vermont, USA
| |
Collapse
|
22
|
Valsky D, Heiman Grosberg S, Israel Z, Boraud T, Bergman H, Deffains M. What is the true discharge rate and pattern of the striatal projection neurons in Parkinson's disease and Dystonia? eLife 2020; 9:e57445. [PMID: 32812870 PMCID: PMC7462612 DOI: 10.7554/elife.57445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dopamine and striatal dysfunctions play a key role in the pathophysiology of Parkinson's disease (PD) and Dystonia, but our understanding of the changes in the discharge rate and pattern of striatal projection neurons (SPNs) remains limited. Here, we recorded and examined multi-unit signals from the striatum of PD and dystonic patients undergoing deep brain stimulation surgeries. Contrary to earlier human findings, we found no drastic changes in the spontaneous discharge of the well-isolated and stationary SPNs of the PD patients compared to the dystonic patients or to the normal levels of striatal activity reported in healthy animals. Moreover, cluster analysis using SPN discharge properties did not characterize two well-separated SPN subpopulations, indicating no SPN subpopulation-specific (D1 or D2 SPNs) discharge alterations in the pathological state. Our results imply that small to moderate changes in spontaneous SPN discharge related to PD and Dystonia are likely amplified by basal ganglia downstream structures.
Collapse
Affiliation(s)
- Dan Valsky
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
| | - Shai Heiman Grosberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Thomas Boraud
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
- CHU de Bordeaux, IMN CliniqueBordeauxFrance
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Marc Deffains
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
| |
Collapse
|
23
|
Stubbendorff C, Stevenson CW. Dopamine regulation of contextual fear and associated neural circuit function. Eur J Neurosci 2020; 54:6933-6947. [DOI: 10.1111/ejn.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
24
|
Effects of daily L-dopa administration on learning and brain structure in older adults undergoing cognitive training: a randomised clinical trial. Sci Rep 2020; 10:5227. [PMID: 32251360 PMCID: PMC7090037 DOI: 10.1038/s41598-020-62172-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
Cognitive aging creates major individual and societal burden, motivating search for treatment and preventive care strategies. Behavioural interventions can improve cognitive performance in older age, but effects are small. Basic research has implicated dopaminergic signalling in plasticity. We investigated whether supplementation with the dopamine-precursor L-dopa improves effects of cognitive training on performance. Sixty-three participants for this randomised, parallel-group, double-blind, placebo-controlled trial were recruited via newspaper advertisements. Inclusion criteria were: age of 65–75 years, Mini-Mental State Examination score >25, absence of serious medical conditions. Eligible subjects were randomly allocated to either receive 100/25 mg L-dopa/benserazide (n = 32) or placebo (n = 31) prior to each of twenty cognitive training sessions administered during a four-week period. Participants and staff were blinded to group assignment. Primary outcomes were latent variables of spatial and verbal fluid intelligence. Compared to the placebo group, subjects receiving L-dopa improved less in spatial intelligence (−0.267 SDs; 95%CI [−0.498, −0.036]; p = 0.024). Change in verbal intelligence did not significantly differ between the groups (−0.081 SDs, 95%CI [−0.242, 0.080]; p = 0.323). Subjects receiving L-dopa also progressed slower through the training and the groups displayed differential volumetric changes in the midbrain. No statistically significant differences were found for the secondary cognitive outcomes. Adverse events occurred for 10 (31%) and 7 (23%) participants in the active and control groups, correspondingly. The results speak against early pharmacological interventions in older healthy adults to improve broader cognitive functions by targeting the dopaminergic system and provide no support for learning-enhancing properties of L-dopa supplements in the healthy elderly. The findings warrant closer investigation about the cognitive effects of early dopamine-replacement therapy in neurological disorders. This trial was preregistered at the European Clinical Trial Registry, EudraCT#2016-000891-54 (2016-10-05).
Collapse
|
25
|
Baaske MK, Kramer ER, Meka DP, Engler G, Engel AK, Moll CKE. Parkin deficiency perturbs striatal circuit dynamics. Neurobiol Dis 2020; 137:104737. [PMID: 31923460 DOI: 10.1016/j.nbd.2020.104737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
Loss-of-function mutations in the parkin-encoding PARK2 gene are a frequent cause of young-onset, autosomal recessive Parkinson's disease (PD). Parkin knockout mice have no nigro-striatal neuronal loss but exhibit abnormalities of striatal dopamine transmission and cortico-striatal synaptic function. How these predegenerative changes observed in vitro affect neural dynamics at the intact circuit level, however, remains hitherto elusive. Here, we recorded from motor cortex, striatum and globus pallidus (GP) of anesthetized parkin-deficient mice to assess cortex-basal ganglia circuit dynamics and to dissect cell type-specific functional connectivity in the presymptomatic phase of genetic PD. While ongoing activity of presumed striatal spiny projection neurons and their downstream counterparts in the GP was not different from controls, parkin deficiency had a differential impact on striatal interneurons: In parkin-mutant mice, tonically active neurons displayed elevated activity levels. Baseline firing rates of transgenic striatal fast spiking interneurons (FSI), on the contrary, were reduced and the correlational structure of the FSI microcircuitry was disrupted. The entire transgenic striatal microcircuit showed enhanced and phase-shifted phase coupling to slow (1-3 Hz) cortical population oscillations. Unexpectedly, local field potentials recorded from striatum and GP of parkin-mutant mice robustly displayed amplified beta oscillations (~22 Hz), phase-coupled to cortex. Parkin deficiency selectively increased spike-field coupling of FSIs to beta oscillations. Our findings suggest that loss of parkin function leads to amplifications of synchronized cortico-striatal oscillations and an intrastriatal reconfiguration of interneuronal circuits. This presymptomatic disarrangement of dynamic functional connectivity may precede nigro-striatal neurodegeneration and predispose to imbalance of striatal outflow accompanying symptomatic PD.
Collapse
Affiliation(s)
- Magdalena K Baaske
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany.
| | - Edgar R Kramer
- Center of Molecular Neurobiology, 20251 Hamburg, Germany; Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth PL6 8BU, UK
| | | | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
26
|
Focal inputs are a potential origin of local field potential (LFP) in the brain regions without laminar structure. PLoS One 2019; 14:e0226028. [PMID: 31825985 PMCID: PMC6905574 DOI: 10.1371/journal.pone.0226028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022] Open
Abstract
Current sinks and sources spatially separated between the apical and basal dendrites have been believed to be essential in generating local field potentials (LFPs). According to this theory, LFPs would not be large enough to be observed in the regions without laminar structures, such as striatum and thalamus. However, LFPs are experimentally recorded in these regions. We hypothesized that focal excitatory input induces a concentric current sink and source generating LFPs in these regions. In this study, we tested this hypothesis by the numerical simulations of multicompartment neuron models and the analysis of simplified models. Both confirmed that focal excitatory input can generate LFPs on the order of 0.1 mV in a region without laminar structures. The present results suggest that LFPs in subcortical nuclei indicate localized excitatory input.
Collapse
|
27
|
Lee K, Masmanidis SC. Aberrant features of in vivo striatal dynamics in Parkinson's disease. J Neurosci Res 2019; 97:1678-1688. [PMID: 31502290 PMCID: PMC6801089 DOI: 10.1002/jnr.24519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
The striatum plays an important role in learning, selecting, and executing actions. As a major input hub of the basal ganglia, it receives and processes a diverse array of signals related to sensory, motor, and cognitive information. Aberrant neural activity in this area is implicated in a wide variety of neurological and psychiatric disorders. It is therefore important to understand the hallmarks of disrupted striatal signal processing. This review surveys literature examining how in vivo striatal microcircuit dynamics are impacted in animal models of one of the most widely studied movement disorders, Parkinson's disease. The review identifies four major features of aberrant striatal dynamics: altered relative levels of direct and indirect pathway activity, impaired information processing by projection neurons, altered information processing by interneurons, and increased synchrony.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| | - Sotiris C. Masmanidis
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| |
Collapse
|
28
|
Rios A, Soma S, Yoshida J, Nonomura S, Kawabata M, Sakai Y, Isomura Y. Differential Changes in the Lateralized Activity of Identified Projection Neurons of Motor Cortex in Hemiparkinsonian Rats. eNeuro 2019; 6:ENEURO.0110-19.2019. [PMID: 31235466 PMCID: PMC6620387 DOI: 10.1523/eneuro.0110-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
In the parkinsonian state, the motor cortex and basal ganglia (BG) undergo dynamic remodeling of movement representation. One such change is the loss of the normal contralateral lateralized activity pattern. The increase in the number of movement-related neurons responding to ipsilateral or bilateral limb movements may cause motor problems, including impaired balance, reduced bimanual coordination, and abnormal mirror movements. However, it remains unknown how individual types of motor cortical neurons organize this reconstruction. To explore the effect of dopamine depletion on lateralized activity in the parkinsonian state, we used a partial hemiparkinsonian model [6-hydroxydopamine (6-OHDA) lesion] in Long-Evans rats performing unilateral movements in a right-left pedal task, while recording from primary (M1) and secondary motor cortex (M2). The lesion decreased contralateral preferred activity in both M1 and M2. In addition, this change differed among identified intratelencephalic (IT) and pyramidal tract (PT) cortical projection neurons, depending on the cortical area. We detected a decrease in lateralized activity only in PT neurons in M1, whereas in M2, this change was observed in IT neurons, with no change in the PT population. Our results suggest a differential effect of dopamine depletion in the lateralized activity of the motor cortex, and suggest possible compensatory changes in the contralateral hemisphere.
Collapse
Affiliation(s)
- Alain Rios
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shogo Soma
- Department of Anatomy and Neurobiology. University of California, Irvine, Irvine, CA 92697
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Satoshi Nonomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masanori Kawabata
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
29
|
Comparison of Actions between L-DOPA and Different Dopamine Agonists in Striatal DA-Depleted Microcircuits In Vitro: Pre-Clinical Insights. Neuroscience 2019; 410:76-96. [DOI: 10.1016/j.neuroscience.2019.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
30
|
An J, Yadav T, Hessburg JP, Francis JT. Reward Expectation Modulates Local Field Potentials, Spiking Activity and Spike-Field Coherence in the Primary Motor Cortex. eNeuro 2019; 6:ENEURO.0178-19.2019. [PMID: 31171607 PMCID: PMC6595440 DOI: 10.1523/eneuro.0178-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023] Open
Abstract
Reward modulation (M1) could be exploited in developing an autonomously updating brain-computer interface (BCI) based on a reinforcement learning (RL) architecture. For an autonomously updating RL-based BCI system, we would need a reward prediction error, or a state-value representation from the user's neural activity, which the RL-BCI agent could use to update its BCI decoder. In order to understand the multifaceted effects of reward on M1 activity, we investigated how neural spiking, oscillatory activities and their functional interactions are modulated by conditioned stimuli related reward expectation. To do so, local field potentials (LFPs) and single/multi-unit activities were recorded simultaneously and bilaterally from M1 cortices while four non-human primates (NHPs) performed cued center-out reaching or grip force tasks either manually using their right arm/hand or observed passively. We found that reward expectation influenced the strength of α (8-14 Hz) power, α-γ comodulation, α spike-field coherence (SFC), and firing rates (FRs) in general in M1. Furthermore, we found that an increase in α-band power was correlated with a decrease in neural spiking activity, that FRs were highest at the trough of the α-band cycle and lowest at the peak of its cycle. These findings imply that α oscillations modulated by reward expectation have an influence on spike FR and spike timing during both reaching and grasping tasks in M1. These LFP, spike, and spike-field interactions could be used to follow the M1 neural state in order to enhance BCI decoding (An et al., 2018; Zhao et al., 2018).
Collapse
Affiliation(s)
- Junmo An
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Taruna Yadav
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - John P Hessburg
- Department of Physiology and Pharmacology, Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Joseph T Francis
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| |
Collapse
|
31
|
Deffains M, Bergman H. Parkinsonism-related β oscillations in the primate basal ganglia networks – Recent advances and clinical implications. Parkinsonism Relat Disord 2019; 59:2-8. [DOI: 10.1016/j.parkreldis.2018.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
32
|
Courtemanche R, Cammalleri A. Basal Ganglia: Striosomes and the Link between Motivation and Action. Curr Biol 2019; 29:R62-R65. [DOI: 10.1016/j.cub.2018.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Altered Local Field Potential Relationship Between the Parafascicular Thalamic Nucleus and Dorsal Striatum in Hemiparkinsonian Rats. Neurosci Bull 2018; 35:315-324. [PMID: 30478502 PMCID: PMC6426816 DOI: 10.1007/s12264-018-0312-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
The thalamostriatal pathway is implicated in Parkinson’s disease (PD); however, PD-related changes in the relationship between oscillatory activity in the centromedian-parafascicular complex (CM/Pf, or the Pf in rodents) and the dorsal striatum (DS) remain unclear. Therefore, we simultaneously recorded local field potentials (LFPs) in both the Pf and DS of hemiparkinsonian and control rats during epochs of rest or treadmill walking. The dopamine-lesioned rats showed increased LFP power in the beta band (12 Hz–35 Hz) in the Pf and DS during both epochs, but decreased LFP power in the delta (0.5 Hz–3 Hz) band in the Pf during rest epochs and in the DS during both epochs, compared to control rats. In addition, exaggerated low gamma (35 Hz–70 Hz) oscillations after dopamine loss were restricted to the Pf regardless of the behavioral state. Furthermore, enhanced synchronization of LFP oscillations was found between the Pf and DS after the dopamine lesion. Significant increases occurred in the mean coherence in both theta (3 Hz–7 Hz) and beta bands, and a significant increase was also noted in the phase coherence in the beta band between the Pf and DS during rest epochs. During the treadmill walking epochs, significant increases were found in both the alpha (7 Hz–12 Hz) and beta bands for two coherence measures. Collectively, dramatic changes in the relative LFP power and coherence in the thalamostriatal pathway may underlie the dysfunction of the basal ganglia-thalamocortical network circuits in PD, contributing to some of the motor and non-motor symptoms of the disease.
Collapse
|
34
|
Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018; 8:15474. [PMID: 30341359 PMCID: PMC6195537 DOI: 10.1038/s41598-018-33069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022] Open
Abstract
Noradrenaline (NA) and hypocretins/orexins (HCRT), and their receptors, dynamically modulate the circuits that configure behavioral states, and their associated oscillatory activities. Salient stimuli activate spiking of locus coeruleus noradrenergic (NALC) cells, inducing NA release and brain-wide noradrenergic signalling, thus resetting network activity, and mediating an orienting response. Hypothalamic HCRT neurons provide one of the densest input to NALC cells. To functionally address the HCRT-to-NA connection, we selectively disrupted the Hcrtr1 gene in NA neurons, and analyzed resulting (Hcrtr1Dbh-CKO) mice’, and their control littermates’ electrocortical response in several contexts of enhanced arousal. Under enforced wakefulness (EW), or after cage change (CC), Hcrtr1Dbh-CKO mice exhibited a weakened ability to lower infra-θ frequencies (1–7 Hz), and mount a robust, narrow-bandwidth, high-frequency θ rhythm (~8.5 Hz). A fast-γ (55–80 Hz) response, whose dynamics closely parallelled θ, also diminished, while β/slow-γ activity (15–45 Hz) increased. Furthermore, EW-associated locomotion was lower. Surprisingly, nestbuilding-associated wakefulness, inversely, featured enhanced θ and fast-γ activities. Thus HCRT-to-NA signalling may fine-tune arousal, up in alarming conditions, and down during self-motivated, goal-driven behaviors. Lastly, slow-wave-sleep following EW and CC, but not nestbuilding, was severely deficient in slow-δ waves (0.75–2.25 Hz), suggesting that HCRT-to-NA signalling regulates the slow-δ rebound characterizing sleep after stress-associated arousal.
Collapse
|
35
|
Singh A. Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson's disease. Eur J Neurosci 2018; 48:2869-2878. [DOI: 10.1111/ejn.13853] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Arun Singh
- Department of Neurology; University of Minnesota; Minneapolis MN 55455 USA
- Department of Neurology; University of Iowa; Iowa City IA USA
| |
Collapse
|
36
|
Abstract
Many debilitating neuropsychiatric and neurodegenerative disorders are characterized by dopamine neurotransmitter dysregulation. Monitoring subsecond dopamine release accurately and for extended, clinically relevant timescales is a critical unmet need. Especially valuable has been the development of electrochemical fast-scan cyclic voltammetry implementing microsized carbon fiber probe implants to record fast millisecond changes in dopamine concentrations. Nevertheless, these well-established methods have only been applied in primates with acutely (few hours) implanted sensors. Neurochemical monitoring for long timescales is necessary to improve diagnostic and therapeutic procedures for a wide range of neurological disorders. Strategies for the chronic use of such sensors have recently been established successfully in rodents, but new infrastructures are needed to enable these strategies in primates. Here we report an integrated neurochemical recording platform for monitoring dopamine release from sensors chronically implanted in deep brain structures of nonhuman primates for over 100 days, together with results for behavior-related and stimulation-induced dopamine release. From these chronically implanted probes, we measured dopamine release from multiple sites in the striatum as induced by behavioral performance and reward-related stimuli, by direct stimulation, and by drug administration. We further developed algorithms to automate detection of dopamine. These algorithms could be used to track the effects of drugs on endogenous dopamine neurotransmission, as well as to evaluate the long-term performance of the chronically implanted sensors. Our chronic measurements demonstrate the feasibility of measuring subsecond dopamine release from deep brain circuits of awake, behaving primates in a longitudinally reproducible manner.
Collapse
|
37
|
Local or Not Local: Investigating the Nature of Striatal Theta Oscillations in Behaving Rats. eNeuro 2017; 4:eN-NWR-0128-17. [PMID: 28966971 PMCID: PMC5616191 DOI: 10.1523/eneuro.0128-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
In the cortex and hippocampus, neuronal oscillations of different frequencies can be observed in local field potentials (LFPs). LFPs oscillations in the theta band (6–10 Hz) have also been observed in the dorsolateral striatum (DLS) of rodents, mostly during locomotion, and have been proposed to mediate behaviorally-relevant interactions between striatum and cortex (or between striatum and hippocampus). However, it is unclear if these theta oscillations are generated in the striatum. To address this issue, we recorded LFPs and spiking activity in the DLS of rats performing a running sequence on a motorized treadmill. We observed an increase in rhythmical activity of the LFP in the theta-band during run compared to rest periods. However, several observations suggest that these oscillations are mainly generated outside of the striatum. First, theta oscillations disappeared when LFPs were rereferenced against a striatal recording electrode and the imaginary coherence between LFPs recorded at different locations within the striatum was null. Second, 8% of the recorded neurons had their spiking activity phase-locked to the theta rhythm. Third, Granger causality analyses between LFPs simultaneously recorded in the cortex and the striatum revealed that the interdependence between these two signals in the theta range was mostly accounted for by a common external source. The most parsimonious interpretation of these results is that theta oscillations observed in striatal LFPs are largely contaminated by volume-conducted signals. We propose that striatal LFPs are not optimal proxies of network dynamics in the striatum and should be interpreted with caution.
Collapse
|
38
|
Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural Netw 2017; 95:72-90. [PMID: 28910740 DOI: 10.1016/j.neunet.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/23/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Striatal oscillations in the low-gamma frequency range have been consistently recorded in a number of experimental studies. However, whether these rhythms are locally generated in the striatum circuit, which is mainly composed of GABAergic neurons, remains an open question. GABAergic medium spiny projection neurons represent the great majority of striatal neurons, but they fire at very low rates. GABAergic fast-spiking interneurons typically show firing rates that are approximately 10 times higher than those of principal neurons, but they are a very small minority of the total neuronal population. In this study, based on physiological constraints we developed a computational network model of these neurons and dissected the oscillations. Simulations showed that the population of medium spiny projection neurons, and not the GABAergic fast-spiking interneurons, determines the frequency range of the oscillations. D2-type dopamine receptor-expressing neurons dominate the generation of low-gamma rhythms. Feedforward inputs from GABAergic fast-spiking interneurons promote the oscillations by strengthening the inhibitory interactions between medium spiny projection neurons. The promotion effect is independent of the degree of synchronization in the fast-spiking interneuron population but affected by the strength of their feedforward inputs to medium spiny projection neurons. Our results provide a theoretical explanation for how firing properties and connections of the three types of GABAergic neurons, which are susceptible to on-going behaviors, experience, and dopamine disruptions, sculpt striatal oscillations.
Collapse
|
39
|
Samson RD, Lester AW, Duarte L, Venkatesh A, Barnes CA. Emergence of β-Band Oscillations in the Aged Rat Amygdala during Discrimination Learning and Decision Making Tasks. eNeuro 2017; 4:ENEURO.0245-17.2017. [PMID: 29034315 PMCID: PMC5629614 DOI: 10.1523/eneuro.0245-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Older adults tend to use strategies that differ from those used by young adults to solve decision-making tasks. MRI experiments suggest that altered strategy use during aging can be accompanied by a change in extent of activation of a given brain region, inter-hemispheric bilateralization or added brain structures. It has been suggested that these changes reflect compensation for less effective networks to enable optimal performance. One way that communication can be influenced within and between brain networks is through oscillatory events that help structure and synchronize incoming and outgoing information. It is unknown how aging impacts local oscillatory activity within the basolateral complex of the amygdala (BLA). The present study recorded local field potentials (LFPs) and single units in old and young rats during the performance of tasks that involve discrimination learning and probabilistic decision making. We found task- and age-specific increases in power selectively within the β range (15-30 Hz). The increased β power occurred after lever presses, as old animals reached the goal location. Periods of high-power β developed over training days in the aged rats, and was greatest in early trials of a session. β Power was also greater after pressing for the large reward option. These data suggest that aging of BLA networks results in strengthened synchrony of β oscillations when older animals are learning or deciding between rewards of different size. Whether this increased synchrony reflects the neural basis of a compensatory strategy change of old animals in reward-based decision-making tasks, remains to be verified.
Collapse
Affiliation(s)
- Rachel D. Samson
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Adam W. Lester
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Leroy Duarte
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Anu Venkatesh
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
40
|
Gamma Oscillations in the Rat Ventral Striatum Originate in the Piriform Cortex. J Neurosci 2017; 37:7962-7974. [PMID: 28716962 DOI: 10.1523/jneurosci.2944-15.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 06/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Local field potentials (LFPs) recorded from the human and rodent ventral striatum (vStr) exhibit prominent, behaviorally relevant gamma-band oscillations. These oscillations are related to local spiking activity and transiently synchronize with anatomically related areas, suggesting a possible role in organizing vStr activity. However, the origin of vStr gamma is unknown. We recorded vStr gamma oscillations across a 1.4 mm2 grid spanned by 64 recording electrodes as male rats rested and foraged for rewards, revealing a highly consistent power gradient originating in the adjacent piriform cortex. Phase differences across the vStr were consistently small (<15°) and current source density analysis further confirmed the absence of local sink-source pairs in the vStr. Reversible occlusions of the ipsilateral (but not contralateral) nostril, known to abolish gamma oscillations in the piriform cortex, strongly reduced vStr gamma power and the occurrence of transient gamma-band events. These results imply that local circuitry is not a major contributor to gamma oscillations in the vStr LFP and that piriform cortex is an important driver of gamma-band oscillations in the vStr and associated limbic areas.SIGNIFICANCE STATEMENT The ventral striatum (vStr) is an area of anatomical convergence in circuits underlying motivated behavior, but it remains unclear how its inputs from different sources interact. A major proposal about how neural circuits may switch dynamically between convergent inputs is through temporal organization reflected in local field potential (LFP) oscillations. Our results show that, in the rat, the mechanisms controlling gamma-band oscillations in the vStr LFP are primarily located in the in the adjacent piriform cortex rather than in the vStr itself, providing a novel interpretation of previous rodent work on gamma oscillations in the vStr and related circuits and an important consideration for future work seeking to use oscillations in these areas as biomarkers for behavioral and neurological disorders.
Collapse
|
41
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
42
|
Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 2017; 36:5556-71. [PMID: 27194335 DOI: 10.1523/jneurosci.0339-16.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the basal ganglia, focused rhythmicity is an important feature of network activity at certain stages of motor processing. In disease, however, the basal ganglia develop amplified rhythmicity. Here, we demonstrate how the cellular architecture and network dynamics of an inhibitory loop in the basal ganglia yield exaggerated synchrony and locking to β oscillations, specifically in the dopamine-depleted state. A key component of this loop is the pallidostriatal pathway, a well-characterized anatomical projection whose function has long remained obscure. We present a synaptic characterization of this pathway in mice and incorporate these data into a computational model that we use to investigate its influence over striatal activity under simulated healthy and dopamine-depleted conditions. Our model predicts that the pallidostriatal pathway influences striatal output preferentially during periods of synchronized activity within GPe. We show that, under dopamine-depleted conditions, this effect becomes a key component of a positive feedback loop between the GPe and striatum that promotes synchronization and rhythmicity. Our results generate novel predictions about the role of the pallidostriatal pathway in shaping basal ganglia activity in health and disease. SIGNIFICANCE STATEMENT This work demonstrates that functional connections from the globus pallidus externa (GPe) to striatum are substantially stronger onto fast-spiking interneurons (FSIs) than onto medium spiny neurons. Our circuit model suggests that when GPe spikes are synchronous, this pallidostriatal pathway causes synchronous FSI activity pauses, which allow a transient window of disinhibition for medium spiny neurons. In simulated dopamine-depletion, this GPe-FSI activity is necessary for the emergence of strong synchronization and the amplification and propagation of β oscillations, which are a hallmark of parkinsonian circuit dysfunction. These results suggest that GPe may play a central role in propagating abnormal circuit activity to striatum, which in turn projects to downstream basal ganglia structures. These findings warrant further exploration of GPe as a target for interventions for Parkinson's disease.
Collapse
|
43
|
Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hcrt gene inactivation in mice leads to behavioral state instability, abnormal transitions to paradoxical sleep, and cataplexy, hallmarks of narcolepsy. Sleep homeostasis is, however, considered unimpaired in patients and narcoleptic mice. We find that whereas Hcrtko/ko mice respond to 6-h sleep deprivation (SD) with a slow-wave sleep (SWS) EEG δ (1.0 to 4.0 Hz) power rebound like WT littermates, spontaneous waking fails to induce a δ power reflecting prior waking duration. This correlates with impaired θ (6.0 to 9.5 Hz) and fast-γ (55 to 80 Hz) activity in prior waking. We algorithmically identify a theta-dominated wakefulness (TDW) substate underlying motivated behaviors and typically preceding cataplexy in Hcrtko/ko mice. Hcrtko/ko mice fully implement TDW when waking is enforced, but spontaneous TDW episode duration is greatly reduced. A reformulation of the classic sleep homeostasis model, where homeostatic pressure rises exclusively in TDW rather than all waking, predicts δ power dynamics both in Hcrtko/ko and WT mouse baseline and recovery SWS. The low homeostatic impact of Hcrtko/ko mouse spontaneous waking correlates with decreased cortical expression of neuronal activity-related genes (notably Bdnf, Egr1/Zif268, and Per2). Thus, spontaneous TDW stability relies on Hcrt to sustain θ/fast-γ network activity and associated plasticity, whereas other arousal circuits sustain TDW during SD. We propose that TDW identifies a discrete global brain activity mode that is regulated by context-dependent neuromodulators and acts as a major driver of sleep homeostasis. Hcrt loss in Hcrtko/ko mice causes impaired TDW maintenance in baseline wake and blunted δ power in SWS, reproducing, respectively, narcolepsy excessive daytime sleepiness and poor sleep quality.
Collapse
|
44
|
Kolb R, Abosch A, Felsen G, Thompson JA. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients. Physiol Rep 2017; 5:e13322. [PMID: 28642341 PMCID: PMC5492209 DOI: 10.14814/phy2.13322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023] Open
Abstract
Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures.
Collapse
Affiliation(s)
- Rachel Kolb
- Department of Bioengineering, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
45
|
Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, Hausdorff JM, Toni I, Helmich RC. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017; 140:1384-1398. [DOI: 10.1093/brain/awx042] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Freek Nieuwhof
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Miriam F Reelick
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Inbal Maidan
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| |
Collapse
|
46
|
Reduction in Pain and Inflammation Associated With Chronic Low Back Pain With the Use of the Medical Food Theramine. Am J Ther 2017; 23:e1353-e1362. [PMID: 25237981 PMCID: PMC5102273 DOI: 10.1097/mjt.0000000000000068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of chronic back pain is a challenge for physicians. Although standard treatments exert a modest effect, they are associated with narcotic addiction and serious side effects from nonsteroidal antiinflammatory agents. Moreover, neurotransmitter depletion from both the pain syndrome and therapy may contribute to a poor treatment outcome. Neurotransmitter deficiency may be related both to increased turnover rate and inadequate neurotransmitter precursors from the diet, particularly for essential and semi-essential amino acids. Theramine, an amino acid blend 68405-1 (AAB), is a physician-prescribed only medical food. It contains neurotransmitter precursors and systems for increasing production and preventing attenuation of neurotransmitters. A double-blind controlled study of AAB, low-dose ibuprofen, and the coadministration of the 2 agents were performed. The primary end points included the Roland Morris index and Oswestry disability scale. The cohort included 122 patients aged between 18 and 75 years. The patients were randomized to 1 of 3 groups: AAB alone, ibuprofen alone, and the coadministration of the 2 agents. In addition, C-reactive protein, interleukin 6, and plasma amino acid concentrations were measured at baseline and 28 days time points. After treatment, the Oswestry Disability Index worsened by 4.52% in the ibuprofen group, improved 41.91% in the AAB group, and improved 62.15% in the combination group. The Roland Morris Index worsened by 0.73% in the ibuprofen group, improved by 50.3% in the AAB group, and improved 63.1% in the combination group. C-reactive protein in the ibuprofen group increased by 60.1%, decreased by 47.1% in the AAB group, and decreased by 36% in the combination group. Similar changes were seen in interleukin 6. Arginine, serine, histidine, and tryptophan levels were substantially reduced before treatment in the chronic pain syndrome and increased toward normal during treatment. There was a direct correlation between improvement in amino acid concentration and treatment response. Treatment with amino acid precursors was associated with substantial improvement in chronic back pain, reduction in inflammation, and improvement in back pain correlated with increased amino acid precursors to neurotransmitters in blood.
Collapse
|
47
|
Reakkamnuan C, Cheaha D, Kumarnsit E. Nucleus accumbens local field potential power spectrums, phase-amplitude couplings and coherences following morphine treatment. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Kumaravelu K, Brocker DT, Grill WM. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 2016; 40:207-29. [PMID: 26867734 PMCID: PMC4975943 DOI: 10.1007/s10827-016-0593-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/28/2022]
Abstract
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.
Collapse
Affiliation(s)
- Karthik Kumaravelu
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
49
|
Catanese J, Carmichael JE, van der Meer MAA. Low- and high-gamma oscillations deviate in opposite directions from zero-phase synchrony in the limbic corticostriatal loop. J Neurophysiol 2016; 116:5-17. [PMID: 26961106 DOI: 10.1152/jn.00914.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/08/2016] [Indexed: 02/02/2023] Open
Abstract
The loop structure of cortico-striatal anatomy in principle enables both descending (cortico-striatal) and ascending (striato-cortical) influences, but the factors that regulate the flow of information in these loops are not known. We report that low- and high-gamma oscillations (∼50 and ∼80 Hz, respectively) in the local field potential of freely moving rats are highly synchronous between the infralimbic region of the medial prefrontal cortex (mPFC) and the ventral striatum (vStr). Strikingly, high-gamma oscillations in mPFC preceded those in vStr, whereas low-gamma oscillations in mPFC lagged those in vStr, with short (∼1 ms) time lags. These systematic deviations from zero-phase synchrony were consistent across measures based on amplitude cross-correlation and phase slopes and were robustly maintained between behavioral states and different individual subjects. Furthermore, low- and high-gamma oscillations were associated with distinct ensemble spiking patterns in vStr, even when controlling for overt behavioral differences and slow changes in neural activity. These results imply that neural activity in vStr and mPFC is tightly coupled at the gamma timescale and raise the intriguing possibility that frequency-specific deviations from this coupling may signal transient leader-follower switches.
Collapse
Affiliation(s)
- Julien Catanese
- Department of Biology and Centre for Theoretical Neuroscience, University of Waterloo, Ontario, Canada; and
| | - J Eric Carmichael
- Department of Biology and Centre for Theoretical Neuroscience, University of Waterloo, Ontario, Canada; and Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Matthijs A A van der Meer
- Department of Biology and Centre for Theoretical Neuroscience, University of Waterloo, Ontario, Canada; and Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
50
|
Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias. Exp Brain Res 2016; 234:1105-18. [DOI: 10.1007/s00221-015-4532-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
|