1
|
Wulkan F, Romagnuolo R, Qiang B, Valdman Sadikov T, Kim KP, Quesnel E, Jiang W, Andharia N, Weyers JJ, Ghugre NR, Ozcan B, Alibhai FJ, Laflamme MA. Stem cell-derived cardiomyocytes expressing a dominant negative pacemaker HCN4 channel do not reduce the risk of graft-related arrhythmias. Front Cardiovasc Med 2024; 11:1374881. [PMID: 39045008 PMCID: PMC11263024 DOI: 10.3389/fcvm.2024.1374881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
Collapse
Affiliation(s)
- Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Jill J. Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Burg S, Levi O, Elyagon S, Shapiro S, Murninkas M, Etzion S, Gradwohl G, Makarovsky D, Lichtenstein A, Gordon Y, Attali B, Etzion Y. The SK4 channel allosteric blocker, BA6b9, reduces atrial fibrillation substrate in rats with reduced ejection fraction. PNAS NEXUS 2024; 3:pgae192. [PMID: 38783894 PMCID: PMC11114471 DOI: 10.1093/pnasnexus/pgae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is strongly associated with several comorbidities including heart failure (HF). AF in general, and specifically in the context of HF, is progressive in nature and associated with poor clinical outcomes. Current therapies for AF are limited in number and efficacy and do not target the underlying causes of atrial remodeling such as inflammation or fibrosis. We previously identified the calcium-activated SK4 K+ channels, which are preferentially expressed in the atria relative to the ventricles in both rat and human hearts, as attractive druggable target for AF treatment. Here, we examined the ability of BA6b9, a novel allosteric inhibitor of SK4 channels that targets the specific calmodulin-PIP2 binding domain, to alter AF susceptibility and atrial remodeling in a systolic HF rat postmyocardial infarction (post-MI) model. Daily BA6b9 injection (20 mg/kg/day) for 3 weeks starting 1-week post-MI prolonged the atrial effective refractory period, reduced AF induction and duration, and dramatically prevented atrial structural remodeling. In the post-MI left atrium (LA), pronounced upregulation of the SK4 K+ channel was observed, with corresponding increases in collagen deposition, α-SMA levels, and NLRP3 inflammasome expression. Strikingly, BA6b9 treatment reversed these changes while also significantly reducing the lateralization of the atrial connexin Cx43 in the LA of post-MI rats. Our findings indicate that the blockade of SK4 K+ channels using BA6b9 not only favors rhythm control but also remarkably reduces atrial structural remodeling, a property that is highly desirable for novel AF therapies, particularly in patients with comorbid HF.
Collapse
Affiliation(s)
- Shira Burg
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shir Shapiro
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sharon Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gideon Gradwohl
- Medical Engineering Unit, The Jerusalem College of Technology, Jerusalem 9116001, Israel
| | - Daria Makarovsky
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra Lichtenstein
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Chen H, Liu H, Liu D, Fu Y, Yao Y, Cao Z, Peng Z, Yang M, Zhao Q. M2 macrophage‑derived exosomes alleviate KCa3.1 channel expression in rapidly paced HL‑1 myocytes via the NF‑κB (p65)/STAT3 signaling pathway. Mol Med Rep 2024; 29:55. [PMID: 38334149 PMCID: PMC10877089 DOI: 10.3892/mmr.2024.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The present study was designed to explore the role of M2 macrophage‑derived exosomes (M2‑exos) on the KCa3.1 channel in a cellular atrial fibrillation (AF) model using rapidly paced HL‑1 myocytes. M2 macrophages and M2‑exos were isolated and identified. MicroRNA (miR)‑146a‑5p levels in M2 macrophages and M2‑exos were quantified using reverse transcription‑quantitative PCR (RT‑qPCR). HL‑1 myocytes were randomly divided into six groups: Control group, pacing group, pacing + coculture group (pacing HL‑1 cells cocultured with M2‑exos), pacing + mimic‑miR‑146a‑5p group, pacing + NC‑miR‑146a‑5p group and pacing + pyrrolidine dithiocarbamate (PDTC; a special blocker of the NF‑κB signaling pathway) group. Transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT‑qPCR and immunohistochemistry were performed in the present study. A whole‑cell clamp was also applied to record the current density of KCa3.1 and action potential duration (APD) in each group. The results revealed that miR‑146a‑5p was highly expressed in both M2 macrophages and M2‑exos. Pacing HL‑1 cells led to a shorter APD, an increased KCa3.1 current density and higher protein levels of KCa3.1, phosphorylated (p‑)NF‑κB p65, p‑STAT3 and IL‑1β compared with the control group. M2‑exos, miR‑146a‑5p‑mimic and PDTC both reduced the protein expression of KCa3.1, p‑NF‑κB p65, p‑STAT3 and IL‑1β and the current density of KCa3.1, resulting in a longer APD in the pacing HL‑1 cells. In conclusion, M2‑exos and their cargo, which comprised miR‑146a‑5p, decreased KCa3.1 expression and IL‑1β secretion in pacing HL‑1 cells via the NF‑κB/STAT3 signaling pathway, limiting the shorter APD caused by rapid pacing.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huafen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhibin Peng
- Department of Cardiology, Yidu People's Hospital, Yidu, Hubei 443000, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
4
|
Charlick JN, Bozadzhieva D, Butler AS, Wilkinson KA, Marrion NV. A single coiled-coil domain mutation in hIKCa channel subunits disrupts preferential formation of heteromeric hSK1:hIKCa channels. Eur J Neurosci 2024; 59:3-16. [PMID: 38018635 PMCID: PMC10952195 DOI: 10.1111/ejn.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The expression of IKCa (SK4) channel subunits overlaps with that of SK channel subunits, and it has been proposed that the two related subunits prefer to co-assemble to form heteromeric hSK1:hIKCa channels. This implicates hSK1:hIKCa heteromers in physiological roles that might have been attributed to activation of SK channels. We have used a mutation approach to confirm formation of heterometric hSK1:hIKCa channels. Introduction of residues within hSK1 that were predicted to impart sensitivity to the hIKCa current blocker TRAM-34 changed the pharmacology of functional heteromers. Heteromeric channels formed between wildtype hIKCa and mutant hSK1 subunits displayed a significantly higher sensitivity and maximum block to addition of TRAM-34 than heteromers formed between wildtype subunits. Heteromer formation was disrupted by a single point mutation within one COOH-terminal coiled-coil domain of the hIKCa channel subunit. This mutation only disrupted the formation of hSK1:hIKCa heteromeric channels, without affecting the formation of homomeric hIKCa channels. Finally, the Ca2+ gating sensitivity of heteromeric hSK1:hIKCa channels was found to be significantly lower than the Ca2+ gating sensitivity of homomeric hIKCa channels. These data confirmed the preferred formation of heteromeric channels that results from COOH-terminal interactions between subunits. The distinct sensitivity of the heteromer to activation by Ca2+ suggests that heteromeric channels fulfil a distinct function within those neurons that express both subunits.
Collapse
Affiliation(s)
- James N. Charlick
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Daniella Bozadzhieva
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Andrew S. Butler
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Neil V. Marrion
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
5
|
Taylor KR, Monje M. Neuron-oligodendroglial interactions in health and malignant disease. Nat Rev Neurosci 2023; 24:733-746. [PMID: 37857838 PMCID: PMC10859969 DOI: 10.1038/s41583-023-00744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
8
|
Li Y, Dinkel H, Pakalniskyte D, Busley AV, Cyganek L, Zhong R, Zhang F, Xu Q, Maywald L, Aweimer A, Huang M, Liao Z, Meng Z, Yan C, Prädel T, Rose L, Moscu‐Gregor A, Hohn A, Yang Z, Qiao L, Mügge A, Zhou X, Akin I, El‐Battrawy I. Novel insights in the pathomechanism of Brugada syndrome and fever-related type 1 ECG changes in a preclinical study using human-induced pluripotent stem cell-derived cardiomyocytes. Clin Transl Med 2023; 13:e1130. [PMID: 36881552 PMCID: PMC9990896 DOI: 10.1002/ctm2.1130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is causing sudden cardiac death (SCD) mainly at young age. Studying the underlying mechanisms associated with BrS type I electrocardiogram (ECG) changes in the presence of fever and roles of autophagy for BrS remains lacking. OBJECTIVES We sought to study the pathogenic role of an SCN5A gene variant for BrS with fever-induced type 1 ECG phenotype. In addition, we studied the role of inflammation and autophagy in the pathomechanism of BrS. METHODS Human-induced pluripotent stem cell (hiPSC) lines from a BrS patient harboring a pathogenic variant (c.3148G>A/p. Ala1050Thr) in SCN5A and two healthy donors (non-BrS) and a CRISPR/Cas9 site-corrected cell line (BrS-corr) were differentiated into cardiomyocytes (hiPSC-CMs) for the study. RESULTS Reductions of Nav 1.5 expression, peak sodium channel current (INa ) and upstroke velocity (Vmax ) of action potentials with an increase in arrhythmic events were detected in BrS compared to non-BrS and BrS-corr cells. Increasing the cell culture temperature from 37 to 40°C (fever-like state) exacerbated the phenotypic changes in BrS cells. The fever-effects were enhanced by protein kinase A (PKA) inhibitor but reversed by PKA activator. Lipopolysaccharides (LPS) but not increased temperature up to 40°C enhanced the autophagy level in BrS-hiPSC-CMs by increasing reactive oxidative species and inhibiting PI3K/AKT signalling, and hence exacerbated the phenotypic changes. LPS enhanced high temperature-related effect on peak INa shown in BrS hiPSC-CMs. Effects of LPS and high temperature were not detected in non-BrS cells. CONCLUSIONS The study demonstrated that the SCN5A variant (c.3148G>A/p.Ala1050Thr) caused loss-of-function of sodium channels and increased the channel sensitivity to high temperature and LPS challenge in hiPSC-CMs from a BrS cell line with this variant but not in two non-BrS hiPSC-CM lines. The results suggest that LPS may exacerbate BrS phenotype via enhancing autophagy, whereas fever may exacerbate BrS phenotype via inhibiting PKA-signalling in BrS cardiomyocytes with but probably not limited to this variant.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Hendrik Dinkel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Dalia Pakalniskyte
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Alexandra Viktoria Busley
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Stem Cell UnitClinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Rujia Zhong
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Feng Zhang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Qiang Xu
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Lasse Maywald
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Assem Aweimer
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Mengying Huang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhenxing Liao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zenghui Meng
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Chen Yan
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Timo Prädel
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Lena Rose
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | | | - Alyssa Hohn
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Zhen Yang
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Lin Qiao
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
| | - Andreas Mügge
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| | - Xiaobo Zhou
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| | - Ibrahim Akin
- First Department of MedicineFaculty of MedicineUniversity Medical Centre Mannheim (UMM)Heidelberg UniversityMannheimGermany
- DZHK (German Center for Cardiovascular Research)Partner SiteHeidelberg‐Mannheim and GöttingenMannheimGermany
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyBergmannsheil University HospitalsRuhr University of BochumBochumGermany
| |
Collapse
|
9
|
Barbuti A, Baruscotti M, Bucchi A. The “Funny” Pacemaker Current. HEART RATE AND RHYTHM 2023:63-87. [DOI: 10.1007/978-3-031-33588-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 2023; 613:179-186. [PMID: 36517594 DOI: 10.1038/s41586-022-05520-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.
Collapse
|
11
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
12
|
Mazgaoker S, Weiser-Bitoun I, Brosh I, Binah O, Yaniv Y. cAMP-PKA signaling modulates the automaticity of human iPSC-derived cardiomyocytes. J Gen Physiol 2022; 155:213690. [PMID: 36383232 PMCID: PMC9674091 DOI: 10.1085/jgp.202213153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been used to screen and characterize drugs and to reveal mechanisms underlying cardiac diseases. However, before hiPSC-CMs can be used as a reliable experimental model, the physiological mechanisms underlying their normal function should be further explored. Accordingly, a major feature of hiPSC-CMs is automaticity, which is regulated by both Ca2+ and membrane clocks. To investigate the mechanisms coupling these clocks, we tested three hypotheses: (1) normal automaticity of spontaneously beating hiPSC-CMs is regulated by local Ca2+ releases (LCRs) and cAMP/PKA-dependent coupling of Ca2+ clock to M clock; (2) the LCR period indicates the level of crosstalk within the coupled-clock system; and (3) perturbing the activity of even one clock can lead to hiPSC-CM-altered automaticity due to diminished crosstalk within the coupled-clock system. By measuring the local and global Ca2+ transients, we found that the LCRs properties are correlated with the spontaneous beat interval. Changes in cAMP-dependent coupling of the Ca2+ and M clocks, caused by a pharmacological intervention that either activates the β-adrenergic or cholinergic receptor or upregulates/downregulates PKA signaling, affected LCR properties, which in turn altered hiPSC-CMs automaticity. Clocks' uncoupling by attenuating the pacemaker current If or the sarcoplasmic reticulum Ca2+ kinetics, decreased hiPSC-CMs beating rate, and prolonged the LCR period. Finally, LCR characteristics of spontaneously beating (at comparable rates) hiPSC-CMs and rabbit SAN are similar. In conclusion, hiPSC-CM automaticity is controlled by the coupled-clock system whose function is mediated by Ca2+-cAMP-PKA signaling.
Collapse
Affiliation(s)
- Savyon Mazgaoker
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Weiser-Bitoun
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbar Brosh
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, TechnionIsrael Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,Correspondence to Yael Yaniv:
| |
Collapse
|
13
|
Allosteric inhibitors targeting the calmodulin-PIP2 interface of SK4 K + channels for atrial fibrillation treatment. Proc Natl Acad Sci U S A 2022; 119:e2202926119. [PMID: 35969786 PMCID: PMC9407317 DOI: 10.1073/pnas.2202926119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca2+-activated SK4 K+ channel is gated by Ca2+-calmodulin (CaM) and is expressed in immune cells, brain, and heart. A cryoelectron microscopy (cryo-EM) structure of the human SK4 K+ channel recently revealed four CaM molecules per channel tetramer, where the apo CaM C-lobe and the holo CaM N-lobe interact with the proximal carboxyl terminus and the linker S4-S5, respectively, to gate the channel. Here, we show that phosphatidylinositol 4-5 bisphosphate (PIP2) potently activates SK4 channels by docking to the boundary of the CaM-binding domain. An allosteric blocker, BA6b9, was designed to act to the CaM-PIP2-binding domain, a previously untargeted region of SK4 channels, at the interface of the proximal carboxyl terminus and the linker S4-S5. Site-directed mutagenesis, molecular docking, and patch-clamp electrophysiology indicate that BA6b9 inhibits SK4 channels by interacting with two specific residues, Arg191 and His192 in the linker S4-S5, not conserved in SK1-SK3 subunits, thereby conferring selectivity and preventing the Ca2+-CaM N-lobe from properly interacting with the channel linker region. Immunohistochemistry of the SK4 channel protein in rat hearts showed a widespread expression in the sarcolemma of atrial myocytes, with a sarcomeric striated Z-band pattern, and a weaker occurrence in the ventricle but a marked incidence at the intercalated discs. BA6b9 significantly prolonged atrial and atrioventricular effective refractory periods in rat isolated hearts and reduced atrial fibrillation induction ex vivo. Our work suggests that inhibition of SK4 K+ channels by targeting drugs to the CaM-PIP2-binding domain provides a promising anti-arrhythmic therapy.
Collapse
|
14
|
Stüdemann T, Weinberger F. The Guinea Pig Model in Cardiac Regeneration Research; Current Tissue Engineering Approaches and Future Directions. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:103-122. [DOI: 10.1007/978-3-030-86140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Wang Y, Yao Y, Ma Y, He S, Yang M, Cao Z, Liudi S, Fu Y, Chen H, Wang X, Huang C, Zhao Q. Blockade of SK4 channels suppresses atrial fibrillation by attenuating atrial fibrosis in canines with prolonged atrial pacing. Int J Med Sci 2022; 19:1995-2007. [PMID: 36483596 PMCID: PMC9724246 DOI: 10.7150/ijms.69626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background: We previously found that intermediate conductance Ca2+-activated K+ channel (SK4) might be an important target in atrial fibrillation (AF). Objective: To investigate the role of SK4 in AF maintenance. Methods: Twenty beagles were randomly assigned to the sham group (n=6), pacing group (n=7), and pacing+TRAM-34 group (n=7). Rapid atrial pacing continued for 7 days in the pacing and TRAM-34 groups. During the pacing, the TRAM-34 group received TRAM-34 intravenous injection (10 mg/Kg) 3 times per day. Atrial fibroblasts isolated from canines were treated with angiotensin II or adenovirus carrying the SK4 gene (Ad-SK4) to overexpress SK4 channels. Results: TRAM-34 treatment significantly suppressed the increased intra-atrial conducting time (CT) and AF duration in canines after rapid atrial pacing (P<0.05). Compared with the sham group, the expression of SK4 in atria was higher in the pacing group, which was associated with an increased number of myofibroblasts and levels of extracellular matrix in atrium (all P<0.05), and this effect was reversed by TRAM-34 treatment (all P<0.05). In atrial fibroblasts, the increased expression of SK4 induced by angiotensin II stimulation or Ad-SK4 transfection contributed to higher levels of P38, ERK1/2 and their downstream factors c-Jun and c-Fos, leading to the increased expression of α-SMA (all P<0.05), and all these increases were markedly reduced by TRAM-34 treatment. Conclusion: SK4 blockade suppressed AF by attenuating cardiac fibroblast activity and atrial fibrosis, which was realized through not only a decrease in fibrogenic factors but also inhibition of fibrotic signaling pathways.
Collapse
Affiliation(s)
- Youcheng Wang
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China.,Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yazhe Ma
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shiwen Liudi
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University Wuhan City, Wuchang, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
16
|
Proton-modulated interactions of ions with transport sites of prokaryotic and eukaryotic NCX prototypes. Cell Calcium 2021; 99:102476. [PMID: 34564055 DOI: 10.1016/j.ceca.2021.102476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
The cytosolic pH decline from 7.2 to 6.9 results in 90% inactivation of mammalian Na+/Ca2+ exchangers (NCXs) due to protons interactions with regulatory and transport domains ("proton block"). Remarkably, the pH titration curves of mammalian and prokaryotic NCXs significantly differ, even after excluding the allosteric effects through regulatory domains. This is fascinating since "only" three (out of twelve) ion-coordinating residues (T50S, E213D, and D240N) differ between the archaeal NCX_Mj and mammalian NCXs although they contain either three or two carboxylates, respectively. To resolve the underlying mechanisms of pH-dependent regulation, the ion-coordinating residues of NCX_Mj were mutated to imitate the ion ligation arrays of mammalian NCXs; the mutational effects were tested on the ion binding/transport by using ion-flux assays and two-dimensional infrared (2D IR) spectroscopy. Our analyses revealed that two deprotonated carboxylates ligate 3Na+ or 1Ca2+ in NCX prototypes with three or two carboxylates. The Na+/Ca2+ exchange rates of NCX_Mj reach saturation at pH 5.0, whereas the Na+/Ca2+ exchange rates of the cardiac NCX1.1 gradually increase even at alkaline pHs. The T50S replacement in NCX_Mj "recapitulates" the pH titration curves of mammalian NCX by instigating an alkaline shift. Proteolytic shaving of regulatory CBD domains activates NCX1.1, although the normalized pH-titration curves are comparable in trypsin treated and untreated NCX1.1. Thus, the T50S-dependent alkaline shift sets a dynamic range for "proton block" function at physiological pH, whereas the CBDs (and other regulatory modes) modulate incremental changes in the transport rates rather than affect the shape of pH dependent curves.
Collapse
|
17
|
He S, Wang Y, Yao Y, Cao Z, Yin J, Zi L, Chen H, Fu Y, Wang X, Zhao Q. Inhibition of KCa3.1 Channels Suppresses Atrial Fibrillation via the Attenuation of Macrophage Pro-inflammatory Polarization in a Canine Model With Prolonged Rapid Atrial Pacing. Front Cardiovasc Med 2021; 8:656631. [PMID: 34136541 PMCID: PMC8200470 DOI: 10.3389/fcvm.2021.656631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
Aims: To investigate the role of KCa3. 1 inhibition in macrophage pro-inflammatory polarization and vulnerability to atrial fibrillation (AF) in a canine model with prolonged rapid atrial pacing. Materials and Methods: Twenty beagle dogs (weighing 8–10 kg) were randomly assigned to a sham group (n = 6), pacing group (n = 7) and pacing+TRAM-34 group (n = 7). An experimental model of AF was established by rapid pacing. TRAM-34 was administered to the Pacing+TRAM-34 group by slow intravenous injection (10 mg/kg), 3 times each day. After 7 days of pacing, the electrophysiology was measured in vivo. The levels of interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), CD68, c-Fos, p38, and NF-κB p65 in both atriums were measured by Western blotting, and the levels of inducible nitric oxide synthase (iNOS) and arginase1 (Arg-1) were measured by real-time PCR. Macrophage and KCa3.1 in macrophage in the atrium were quantized following double labeled immunofluorescent. Results: Greater inducibility of AF, an extended duration of AF and lower atrial effective refractory period (AERP) were observed in the pacing group compared with those in the sham group. Both CD68-labeled macrophage and the expression of KCa3.1 in macrophage were elevated in the pacing group and inhibited by TRAM-34, led to higher iNOS expression, lower Arg-1 expression, elevated levels of IL-1β, MCP-1, and TNF-α in the atria, which could be reversed by TRAM-34 treatment (all P < 0.01). KCa3.1 channels were possibly activated via the p38/AP-1/NF-κB signaling pathway. Conclusions: Inhibition of KCa3.1 suppresses vulnerability to AF by attenuating macrophage pro-inflammatory polarization and inflammatory cytokine secretion in a canine model with prolonged rapid atrial pacing.
Collapse
Affiliation(s)
- Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
18
|
Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol Sci 2021; 42:491-506. [PMID: 33858691 DOI: 10.1016/j.tips.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Cardiomyocytes are endowed with a complex repertoire of ion channels, responsible for the generation of action potentials (APs), travelling waves of electrical excitation, propagating throughout the heart and leading to cardiac contractions. Cardiac AP waveforms are shaped by a striking diversity of K+ channels. The pivotal role of K+ channels in cardiac health and disease is underscored by the dramatic impact that K+ channel dysfunction has on cardiac arrhythmias. The development of drugs targeted to specific K+ channels is expected to provide an optimized approach to antiarrhythmic therapy. Here, we review the functional roles of cardiac potassium channels under normal and diseased states. We survey current antiarrhythmic drugs (AADs) targeted to voltage-gated and Ca2+-activated K+ channels and highlight future research opportunities.
Collapse
|
19
|
Zhao R, Liu X, Qi Z, Yao X, Tsang SY. TRPV1 channels regulate the automaticity of embryonic stem cell-derived cardiomyocytes through stimulating the Na + /Ca 2+ exchanger current. J Cell Physiol 2021; 236:6806-6823. [PMID: 33782967 DOI: 10.1002/jcp.30369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1β (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
21
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
22
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
23
|
Ravindran D, Kok C, Farraha M, Selvakumar D, Clayton ZE, Kumar S, Chong J, Kizana E. Gene and Cell Therapy for Cardiac Arrhythmias. Clin Ther 2020; 42:1911-1922. [PMID: 32988632 DOI: 10.1016/j.clinthera.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE In the last decade, interest in gene therapy as a therapeutic technology has increased, largely driven by an exciting yet modest number of successful applications for monogenic diseases. Setbacks in the use of gene therapy for cardiac disease have motivated efforts to develop vectors with enhanced tropism for the heart and more efficient delivery methods. Although monogenic diseases are the logical target, cardiac arrhythmias represent a group of conditions amenable to gene therapy because of focal targets (biological pacemakers, nodal conduction, or stem cell-related arrhythmias) or bystander effects on cells not directly transduced because of electrical coupling. METHODS This review provides a contemporary narrative of the field of gene therapy for experimental cardiac arrhythmias, including those associated with stem cell transplant. Recent articles published in the English language and available through the PubMed database and other prominent literature are discussed. FINDINGS The promise of gene therapy has been realized for a handful of monogenic diseases and is actively being pursued for cardiac applications in preclinical models. With improved vectors, it is likely that cardiac disease will also benefit from this technology. Cardiac arrhythmias, whether inherited or acquired, are a group of conditions with a potentially lower threshold for phenotypic correction and as such hold unique potential as targets for cardiac gene therapy. IMPLICATIONS There has been a proliferation of research on the potential of gene therapy for cardiac arrhythmias. This body of investigation forms a strong basis on which further developments, particularly with viral vectors, are likely to help this technology progress along its translational trajectory.
Collapse
Affiliation(s)
- Dhanya Ravindran
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Cindy Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - James Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
24
|
Role of intermediate-conductance calcium-activated potassium channels in atrial fibrillation in canines with rapid atrial pacing. J Interv Card Electrophysiol 2020; 60:247-253. [PMID: 32248426 DOI: 10.1007/s10840-020-00736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the present study was to explore the role of intermediate-conductance Ca2+-activated K+ (SK4) in atrial fibrillation (AF) inducibility in canines with rapid atrial pacing. METHODS Eighteen dogs were divided into the control group, the pacing group and the stellate ganglion ablation (SGA) + pacing group. In the pacing group, dogs were subjected to rapid atrial pacing, and the atrial effective refractory period (AERP) and AF inducibility were measured. After cessation of 7-h pacing, SK4 inhibitor (TRAM-34) was administered. After SGA, the SGA + pacing group received the same procedure of pacing and electrophysiological measurement as the pacing group. The expression of SK4 was measured in the left atrium (LA) and the right atrium (RA) in the three groups. RESULTS The duration of the AERP decreased, while the number of AF episodes, the duration of induced AF, and the amplitude of stellate ganglion neural activity all increased after rapid atrial pacing. TRAM-34 completely inhibited AF induction in the pacing group. There was no significant difference in AERP shortening or AF vulnerability between the SGA + pacing group and the control group. The expression of SK4 in the LA and RA was higher in the pacing group than in the control and SGA + pacing groups. However, there was no significant difference in the expression of SK4 in the LA or the RA between the SGA + pacing group and the control group. CONCLUSION The higher expression of SK4 plays an important role in AF induction and the increased expression of SK4 in the atrium is related to SG activity during rapid atrial pacing.
Collapse
|
25
|
Nucleoside Diphosphate Kinase B Contributes to Arrhythmogenesis in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Arrhythmogenic Right Ventricular Cardiomyopathy. J Clin Med 2020; 9:jcm9020486. [PMID: 32050722 PMCID: PMC7073527 DOI: 10.3390/jcm9020486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare, inheritable cardiac disorder characterized by ventricular tachyarrhythmias, progressive loss of cardiomyocytes with fibrofatty replacement and sudden cardiac death. The exact underlying mechanisms are unclear. Methods: This study investigated the possible roles of nucleoside diphosphate kinase B (NDPK-B) and SK4 channels in the arrhythmogenesis of ARVC by using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Results: In hiPSC-CMs from a patient with ARVC, the expression levels of NDPK-B and SK4 channels were upregulated, the cell automaticity was increased and the occurrence rate of arrhythmic events was enhanced. Recombinant NDPK-B applied into hiPSC-CMs from either healthy donors or the patient enhanced SK4 channel current (ISK4), cell automaticity and the occurrence of arrhythmic events, whereas protein histidine phosphatase 1 (PHP-1), a counter actor of NDPK-B, prevented the NDPK-B effect. Application of PHP-1 alone or a SK4 channel blocker also reduced cell automaticity and arrhythmic events. Conclusion: This study demonstrated that the elevated NDPK-B expression, via activating SK4 channels, contributes to arrhythmogenesis in ARVC, and hence, NDPK-B may be a potential therapeutic target for treating arrhythmias in patients with ARVC.
Collapse
|
26
|
Abstract
A progressive decline in maximum heart rate (mHR) is a fundamental aspect of aging in humans and other mammals. This decrease in mHR is independent of gender, fitness, and lifestyle, affecting in equal measure women and men, athletes and couch potatoes, spinach eaters and fast food enthusiasts. Importantly, the decline in mHR is the major determinant of the age-dependent decline in aerobic capacity that ultimately limits functional independence for many older individuals. The gradual reduction in mHR with age reflects a slowing of the intrinsic pacemaker activity of the sinoatrial node of the heart, which results from electrical remodeling of individual pacemaker cells along with structural remodeling and a blunted β-adrenergic response. In this review, we summarize current evidence about the tissue, cellular, and molecular mechanisms that underlie the reduction in pacemaker activity with age and highlight key areas for future work.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
27
|
Bueno-Levy H, Weisbrod D, Yadin D, Haron-Khun S, Peretz A, Hochhauser E, Arad M, Attali B. The Hyperpolarization-Activated Cyclic-Nucleotide-Gated Channel Blocker Ivabradine Does Not Prevent Arrhythmias in Catecholaminergic Polymorphic Ventricular Tachycardia. Front Pharmacol 2020; 10:1566. [PMID: 32009964 PMCID: PMC6978284 DOI: 10.3389/fphar.2019.01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, stressed-provoked ventricular arrhythmia. CPVT is treated by β-adrenergic receptor blockers, Na+ channel inhibitors, sympathetic denervation, or by implanting a defibrillator. We showed recently that blockers of SK4 Ca2+-activated K+ channels depolarize the maximal diastolic potential, reduce the heart rate, and attenuate ventricular arrhythmias in CPVT. The aim of the present study was to examine whether the pacemaker channel inhibitor, ivabradine could demonstrate anti-arrhythmic properties in CPVT like other bradycardic agents used in this disease and to compare them with those of the SK4 channel blocker, TRAM-34. The effects of ivabradine were examined on the arrhythmic beating of human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) from CPVT patients, on sinoatrial node (SAN) calcium transients, and on ECG measurements obtained from transgenic mice model of CPVT. Ivabradine did neither prevent the arrhythmic pacing of hiPSC-CMs derived from CPVT patients, nor preclude the aberrant SAN calcium transients. In contrast to TRAM-34, ivabradine was unable to reduce in vivo the ventricular premature complexes and ventricular tachyarrhythmias in transgenic CPVT mice. In conclusion, ivabradine does not exhibit anti-arrhythmic properties in CPVT, which indicates that this blocker cannot be used as a plausible treatment for CPVT ventricular arrhythmias.
Collapse
Affiliation(s)
- Hanna Bueno-Levy
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Weisbrod
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Yadin
- Leviev Heart Center, Sheba Medical Center, Tel Aviv, Israel
| | - Shiraz Haron-Khun
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Aviv, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edith Hochhauser
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Petah Tikva, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Yang M, Zhao Q, Zhao H, Yang A, Wang F, Wang X, Tang Y, Huang C. Adipose‑derived stem cells overexpressing SK4 calcium‑activated potassium channel generate biological pacemakers. Int J Mol Med 2019; 44:2103-2112. [PMID: 31638180 PMCID: PMC6844603 DOI: 10.3892/ijmm.2019.4374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023] Open
Abstract
Recent studies have suggested that calcium-activated potassium channel (KCa) agonists increase the proportion of mouse embryonic stem cell-derived cardiomyocytes and promote the differentiation of pacemaker cells. In the present study, it was hypothesized that adipose-derived stem cells (ADSCs) can differentiate into pacemaker-like cells via over-expression of the SK4 gene. ADSCs were transduced with a recombinant adenovirus vector carrying the mouse SK4 gene, whereas the control group was transduced with GFP vector. ADSCs transduced with SK4 vector were implanted into the rat left ventricular free wall. Complete atrioventricular block (AVB) was established in isolated perfused rat hearts after 2 weeks. SK4 was successfully and stably expressed in ADSCs following transduction. The mRNA levels of the pluripotent markers Oct-4 and Sox-2 declined and that of the transcription factor Shox2 was upregulated following SK4 transduction. The expression of α-actinin and hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) increased in the SK4 group. The hyperpolarizing activated pacemaker current If (8/20 cells) was detected in ADSCs transduced with SK4, but not in the GFP group. Furthermore, SK4 transduction induced the expression of p-ERK1/2 and p-p38 MAPK. In the ex vivo experiments, the heart rate of the SK4 group following AVB establishment was significantly higher compared with that in the GFP group. Immunofluorescence revealed that the transduced ADSCs were successfully implanted and expressed HCN4 in the SK4 group. In conclusion, SK4 induced ADSCs to differentiate into cardiomyocyte-like and pacemaker-like cells via activation of the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways. Therefore, ADSCs transduced with SK4 may be used to generate biological pacemakers in ex vivo rat hearts.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
29
|
Zhao H, Yang M, Wang F, Yang A, Zhao Q, Wang X, Tang Y, Wang T, Huang C. Overexpression of the medium‑conductance calcium‑activated potassium channel (SK4) and the HCN2 channel to generate a biological pacemaker. Mol Med Rep 2019; 20:3406-3414. [PMID: 31432175 DOI: 10.3892/mmr.2019.10591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022] Open
Abstract
Ion channels serve important roles in the excitation‑contraction coupling of cardiac myocytes. Previous studies have shown that the overexpression or activation of intermediate‑conductance calcium‑activated potassium channel (SK4, encoded by KCNN4) in embryonic stem cell‑derived cardiomyocytes can significantly increase their automaticity. The mechanism underlying this effect is hypothesized to be associated with the activation of hyperpolarization‑activated cyclic nucleotide‑gated channel 2 (HCN2). The aim of the present study was to explore whether a biological pacemaker could be constructed by overexpressing SK4 alone or in combination with HCN2 in a rat model. Ad‑green fluorescent protein (GFP), Ad‑KCNN4 and Ad‑HCN2 recombinant adenoviruses were injected into the left ventricle of Sprague‑Dawley rat hearts. The rats were divided into a GFP group (n=10), an SK4 group (n=10), a HCN2 group (n=10) and an SK4 + HCN2 (SK4/HCN2) group (n=10). The isolated hearts were perfused at 5‑7 days following injection, and a complete heart block model was established. Compared with the GFP group, overexpressing SK4 alone did not significantly increase the heart rate after establishment of a complete heart block model [98.1±8.9 vs. 96.7±7.6 beats per min (BPM)], The heart rates in the SK4/HCN2 (139.9±21.9 BPM) and HCN2 groups (111.7±5.5 BPM) were significantly increased compared with the GFP and SK4 groups, and the heart rates in the SK4/HCN2 group were significantly increased compared with the SK4 or HCN2 groups. In the HCN2 (n=8) and the SK4/HCN2 (n=7) groups, the shape of the spontaneous ventricular rhythm was the same as the pacing‑induced ectopic rhythm in the transgenically altered site. By contrast, these rhythms were different in the SK4 (n=10) and GFP (n=10) groups. There were no significant differences in action potential duration alternans or ventricular arrhythmia inducibility between the four groups (all P>0.05). Western blotting, reverse transcription‑quantitative PCR and immunohistochemistry analyses showed that the expression levels of SK4 and HCN2 were significantly increased at the transgene site. Biological pacemaker activity could be successfully generated by co‑overexpression of SK4 and HCN2 without increasing the risk of ventricular arrhythmias. The overexpression of SK4 alone is insufficient to generate biological pacemaker activity. The present study provided evidence that SK4 and HCN2 combined could construct an ectopic pacemaker, laying the groundwork for the development of improved biological pacing mechanisms in the future.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
30
|
Cancer-Associated Intermediate Conductance Ca 2+-Activated K⁺ Channel K Ca3.1. Cancers (Basel) 2019; 11:cancers11010109. [PMID: 30658505 PMCID: PMC6357066 DOI: 10.3390/cancers11010109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1 thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy may also modulate anti-tumor immune activity and/or immunosuppression. The present review article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as well as anti-cancer immune responses.
Collapse
|
31
|
Tsutsui K, Monfredi OJ, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, Ziman BD, Tarasov KV, Tarasova YS, Zhang J, Wang M, Maltsev AV, Brennan JA, Efimov IR, Stern MD, Maltsev VA, Lakatta EG. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Sci Signal 2018; 11:eaap7608. [PMID: 29895616 PMCID: PMC6138244 DOI: 10.1126/scisignal.aap7608] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca2+ releases generated by a Ca2+ clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca2+-cAMP-protein kinase A (PKA) signaling regulated clock coupling. When these clocks became uncoupled, SANCs failed to generate spontaneous action potentials, showing a depolarized membrane potential and disorganized local Ca2+ releases that failed to activate the M clock. β-Adrenergic receptor (β-AR) stimulation, which increases cAMP concentrations and clock coupling in other species, restored spontaneous, rhythmic action potentials in some nonbeating "arrested" human SANCs by increasing intracellular Ca2+ concentrations and synchronizing diastolic local Ca2+ releases. When β-AR stimulation was withdrawn, the clocks again became uncoupled, and SANCs reverted to a nonbeating arrested state. Thus, automaticity of human pacemaker cells is driven by a coupled-clock system driven by Ca2+-cAMP-PKA signaling. Extreme clock uncoupling led to failure of spontaneous action potential generation, which was restored by recoupling of the clocks. Clock coupling and action potential firing in some of these arrested cells can be restored by β-AR stimulation-induced augmentation of Ca2+-cAMP-PKA signaling.
Collapse
Affiliation(s)
- Kenta Tsutsui
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Oliver J Monfredi
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Department of Cardiovascular Electrophysiology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| | | | - Larissa A Maltseva
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mary S Kim
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Bruce D Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Alexander V Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Michael D Stern
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
32
|
Golovko VA, Kosevich IA, Gonotkov MA. Pharmacological analysis of the transmembrane action potential configuration in myoepithelial cells of the spontaneously beating heart of the ascidian Styela rustica in vitro. ACTA ACUST UNITED AC 2017; 220:4589-4599. [PMID: 28982967 DOI: 10.1242/jeb.154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
The mechanisms of action potential (AP) generation in the myoepithelial cells of the tunicate heart are not yet well understood. Here, an attempt was made to elucidate these mechanisms by analyzing the effects of specific blockers of K+, Na+ and Ca2+ currents on the configuration of transmembrane APs and their frequency in the spontaneously beating ascidian heart. In addition, an immunocytochemical analysis of heart myoepithelial cells was performed. Staining with anti-FMRF-amide and anti-tubulin antibodies did not reveal any nerve elements within the heart tube. Treatment with 1 mmol l-1 TEA (IK blocker) resulted in depolarization of heart cell sarcolemma by 10 mV, and inhibition of APs generation was recorded after 3 min of exposure. Prior to this moment, the frequency of AP generation in a burst decreased from 16-18 to 2 beats min-1 owing to prolongation of the diastole. After application of ivabradine (3 or 10 µmol l-1), the spontaneous APs generation frequency decreased by 24%. Based on these results and published data, it is concluded that the key role in the automaticity of the ascidian heart is played by the outward K+ currents, Na+ currents, activated hyperpolarization current If and a current of unknown nature IX.
Collapse
Affiliation(s)
- Vladimir A Golovko
- Institute of Physiology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya St., Syktyvkar 167982, Russia
| | - Igor A Kosevich
- Faculty of Biology, M.Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail A Gonotkov
- Institute of Physiology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 50 Pervomayskaya St., Syktyvkar 167982, Russia
| |
Collapse
|
33
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
34
|
Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J, Peretz A, Binah O, Hochhauser E, Eldar M, Yaniv Y, Arad M, Attali B. SK4 K + channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol Med 2017; 9:415-429. [PMID: 28219898 PMCID: PMC5376763 DOI: 10.15252/emmm.201606937] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress‐provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium‐activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2‐D307H) and in SAN cells from WT and CASQ2‐D307H knock‐in (KI) mice. TRAM‐34, a selective blocker of SK4 channels, prominently reduced delayed afterdepolarizations and arrhythmic Ca2+ transients observed following application of the β‐adrenergic agonist isoproterenol in CPVT2‐derived hiPSC‐CMs and in SAN cells from KI mice. Strikingly, in vivo ECG recording showed that intraperitoneal injection of the SK4 channel blockers, TRAM‐34 or clotrimazole, greatly reduced the arrhythmic features of CASQ2‐D307H KI and CASQ2 knockout mice at rest and following exercise. This work demonstrates the critical role of SK4 Ca2+‐activated K+ channels in adult pacemaker function, making them promising therapeutic targets for the treatment of cardiac ventricular arrhythmias such as CPVT.
Collapse
Affiliation(s)
- Shiraz Haron-Khun
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - David Weisbrod
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Bueno
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Yadin
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Joachim Behar
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Binah
- Department of Physiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edith Hochhauser
- The Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Petah Tikva, Israel
| | - Michael Eldar
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Yael Yaniv
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Chauveau S, Anyukhovsky EP, Ben-Ari M, Naor S, Jiang YP, Danilo P, Rahim T, Burke S, Qiu X, Potapova IA, Doronin SV, Brink PR, Binah O, Cohen IS, Rosen MR. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function. Circ Arrhythm Electrophysiol 2017; 10:e004508. [PMID: 28500172 PMCID: PMC5434966 DOI: 10.1161/circep.116.004508] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. METHODS AND RESULTS Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3-2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 μg kg-1 min-1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. CONCLUSIONS iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized.
Collapse
Affiliation(s)
| | | | | | - Shulamit Naor
- For the author affiliations, please see the Appendix
| | - Ya-Ping Jiang
- For the author affiliations, please see the Appendix
| | - Peter Danilo
- For the author affiliations, please see the Appendix
| | - Tania Rahim
- For the author affiliations, please see the Appendix
| | | | - Xiaoliang Qiu
- For the author affiliations, please see the Appendix
| | | | | | - Peter R Brink
- For the author affiliations, please see the Appendix
| | - Ofer Binah
- For the author affiliations, please see the Appendix
| | - Ira S Cohen
- For the author affiliations, please see the Appendix.
| | | |
Collapse
|
36
|
Lee BSL, Devor DC, Hamilton KL. Modulation of Retrograde Trafficking of KCa3.1 in a Polarized Epithelium. Front Physiol 2017; 8:489. [PMID: 28769813 PMCID: PMC5513911 DOI: 10.3389/fphys.2017.00489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
In epithelia, the intermediate conductance, Ca2+-activated K+ channel (KCa3.1) is targeted to the basolateral membrane (BLM) where this channel plays numerous roles in absorption and secretion. A growing body of research suggests that the membrane resident population of KCa3.1 may be critical in clinical manifestation of diseases. In this study, we investigated the key molecular components that regulate the degradation of KCa3.1 using a Fisher rat thyroid cell line stably expressing KCa3.1. Using immunoblot, Ussing chamber, and pharmacological approaches, we demonstrated that KCa3.1 is targeted exclusively to the BLM, provided a complete time course of degradation of KCa3.1 and degradation time courses of the channel in the presence of pharmacological inhibitors of ubiquitylation and deubiquitylation to advance our understanding of the retrograde trafficking of KCa3.1. We provide a complete degradation profile of KCa3.1 and that the degradation is via an ubiquitin-dependent pathway. Inhibition of E1 ubiquitin activating enzyme by UBEI-41 crippled the ability of the cells to internalize the channel, shown by the increased BLM surface expression resulting in an increased function of the channel as measured by a DCEBIO sensitive K+ current. Additionally, the involvement of deubiquitylases and degradation by the lysosome were also confirmed by treating the cells with PR-619 or leupeptin/pepstatin, respectively; which significantly decreased the degradation rate of membrane KCa3.1. Additionally, we provided the first evidence that KCa3.1 channels were not deubiquitylated at the BLM. These data further define the retrograde trafficking of KCa3.1, and may provide an avenue for therapeutic approach for treatment of disease.
Collapse
Affiliation(s)
- Bob Shih-Liang Lee
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| | - Daniel C Devor
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| |
Collapse
|
37
|
Torrente AG, Zhang R, Wang H, Zaini A, Kim B, Yue X, Philipson KD, Goldhaber JI. Contribution of small conductance K + channels to sinoatrial node pacemaker activity: insights from atrial-specific Na + /Ca 2+ exchange knockout mice. J Physiol 2017; 595:3847-3865. [PMID: 28346695 DOI: 10.1113/jp274249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Repolarizing currents through K+ channels are essential for proper sinoatrial node (SAN) pacemaking, but the influence of intracellular Ca2+ on repolarization in the SAN is uncertain. We identified all three isoforms of Ca2+ -activated small conductance K+ (SK) channels in the murine SAN. SK channel blockade slows repolarization and subsequent depolarization of SAN cells. In the atrial-specific Na+ /Ca2+ exchanger (NCX) knockout mouse, cellular Ca2+ accumulation during spontaneous SAN pacemaker activity produces intermittent hyperactivation of SK channels, leading to arrhythmic pauses alternating with bursts of pacing. These findings suggest that Ca2+ -sensitive SK channels can translate changes in cellular Ca2+ into a repolarizing current capable of modulating pacemaking. SK channels are a potential pharmacological target for modulating SAN rate or treating SAN dysfunction, particularly under conditions characterized by abnormal increases in diastolic Ca2+ . ABSTRACT Small conductance K+ (SK) channels have been implicated as modulators of spontaneous depolarization and electrical conduction that may be involved in cardiac arrhythmia. However, neither their presence nor their contribution to sinoatrial node (SAN) pacemaker activity has been investigated. Using quantitative PCR (q-PCR), immunostaining and patch clamp recordings of membrane current and voltage, we identified all three SK isoforms (SK1, SK2 and SK3) in mouse SAN. Inhibition of SK channels with the specific blocker apamin prolonged action potentials (APs) in isolated SAN cells. Apamin also slowed diastolic depolarization and reduced pacemaker rate in isolated SAN cells and intact tissue. We investigated whether the Ca2+ -sensitive nature of SK channels could explain arrhythmic SAN pacemaker activity in the atrial-specific Na+ /Ca2+ exchange (NCX) knockout (KO) mouse, a model of cellular Ca2+ overload. SAN cells isolated from the NCX KO exhibited higher SK current than wildtype (WT) and apamin prolonged their APs. SK blockade partially suppressed the arrhythmic burst pacing pattern of intact NCX KO SAN tissue. We conclude that SK channels have demonstrable effects on SAN pacemaking in the mouse. Their Ca2+ -dependent activation translates changes in cellular Ca2+ into a repolarizing current capable of modulating regular pacemaking. This Ca2+ dependence also promotes abnormal automaticity when these channels are hyperactivated by elevated Ca2+ . We propose SK channels as a potential target for modulating SAN rate, and for treating patients affected by SAN dysfunction, particularly in the setting of Ca2+ overload.
Collapse
Affiliation(s)
- Angelo G Torrente
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Rui Zhang
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Heidi Wang
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Audrey Zaini
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Brian Kim
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Xin Yue
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Drive South, Los Angeles, CA, 90095-1751, USA
| | - Joshua I Goldhaber
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| |
Collapse
|
38
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
39
|
Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016; 96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation.
Collapse
|
40
|
Jones AR, Edwards DH, Cummins MJ, Williams AJ, George CH. A Systemized Approach to Investigate Ca(2+) Synchronization in Clusters of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes. Front Cell Dev Biol 2016; 3:89. [PMID: 26793710 DOI: 10.3389/fcell.2015.00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/20/2015] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM) are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB) vs. "on plate" culture on spontaneous activity and regional Ca(2+) synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca(2+) spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca(2+) synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (>2 weeks). The maintenance of all spontaneously active IPS-CM clusters under "on plate" culture conditions promoted the progressive reduction in regional Ca(2+) synchronization and the loss of spontaneous Ca(2+) spiking. Raising the extracellular [Ca(2+)] surrounding these quiescent IPS-CM clusters from ~0.4 to 1.8 mM unmasked discrete behaviors typified by either (a) long-lasting Ca(2+) elevation that returned to baseline or (b) persistent, large-amplitude Ca(2+) oscillations around an increased cytoplasmic [Ca(2+)]. The different responses of IPS-CM to elevated extracellular [Ca(2+)] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.
Collapse
Affiliation(s)
- Aled R Jones
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - David H Edwards
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Michael J Cummins
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Alan J Williams
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| | - Christopher H George
- Ionic Cell Signalling, School of Medicine, Wales Heart Research Institute, Cardiff University Wales, UK
| |
Collapse
|
41
|
Youm JB. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes. Integr Med Res 2016; 5:3-10. [PMID: 28462091 PMCID: PMC5381424 DOI: 10.1016/j.imr.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023] Open
Abstract
Embryonic stem cell-derived cardiomyocytes (ESC-CMs) hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.
Collapse
Affiliation(s)
- Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling Laboratory, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
42
|
Qi Z, Wong CK, Suen CH, Wang J, Long C, Sauer H, Yao X, Tsang SY. TRPC3 regulates the automaticity of embryonic stem cell-derived cardiomyocytes. Int J Cardiol 2016; 203:169-81. [DOI: 10.1016/j.ijcard.2015.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
43
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|
45
|
Kim JJ, Yang L, Lin B, Zhu X, Sun B, Kaplan AD, Bett GCL, Rasmusson RL, London B, Salama G. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol 2015; 81:81-93. [PMID: 25644533 PMCID: PMC4409767 DOI: 10.1016/j.yjmcc.2015.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/26/2014] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The creation of cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) has spawned broad excitement borne out of the prospects to diagnose and treat cardiovascular diseases based on personalized medicine. A common feature of hiPS-CMs is their spontaneous contractions but the mechanism(s) remain uncertain. METHODS Intrinsic activity was investigated by the voltage-clamp technique, optical mapping of action potentials (APs) and intracellular Ca(2+) (Cai) transients (CaiT) at subcellular-resolution and pharmacological interventions. RESULTS The frequency of spontaneous CaiT (sCaiT) in monolayers of hiPS-CMs was not altered by ivabradine, an inhibitor of the pacemaker current, If despite high levels of HCN transcripts (1-4). HiPS-CMs had negligible If and IK1 (inwardly-rectifying K(+)-current) and a minimum diastolic potential of -59.1±3.3mV (n=18). APs upstrokes were preceded by a depolarizing-foot coincident with a rise of Cai. Subcellular Cai wavelets varied in amplitude, propagated and died-off; larger Cai-waves triggered cellular sCaTs and APs. SCaiTs increased in frequency with [Ca(2+)]out (0.05-to-1.8mM), isoproterenol (1μM) or caffeine (100μM) (n≥5, p<0.05). HiPS-CMs became quiescent with ryanodine receptor stabilizers (K201=2μM); tetracaine; Na-Ca exchange (NCX) inhibition (SEA0400=2μM); higher [K(+)]out (5→8mM), and thiol-reducing agents but could still be electrically stimulated to elicit CaiTs. Cell-cell coupling of hiPS-CM in monolayers was evident from connexin-43 expression and CaiT propagation. SCaiTs from an ensemble of dispersed hiPS-CMs were out-of-phase but became synchronous through the outgrowth of inter-connecting microtubules. CONCLUSIONS Automaticity in hiPS-CMs originates from a Ca(2+)-clock mechanism involving Ca(2+) cycling across the sarcoplasmic reticulum linked to NCX to trigger APs.
Collapse
Affiliation(s)
- Jong J Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Yang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bo Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaodong Zhu
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Bin Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aaron D Kaplan
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Gynecology-Obstetrics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Randall L Rasmusson
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Barry London
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Guy Salama
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Barbuti A, Robinson RB. Stem Cell–Derived Nodal-Like Cardiomyocytes as a Novel Pharmacologic Tool: Insights from Sinoatrial Node Development and Function. Pharmacol Rev 2015; 67:368-88. [DOI: 10.1124/pr.114.009597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
47
|
PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus. J Neurosci 2015; 34:13371-83. [PMID: 25274816 DOI: 10.1523/jneurosci.1008-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Ca(2+)-dependent K(+) channel, KCa3.1 (KCNN4/IK/SK4), is widely expressed and contributes to cell functions that include volume regulation, migration, membrane potential, and excitability. KCa3.1 is now considered a therapeutic target for several diseases, including CNS disorders involving microglial activation; thus, we need to understand how KCa3.1 function is regulated. KCa3.1 gating and trafficking require calmodulin binding to the two ends of the CaM-binding domain (CaMBD), which also contains three conserved sites for Ser/Thr kinases. Although cAMP protein kinase (PKA) signaling is important in many cells that use KCa3.1, reports of channel regulation by PKA are inconsistent. We first compared regulation by PKA of native rat KCa3.1 channels in microglia (and the microglia cell line, MLS-9) with human KCa3.1 expressed in HEK293 cells. In all three cells, PKA activation with Sp-8-Br-cAMPS decreased the current, and this was prevented by the PKA inhibitor, PKI14-22. Inhibiting PKA with Rp-8-Br-cAMPS increased the current in microglia. Mutating the single PKA site (S334A) in human KCa3.1 abolished the PKA-dependent regulation. CaM-affinity chromatography showed that CaM binding to KCa3.1 was decreased by PKA-dependent phosphorylation of S334, and this regulation was absent in the S334A mutant. Single-channel analysis showed that PKA decreased the open probability in wild-type but not S334A mutant channels. The same decrease in current for native and wild-type expressed KCa3.1 channels (but not S334A) occurred when PKA was activated through the adenosine A2a receptor. Finally, by decreasing the KCa3.1 current, PKA activation reduced Ca(2+)-release-activated Ca(2+) entry following activation of metabotropic purinergic receptors in microglia.
Collapse
|
48
|
Yaniv Y, Lyashkov AE, Sirenko S, Okamoto Y, Guiriba TR, Ziman BD, Morrell CH, Lakatta EG. Stochasticity intrinsic to coupled-clock mechanisms underlies beat-to-beat variability of spontaneous action potential firing in sinoatrial node pacemaker cells. J Mol Cell Cardiol 2014; 77:1-10. [PMID: 25257916 DOI: 10.1016/j.yjmcc.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/25/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that the spontaneous action potential (AP) of isolated sinoatrial node cells (SANCs) is regulated by a system of stochastic mechanisms embodied within two clocks: ryanodine receptors of the "Ca(2+) clock" within the sarcoplasmic reticulum, spontaneously activate during diastole and discharge local Ca(2+) releases (LCRs) beneath the cell surface membrane; clock crosstalk occurs as LCRs activate an inward Na(+)/Ca(2+) exchanger current (INCX), which together with If and decay of K(+) channels prompts the "M clock," the ensemble of sarcolemmal-electrogenic molecules, to generate APs. Prolongation of the average LCR period accompanies prolongation of the average AP beating interval (BI). Moreover, the prolongation of the average AP BI accompanies increased AP BI variability. We hypothesized that both the average AP BI and AP BI variability are dependent upon stochasticity of clock mechanisms reported by the variability of LCR period. We perturbed the coupled-clock system by directly inhibiting the M clock by ivabradine (IVA) or the Ca(2+) clock by cyclopiazonic acid (CPA). When either clock is perturbed by IVA (3, 10 and 30 μM), which has no direct effect on Ca(2+) cycling, or CPA (0.5 and 5 μM), which has no direct effect on the M clock ion channels, the clock system failed to achieve the basal AP BI and both AP BI and AP BI variability increased. The changes in average LCR period and its variability in response to perturbations of the coupled-clock system were correlated with changes in AP beating interval and AP beating interval variability. We conclude that the stochasticity within the coupled-clock system affects and is affected by the AP BI firing rate and rhythm via modulation of the effectiveness of clock coupling.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA; Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| | - Alexey E Lyashkov
- Translational Gerontology Branch, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yosuke Okamoto
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Toni-Rose Guiriba
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Bruce D Ziman
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA; Mathematics and Statistics Department, Loyola University, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
49
|
Lai MH, Wu Y, Gao Z, Anderson ME, Dalziel JE, Meredith AL. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol 2014; 307:H1327-38. [PMID: 25172903 DOI: 10.1152/ajpheart.00354.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.
Collapse
Affiliation(s)
- Michael H Lai
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Yuejin Wu
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| | - Zhan Gao
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| | - Mark E Anderson
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa; Department of Physiology and Molecular Biophysics, University of Iowa, Iowa City, Iowa; and
| | - Julie E Dalziel
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland;
| |
Collapse
|
50
|
Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation. Nat Commun 2014; 5:4664. [PMID: 25144323 PMCID: PMC4207211 DOI: 10.1038/ncomms5664] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
The mechanisms underlying cardiac automaticity are still incompletely
understood and controversial. Here we report the complete conditional and
time-controlled silencing of the "funny" current
(If) by expression of a dominant-negative,
non-conductive HCN4-channel subunit (hHCN4-AYA). Heart-specific
If silencing caused altered
[Ca2+]i release and Ca2+ handling in the
sinoatrial node, impaired pacemaker activity, and symptoms reminiscent of severe
human disease of pacemaking. The effects of If
silencing critically depended on the activity of the autonomic nervous system.
We were able to rescue the failure of impulse generation and conduction by
additional genetic deletion of cardiac muscarinic G-protein-activated (GIRK4)
channels in If-deficient mice without impairing
heartbeat regulation. Our study establishes the role of f-channels in cardiac
automaticity and indicates that arrhythmia related to HCN
loss-of-function may be managed by pharmacological or genetic inhibition of
GIRK4 channels, thus offering a new therapeutic strategy for the treatment of
heart rhythm diseases.
Collapse
|