1
|
Gao Z, Ding C, Huang X, Liu Y, Fan W, Song S. Estrogen receptor α aggravates intestinal inflammation via promoting the activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 143:113425. [PMID: 39426237 DOI: 10.1016/j.intimp.2024.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Activation of the NLRP3 inflammasome and estrogen receptor α (ERα) has been shown to increase the risk of inflammatory bowel diseases (IBD) or promote disease recurrence. In previous work, we demonstrated that ERα regulated the transcription of NLRP3. However, the precise mechanism by which ERα modulates NLRP3 in IBD models remains unclear. In this study, we induced IBD in wild-type mice using DSS or TNBS, followed by treatment with the ERα-specific agonist PPT. The results showed that IBD symptoms and intestinal inflammation responses were significantly exacerbated after PPT treatment. Furthermore, the activation of ERα by PPT led to a marked increase in the expression of NLRP3 and pro-inflammatory cytokines, including IL-1β and IL-18, suggesting that ERα activation exacerbated intestinal inflammation and impaired mucosal healing during the recovery phase of inflammation. In contrast, ERα-knockout mice exhibited only mild symptoms when exposed to DSS or TNBS, with a concurrent reduction in NLRP3 expression, indicating that ERα plays a role in inflammation susceptibility. Similar findings were observed in NCM-460 cells, where the inflammation response was attenuated in ERα-knockdown cells. Importantly, we demonstrated that ERα interacted with the NLRP3 inflammasome and promoted its assembly. Collectively, we propose an underlying pathogenesis of IBD, that is, ERα can interact with the NLRP3 inflammasome and promote its expression and assembly, thereby exacerbating intestinal inflammation in IBD models. Therefore, ERα could serve as a potential therapeutic target for NLRP3 inflammasome-associated intestinal inflammation.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xi Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Tratenšek A, Locatelli I, Grabnar I, Drobne D, Vovk T. Oxidative stress-related biomarkers as promising indicators of inflammatory bowel disease activity: A systematic review and meta-analysis. Redox Biol 2024; 77:103380. [PMID: 39368456 PMCID: PMC11490685 DOI: 10.1016/j.redox.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Oxidative stress is believed to play an important role in the pathogenesis of inflammatory bowel disease (IBD), specifically Crohn's disease (CD) and ulcerative colitis (UC). This meta-analysis aimed to identify and quantify the oxidative stress-related biomarkers in IBD and their associations with disease activity. We systematically searched Ovid MEDLINE, Ovid Embase, and Web of Science databases, identifying 54 studies for inclusion. Comparisons included: (i) active IBD versus healthy controls; (ii) inactive IBD versus healthy controls; (iii) active CD versus inactive CD; and (iv) active UC versus inactive UC. Our analysis revealed a significant accumulation of biomarkers of oxidative damage to biomacromolecules, coupled with reductions in various antioxidants, in both patients with active and inactive IBD compared to healthy controls. Additionally, we identified biomarkers that differentiate between active and inactive CD, including malondialdehyde, Paraoxonase 1, catalase, albumin, transferrin, and total antioxidant capacity. Similarly, levels of Paraoxonase 1, erythrocyte glutathione peroxidase, catalase, albumin, transferrin, and free thiols differed between active and inactive UC. Vitamins and carotenoids also emerged as potential disease activity biomarkers for CD and UC, but their intake should be monitored to obtain meaningful results. These findings emphasize the involvement of oxidative stress in the pathogenesis of IBD and highlight the potential of oxidative stress-related biomarkers as a minimally invasive and additional tool for monitoring the activity of IBD.
Collapse
Affiliation(s)
- Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Igor Locatelli
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - David Drobne
- University Medical Centre Ljubljana, Department of Gastroenterology, Japljeva ulica 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
4
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024:1-28. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
5
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Lan L, Huang C, Liu D, Cheng Y, Tang R, Gu J, Geng L, Cheng Y, Gong S. WNT2B activates macrophages via NF-κB signaling pathway in inflammatory bowel disease. FASEB J 2024; 38:e23551. [PMID: 38489235 DOI: 10.1096/fj.202302213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Inflammation is a significant pathological manifestation of inflammatory bowel disease (IBD), yet its mechanism has remained unclear. Although WNT2B is enriched in the intestinal inflammatory tissue of IBD patients, the specific mechanism of WNT2B in the formation of intestinal inflammation remains unclear. This study was aimed to investigate whether macrophages expressing WNT2B can aggravate intestinal tissue inflammation. Samples were collected from both normal individuals and patients with IBD at multiple colon sites. Macrophages were identified using tissue immunofluorescence. IκB kinase (IKK)-interacting protein (IKIP), which interacts with WNT2B, was found by protein cross-linking and protein mass spectrometry. The expression of WNT2B, IKIP, the NF-κB pathway, and downstream molecules were analyzed. An acute colitis model of C57BL/6J mice was established using an adeno-associated virus (AAV)-mediated WNT2B knockdown system and 3% dextran sulfate sodium (DSS). The degree of intestinal inflammation in mice was assessed upon WNT2B knockdown in macrophages. Macrophages expressing WNT2B were found to be enriched in the colitis tissues of IBD patients. WNT2B in macrophages activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines. By competitively binding IKIP, WNT2B reduced the binding of IKIP to IKKβ and promoted the activation of the NF-κB pathway. Using an AAV-mediated WNT2B knockdown system, WNT2B expression in intestinal macrophages was suppressed, leading to a reduction in intestinal inflammation. WNT2B activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines by competitively binding to IKIP, potentially contributing to colon inflammatory injury in IBD.
Collapse
Affiliation(s)
- Lin Lan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chuxiang Huang
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Danqiong Liu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yanling Cheng
- Department of Pediatrics, Shantou Central Hospital, Shantou, China
| | - Rui Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Jianbiao Gu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chancharoen M, Yang Z, Dalvie ED, Gubina N, Ruchirawat M, Croy RG, Fedeles BI, Essigmann JM. 5-Chloro-2'-deoxycytidine Induces a Distinctive High-Resolution Mutational Spectrum of Transition Mutations In Vivo. Chem Res Toxicol 2024; 37:486-496. [PMID: 38394377 PMCID: PMC10952010 DOI: 10.1021/acs.chemrestox.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The biomarker 5-chlorocytosine (5ClC) appears in the DNA of inflamed tissues. Replication of a site-specific 5ClC in a viral DNA genome results in C → T mutations, which is consistent with 5ClC acting as a thymine mimic in vivo. Direct damage of nucleic acids by immune-cell-derived hypochlorous acid is one mechanism by which 5ClC could appear in the genome. A second, nonmutually exclusive mechanism involves damage of cytosine nucleosides or nucleotides in the DNA precursor pool, with subsequent utilization of the 5ClC deoxynucleotide triphosphate as a precursor for DNA synthesis. The present work characterized the mutagenic properties of 5ClC in the nucleotide pool by exposing cells to the nucleoside 5-chloro-2'-deoxycytidine (5CldC). In both Escherichia coli and mouse embryonic fibroblasts (MEFs), 5CldC in the growth media was potently mutagenic, indicating that 5CldC enters cells and likely is erroneously incorporated into the genome from the nucleotide pool. High-resolution sequencing of DNA from MEFs derived from the gptΔ C57BL/6J mouse allowed qualitative and quantitative characterization of 5CldC-induced mutations; CG → TA transitions in 5'-GC(Y)-3' contexts (Y = a pyrimidine) were dominant, while TA → CG transitions appeared at a much lower frequency. The high-resolution mutational spectrum of 5CldC revealed a notable similarity to the Catalogue of Somatic Mutations in Cancer mutational signatures SBS84 and SBS42, which appear in human lymphoid tumors and in occupationally induced cholangiocarcinomas, respectively. SBS84 is associated with the expression of activation-induced cytidine deaminase (AID), a cytosine deaminase associated with inflammation, as well as immunoglobulin gene diversification during antibody maturation. The similarity between the spectra of AID activation and 5CldC could be coincidental; however, the administration of 5CldC did induce some AID expression in MEFs, which have no inherent expression of its gene. In summary, this work shows that 5CldC induces a distinct pattern of mutations in cells. Moreover, that pattern resembles human mutational signatures induced by inflammatory processes, such as those triggered in certain malignancies.
Collapse
Affiliation(s)
- Marisa Chancharoen
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Zhiyu Yang
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Esha D. Dalvie
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Gubina
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Mathuros Ruchirawat
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Bogdan I. Fedeles
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Lei P, Yu H, Ma J, Du J, Fang Y, Yang Q, Zhang K, Luo L, Jin L, Wu W, Sun D. Cell membrane nanomaterials composed of phospholipids and glycoproteins for drug delivery in inflammatory bowel disease: A review. Int J Biol Macromol 2023; 249:126000. [PMID: 37532186 DOI: 10.1016/j.ijbiomac.2023.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic intestinal disorder with an increasing global incidence. However, current treatment strategies, such as anti-inflammatory drugs and probiotics, have limitations in terms of safety, stability, and effectiveness. The emergence of targeted nanoparticles has revolutionized IBD treatment by enhancing the biological properties of drugs and promoting efficiency and safety. Unlike synthetic nanoparticles, cell membrane nanomaterials (CMNs) consist primarily of biological macromolecules, including phospholipids, proteins, and sugars. CMNs include red blood cell membranes, macrophage membranes, and leukocyte membranes, which possess abundant glycoprotein receptors and ligands on their surfaces, allowing for the formation of cell-to-cell connections with other biological macromolecules. Consequently, they exhibit superior cell affinity, evade immune responses, and target inflammation effectively, making them ideal material for targeted delivery of IBD therapies. This review explores various CMNs delivery systems for IBD treatment. However, due to the complexity and harsh nature of the intestinal microenvironment, the lack of flexibility or loss of selectivity poses challenges in designing single CMNs delivery strategies. Therefore, we propose a hierarchically programmed delivery modality that combines CMNs with pH, charge, ROS and ligand-modified responsive nanoparticles. This approach significantly improves delivery efficiency and points the way for future research in this area.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Sileikaite-Morvaközi I, Hansen WH, Davies MJ, Mandrup-Poulsen T, Hawkins CL. Detrimental Actions of Chlorinated Nucleosides on the Function and Viability of Insulin-Producing Cells. Int J Mol Sci 2023; 24:14585. [PMID: 37834034 PMCID: PMC10572493 DOI: 10.3390/ijms241914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E β-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence β-cell function and may contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Clare L. Hawkins
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (I.S.-M.); (M.J.D.); (T.M.-P.)
| |
Collapse
|
11
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
12
|
Yang Q, Liu J, Li T, Lyu S, Liu X, Du Z, Shang X, Zhang T. Integrated Microbiome and Metabolomic Analysis Reveal the Repair Mechanisms of Ovalbumin on the Intestine Barrier of Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37161945 DOI: 10.1021/acs.jafc.2c08897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The development and progression of colitis would detrimentally destroy the intestine barrier. However, there remains a paucity of evidence on whether ovalbumin (OVA) can be used as a nutritional food protein to repair the intestinal barrier. In this study, the repairing mechanism of OVA on intestinal barrier was thoroughly investigated by gut microbiota and untargeted metabolomics techniques. The findings demonstrated that OVA reduced intestinal permeability and restored mucin (0.75 ± 0.06) and tight junction (TJ) protein (0.67 ± 0.14) expression in colitis mice caused by 3% dextran sulfate sodium (DSS). In addition, the inflammation response and oxidative stress were also attenuated. The intake of OVA upregulated the abundance of Lactobacillaceae (7.60 ± 3.34%) and Akkermansiaceae (10.39 ± 5.97%). Furthermore, OVA upregulated the abundance of inosine (6.06 ± 0.36%), putrescine (4.14 ± 0.20%), and glycocholic acid (5.59 ± 0.23%) in colitis mice through ATP binding cassette (ABC) transporters and bile secretion pathways. In summary, our findings revealed that OVA could maintain intestinal health, which may provide crucial insights for preventing and treating intestinal diseases.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
13
|
TRPC absence induces pro-inflammatory macrophages and gut microbe disorder, sensitizing mice to colitis. Int Immunopharmacol 2023; 115:109655. [PMID: 36592529 DOI: 10.1016/j.intimp.2022.109655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
The transient receptor potential canonical (TRPC) channels, encoded in seven non-allelic genes, are important contributors to calcium fluxes, are strongly associated with various diseases. Here we explored the consequences of ablating all seven TRPCs in mice focusing on colitis. We discovered that absence of all seven TRPC proteins in mice (TRPC HeptaKO mice) promotes the development of dextran sulfate sodium (DSS)-induced colitis. RNA-sequence analysis highlighted an extremely pro-inflammatory profile in colons of DSS-treated TRPC HeptaKO mice, with an amount of increased pro-inflammatory cytokines and chemokines. Flow cytometry analysis showed that the infiltration of Ly6Chi monocytes and neutrophils in colonic lamina propria was significantly increased in DSS-treated TRPC HeptaKO mice. Results also revealed that macrophages from TRPC HeptaKO mice exhibited M1 polarization and enhanced secretion of pro-inflammatory factors. In addition, the composition of gut microbiota was markedly disturbed in DSS-treated TRPC HeptaKO mice. However, upon antibiotic cocktail (Abx)-treatment, TRPC HeptaKO mice showed no significant differences with WT mice in disease severity. Collectively, these data suggest that ablation of all TRPCs promotes the development of DSS-induced colitis by inducing pro-inflammatory macrophages and gut microbiota disorder.
Collapse
|
14
|
La Spina E, Giallongo S, Giallongo C, Vicario N, Duminuco A, Parenti R, Giuffrida R, Longhitano L, Li Volti G, Cambria D, Di Raimondo F, Musumeci G, Romano A, Palumbo GA, Tibullo D. Mesenchymal stromal cells in tumor microenvironment remodeling of BCR-ABL negative myeloproliferative diseases. Front Oncol 2023; 13:1141610. [PMID: 36910610 PMCID: PMC9996158 DOI: 10.3389/fonc.2023.1141610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic myeloproliferative neoplasms encompass the BCR-ABL1-negative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These are characterized by calreticulin (CALR), myeloproliferative leukemia virus proto-oncogene (MPL) and the tyrosine kinase Janus kinase 2 (JAK2) mutations, eventually establishing a hyperinflammatory tumor microenvironment (TME). Several reports have come to describe how constitutive activation of JAK-STAT and NFκB signaling pathways lead to uncontrolled myeloproliferation and pro-inflammatory cytokines secretion. In such a highly oxidative TME, the balance between Hematopoietic Stem Cells (HSCs) and Mesenchymal Stromal Cells (MSCs) has a crucial role in MPN development. For this reason, we sought to review the current literature concerning the interplay between HSCs and MSCs. The latter have been reported to play an outstanding role in establishing of the typical bone marrow (BM) fibrotic TME as a consequence of the upregulation of different fibrosis-associated genes including PDGF- β upon their exposure to the hyperoxidative TME characterizing MPNs. Therefore, MSCs might turn to be valuable candidates for niche-targeted targeting the synthesis of cytokines and oxidative stress in association with drugs eradicating the hematopoietic clone.
Collapse
Affiliation(s)
- Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Zhang J, Zeng S, Wang P, Chen Y, Zeng C. NLRP3: A Promising Therapeutic Target for Inflammatory Bowel Disease. Curr Drug Targets 2023; 24:1106-1116. [PMID: 37946354 DOI: 10.2174/0113894501255960231101105113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disease with complicated pathological mechanisms. The incidence of IBD has been increasing in recent years, which has a significant negative impact on the lives of patients. Therefore, it is particularly important to find new therapeutic targets and innovative drugs for the development of IBD. Recent studies have revealed that NLRP3 inflammatory vesicles can play an important role in maintaining intestinal homeostasis and sustaining the intestinal immune response in IBD. On the one hand, aberrant activation of NLRP3 inflammatory vesicles may cause excessive immune response by converting caspase-1, proIL-18, and proIL-1β to their active forms and releasing pro-inflammatory cytokines to stimulate the development and progression of IBD, and we can improve IBD by targeting blockade of NLRP3 activation. On the other hand, NLRP3 may also play an enter protective role by maintaining the homeostasis of the intestinal immune system. In this paper, we reviewed the activation mechanism of NLRP3 inflammasome, and the effects of NLRP3 inflammasome activation on IBD are discussed from two different perspectives: pathology and protection. At the same time, we listed the effects of direct inhibitors, indirect inhibitors, and natural inhibitors of NLRP3 inflammasome on IBD in combination with cutting-edge advances and clinical practice results, providing new targets and new ideas for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Shuyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Liu J, Wang Y, Heelan WJ, Chen Y, Li Z, Hu Q. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. SCIENCE ADVANCES 2022; 8:eabp8798. [PMID: 36367930 PMCID: PMC9651739 DOI: 10.1126/sciadv.abp8798] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/24/2022] [Indexed: 06/06/2023]
Abstract
Inflammatory bowel diseases (IBDs) are often associated with elevated levels of reactive oxygen species (ROS) and highly dysregulated gut microbiota. In this study, we synthesized a polymer of hyaluronic acid-poly(propylene sulfide) (HA-PPS) and developed ROS-scavenging nanoparticles (HPN) that could effectively scavenge ROS. To achieve colon tissue targeting effects, the HPN nanoparticles were conjugated to the surface of modified probiotic Escherichia coli Nissle 1917 (EcN). To enhance the bacteriotherapy of EcN, we encapsulated EcN cells with a poly-norepinephrine (NE) layer that can protect EcN against environmental assaults to improve the viability of EcN in oral delivery and prolong the retention time of EcN in the intestine due to its strong mucoadhesive capability. In the dextran sulfate sodium-induced mouse colitis models, HPN-NE-EcN showed substantially enhanced prophylactic and therapeutic efficacy. Furthermore, the abundance and diversity of gut microbiota were increased after treatment with HPN-NE-EcN, contributing to the alleviation of IBDs.
Collapse
Affiliation(s)
- Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William John Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
18
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
19
|
Wu DC, Yang TC, Hu SX, Candy Chen HJ. Multiple oxidative and advanced oxidative modifications of hemoglobin in gastric cancer patients measured by nanoflow LC-MS/MS. Clin Chim Acta 2022; 531:137-144. [DOI: 10.1016/j.cca.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
20
|
Rajczewski AT, Han Q, Mehta S, Kumar P, Jagtap PD, Knutson CG, Fox JG, Tretyakova NY, Griffin TJ. Quantitative Proteogenomic Characterization of Inflamed Murine Colon Tissue Using an Integrated Discovery, Verification, and Validation Proteogenomic Workflow. Proteomes 2022; 10:11. [PMID: 35466239 PMCID: PMC9036229 DOI: 10.3390/proteomes10020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation of the colon causes genomic and/or transcriptomic events, which can lead to expression of non-canonical protein sequences contributing to oncogenesis. To better understand these mechanisms, Rag2-/-Il10-/- mice were infected with Helicobacter hepaticus to induce chronic inflammation of the cecum and the colon. Transcriptomic data from harvested proximal colon samples were used to generate a customized FASTA database containing non-canonical protein sequences. Using a proteogenomic approach, mass spectrometry data for proximal colon proteins were searched against this custom FASTA database using the Galaxy for Proteomics (Galaxy-P) platform. In addition to the increased abundance in inflammatory response proteins, we also discovered several non-canonical peptide sequences derived from unique proteoforms. We confirmed the veracity of these novel sequences using an automated bioinformatics verification workflow with targeted MS-based assays for peptide validation. Our bioinformatics discovery workflow identified 235 putative non-canonical peptide sequences, of which 58 were verified with high confidence and 39 were validated in targeted proteomics assays. This study provides insights into challenges faced when identifying non-canonical peptides using a proteogenomics approach and demonstrates an integrated workflow addressing these challenges. Our bioinformatic discovery and verification workflow is publicly available and accessible via the Galaxy platform and should be valuable in non-canonical peptide identification using proteogenomics.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.)
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (A.T.R.); (Q.H.); (S.M.); (P.K.); (P.D.J.)
| |
Collapse
|
21
|
Li K, Li Z, Wu J, Gong Y, Guo L, Xie J. In Vitro Evaluation of DNA Damage Effect Markers toward Five Nitrogen Mustards Based on Liquid Chromatography-Tandem Mass Spectrometry. Chem Res Toxicol 2021; 35:99-110. [PMID: 34969250 DOI: 10.1021/acs.chemrestox.1c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous DNA lesions frequently occur due to internal effects such as oxidative stress, inflammation, endogenous alkylation, and epigenetic modifications. However, exposure to chemical toxicants from the environment, diet, or drugs can also induce significant endogenous DNA damage. The quantification of endogenous DNA damage effect markers might reflect the actual DNA damage level of chemical toxicants. Herein, we report a liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ MS/MS) method for simultaneous determination of eight representative endogenous DNA damage biomarkers, including five endogenous DNA damage effect markers (oxidative damage, 8-oxo-dG; lipid peroxidation, εdA and N2-Et-dG; inflammation, 5-Cl-dC; and endogenous alkylation, O6-Me-dG), and three epigenetic modifications (5-m-dC, 5-hm-dC, and N6-Me-dA). The method validation was performed, and the linear range was 0.05 pg to 2 ng (on-column), the limit of detection was 0.02 pg (on-column), and the precision, accuracy, matrix effect, and recovery were all between 85 and 115%. We then applied this method to evaluate endogenous DNA damage to human embryonic lung fibroblast cells exposed to five nitrogen mustards [NMs, i.e., HN1, HN2, HN3, chlorambucil (CB), and cyclophosphamide (CTX)], where curcumin exposure was used as a control due to its inability to induce the formation of endogenous DNA adducts. The amounts of eight DNA adducts in the low-, middle-, and high-concentration exposure groups of five NMs were almost all significantly different from those in the blank group (P < 0.05). We obtained a positive correlation between the contents of eight DNA damage biomarkers and the inhibition dose of five NMs, except for N2-Et-dG and 5-Cl-dC. Via further principal component analysis and partial least squares discriminant analysis, we clustered all NMs into three units with different cytotoxicity levels, that is, HN2 and HN1 (highly toxic), HN3 and CB (moderately toxic), and CTX (less toxic). Moreover, for the same concentration of HN1/2/3 exposure groups, as the cytotoxicity increased according to the order of HN3 < HN1 < HN2, the contents of 8-oxo-dG, 5-m-dC, 5-hm-dC, and N6-Me-dA increased, whereas the content of O6-Me-dG decreased. Therefore, the contents of these DNA damage effect markers were somewhat related to the cytotoxicity and concentration of NMs. We hope that this method will provide an alternative evaluation approach for the toxicological effects of NMs and the safety of the medication.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Zehua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Ying Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| |
Collapse
|
22
|
Natural Food Polysaccharides Ameliorate Inflammatory Bowel Disease and Its Mechanisms. Foods 2021; 10:foods10061288. [PMID: 34199820 PMCID: PMC8227517 DOI: 10.3390/foods10061288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023] Open
Abstract
Natural polysaccharides and their metabolites’ short chain fatty acids (SCFAs) have attracted much attention. Recently, they have shown great potential in attenuating systemic inflammation activities, especially in inflammatory bowel disease (IBD). IBD is a complex pathological process and is related to epithelial damage and microbiota imbalance in the gut. Recent studies have indicated that natural polysaccharides could improve IBD recovery by different mechanisms. They could not only influence the ratio of intestine microbiota, but also regulate the secretion levels of immunity cytokines through multiple pathways, the latter including modulation of the TLR/MAPK/NF-κB signaling pathways and stimulation of G-protein-coupled receptors. Moreover, they could increase intestinal integrity and modulate oxidative stress. In this review, recent research about how natural polysaccharides impact the pathogenesis of IBD are summarized to prove the association between polysaccharides and disease recovery, which might contribute to the secretion of inflammatory cytokines, improve intestine epithelial damage, reduce oxidative stress, sustain the balanced microenvironment of the intestines, and finally lower the risk of IBD.
Collapse
|
23
|
Suga N, Murakami A, Arimitsu H, Shiogama K, Tanaka S, Ito M, Kato Y. Elevation of the serotonin-derived quinone, tryptamine-4,5-dione, in the intestine of ICR mice with dextran sulfate-induced colitis. J Clin Biochem Nutr 2021; 69:61-67. [PMID: 34376915 PMCID: PMC8325771 DOI: 10.3164/jcbn.20-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are chronic inflammatory disorders associated with oxidative stress. The intestines produce 5-hydroxytryptamine that may negatively affect disease state under inflammatory conditions when overproduced. 5-Hydroxytryptamine is a substrate for myeloperoxidase and is converted into reactive tryptamine-4,5-dione. Here, an experimental colitis model was established through oral administration of 5% dextran sulfate sodium to ICR mice for 7 days. Furthermore, the formation of tryptamine-4,5-dione in the colorectal mucosa/submucosa and colorectal tissue was analyzed by chemical and immunochemical methodologies. First, free tryptamine-4,5-dione in the homogenate was chemically trapped by o-phenylenediamine and analyzed as the stable phenazine derivative. Tryptamine-4,5-dione localization as adducted proteins in the colorectal tissue was immunohistochemically confirmed, and as demonstrated by both methods, this resulted in the significant increase of tryptamine-4,5-dione in dextran sulfate sodium-challenged mice compared with control mice. Immunohistochemical staining confirmed tryptamine-4,5-dione-positive staining at the myeloperoxidase accumulation site in dextran sulfate sodium-challenged mice colorectal tissue. The tryptamine-4,5-dione locus in the mice was partly matched with that of a specific marker for myeloperoxidase, halogenated tyrosine. Overall, the results possibly indicate that tryptamine-4,5-dione is generated by neutrophil myeloperoxidase in inflammatory tissue and may contribute to the development of inflammatory bowel disease.
Collapse
Affiliation(s)
- Naoko Suga
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Akira Murakami
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Hideyuki Arimitsu
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Kazuya Shiogama
- Department of Diagnostic Pathology II, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
24
|
Xu Q, Zhou X, Strober W, Mao L. Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules 2021; 26:molecules26061725. [PMID: 33808793 PMCID: PMC8003415 DOI: 10.3390/molecules26061725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multiprotein complexes formed to regulate the maturation of pro-inflammatory caspases, in response to intracellular or extracellular stimulants. Accumulating studies showed that the inflammasomes are implicated in the pathogenesis of inflammatory bowel disease (IBD), although their activation is not a decisive factor for the development of IBD. Inflammasomes and related cytokines play an important role in the maintenance of gut immune homeostasis, while its overactivation might induce excess immune responses and consequently cause tissue damage in the gut. Emerging studies provide evidence that some genetic abnormalities might induce enhanced NLRP3 inflammasome activation and cause colitis. In these cases, the colonic inflammation can be ameliorated by blocking NLRP3 activation or its downstream cytokine IL-1β. A number of natural products were shown to play a role in preventing colon inflammation in various experimental colitis models. On the other hand, lack of inflammasome function also causes intestinal abnormalities. Thus, an appropriate regulation of inflammasomes might be a promising therapeutic strategy for IBD intervention. This review aims at summarizing the main findings in these studies and provide an outline for further studies that might contribute to our understanding of the role of inflammasomes in the pathogenesis and therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (W.S.); (L.M.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
- Correspondence: (W.S.); (L.M.)
| |
Collapse
|
25
|
Ding S, Yan W, Fang J, Jiang H, Liu G. Potential role of Lactobacillus plantarum in colitis induced by dextran sulfate sodium through altering gut microbiota and host metabolism in murine model. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1906-1916. [DOI: 10.1007/s11427-020-1835-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
|
26
|
Kay JE, Mirabal S, Briley WE, Kimoto T, Poutahidis T, Ragan T, So PT, Wadduwage DN, Erdman SE, Engelward BP. Analysis of mutations in tumor and normal adjacent tissue via fluorescence detection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:108-123. [PMID: 33314311 PMCID: PMC7880898 DOI: 10.1002/em.22419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Inflammation is a major risk factor for many types of cancer, including colorectal. There are two fundamentally different mechanisms by which inflammation can contribute to carcinogenesis. First, reactive oxygen and nitrogen species (RONS) can damage DNA to cause mutations that initiate cancer. Second, inflammatory cytokines and chemokines promote proliferation, migration, and invasion. Although it is known that inflammation-associated RONS can be mutagenic, the extent to which they induce mutations in intestinal stem cells has been little explored. Furthermore, it is now widely accepted that cancer is caused by successive rounds of clonal expansion with associated de novo mutations that further promote tumor development. As such, we aimed to understand the extent to which inflammation promotes clonal expansion in normal and tumor tissue. Using an engineered mouse model that is prone to cancer and within which mutant cells fluoresce, here we have explored the impact of inflammation on de novo mutagenesis and clonal expansion in normal and tumor tissue. While inflammation is strongly associated with susceptibility to cancer and a concomitant increase in the overall proportion of mutant cells in the tissue, we did not observe an increase in mutations in normal adjacent tissue. These results are consistent with opportunities for de novo mutations and clonal expansion during tumor growth, and they suggest protective mechanisms that suppress the risk of inflammation-induced accumulation of mutant cells in normal tissue.
Collapse
Affiliation(s)
- Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | | | - Peter T. So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Dushan N. Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA
- Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
27
|
Han Q, Kono TJY, Knutson CG, Parry NM, Seiler CL, Fox JG, Tannenbaum SR, Tretyakova NY. Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2-/-/ Il10-/- Mouse Model. Int J Mol Sci 2020; 22:E364. [PMID: 33396408 PMCID: PMC7795000 DOI: 10.3390/ijms22010364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
28
|
van Hooij A, Tjon Kon Fat EM, de Jong D, Khatun M, Soren S, Chowdhury AS, Chandra Roy J, Alam K, Kim JP, Richardus JH, Geluk A, Corstjens PLAM. Prototype multi-biomarker test for point-of-care leprosy diagnostics. iScience 2020; 24:102006. [PMID: 33490914 PMCID: PMC7807156 DOI: 10.1016/j.isci.2020.102006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
To end the decade-long, obstinately stagnant number of new leprosy cases, there is an urgent need for field-applicable diagnostic tools that detect infection with Mycobacterium leprae, leprosy's etiologic agent. Since immunity against M. leprae is characterized by humoral and cellular markers, we developed a lateral flow test measuring multiple host proteins based on six previously identified biomarkers for various leprosy phenotypes. This multi-biomarker test (MBT) demonstrated feasibility of quantitative detection of six host serum proteins simultaneously, jointly allowing discrimination of patients with multibacillary and paucibacillary leprosy from control individuals in high and low leprosy endemic areas. Pilot testing of fingerstick blood showed similar MBT performance in point-of-care (POC) settings as observed for plasma and serum. Thus, this newly developed prototype MBT measures six biomarkers covering immunity against M. leprae across the leprosy spectrum. The MBT thereby provides the basis for immunodiagnostic POC tests for leprosy with potential for other (infectious) diseases as well. Prototype MBT that quantitatively detects six host-derived biomarkers is developed The immunopathological spectrum of leprosy is ideally suited to evaluate the MBT MBT discriminated patients with leprosy from controls in a high and non-endemic area Application of the MBT using low invasive fingerstick blood is technically feasible
Collapse
Affiliation(s)
- Anouk van Hooij
- Department of Infectious Diseases Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Elisa M Tjon Kon Fat
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Santosh Soren
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Abu Sufian Chowdhury
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Jong-Pill Kim
- Institute for Leprosy Research, Korean Hansen Welfare Association, Gyeonggi-do, South Korea
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
29
|
Ge Z, Ge L, Muthupalani S, Feng Y, Fox JG. Male-Dependent Promotion of Colitis in 129 Rag2-/- Mice Co-Infected with Helicobacter pylori and Helicobacter hepaticus. Int J Mol Sci 2020; 21:ijms21238886. [PMID: 33255175 PMCID: PMC7727654 DOI: 10.3390/ijms21238886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
The prevalence of gastric Helicobacter pylori (Hp) infection is ~50% of the world population. However, how Hp infection influences inflammatory bowel disease in humans is not fully defined. In this study, we examined whether co-infection with Hp influenced Helicobacter hepaticus (Hh)–induced intestinal pathology in Rag2−/− mice. Rag2−/− mice of both sexes were infected with Hh, of which a subgroup was followed by infection with Hp two weeks later. Co-infected males, but not females, had significantly higher total colitis index scores in the colon at both 10 and 21 weeks post-Hh infection (WPI) and developed more severe dysplasia at 21 WPI compared with mono-Hh males. There were no significant differences in colonization levels of gastric Hp and colonic Hh between sexes or time-points. In addition, mRNA levels of colonic Il-1β, Ifnγ, Tnfα, Il-17A, Il-17F, Il-18, and Il-23, which play important roles in the development and function of proinflammatory innate lymphoid cell groups 1 and 3, were significantly up-regulated in the dually infected males compared with mono-Hh males at 21 WPI. These data suggest that concomitant Hp infection enhances the inflammatory responses in the colon of-Hh-infected Rag2−/− males, which results in more severe colitis and dysplasia.
Collapse
Affiliation(s)
- Zhongming Ge
- Correspondence: (Z.G.); (J.G.F.); Tel.: +1-(617)-253-5518 (Z.G.); +1-(617)-253-1735 (J.G.F.); Fax: +1-(617)-258-5708 (Z.G. & J.G.F.)
| | | | | | | | - James G. Fox
- Correspondence: (Z.G.); (J.G.F.); Tel.: +1-(617)-253-5518 (Z.G.); +1-(617)-253-1735 (J.G.F.); Fax: +1-(617)-258-5708 (Z.G. & J.G.F.)
| |
Collapse
|
30
|
Ahmad G, Chami B, Liu Y, Schroder AL, San Gabriel PT, Gao A, Fong G, Wang X, Witting PK. The Synthetic Myeloperoxidase Inhibitor AZD3241 Ameliorates Dextran Sodium Sulfate Stimulated Experimental Colitis. Front Pharmacol 2020; 11:556020. [PMID: 33041796 PMCID: PMC7522858 DOI: 10.3389/fphar.2020.556020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammatory bowel disease (IBD) is a condition with multifactorial pathophysiology. To date, there is no permanent cure and the disease is primarily managed by immunosuppressive drugs; long-term use promotes serious side effects including increased risk malignancies. The current study aimed to target neutrophil-myeloperoxidase, a key contributor to the pathogenesis of IBD, through the use of AZD3241that inhibits extracellular myeloperoxidase. Experimental colitis was induced in C57BL/6 male mice by 2% dextran sodium sulfate in drinking water ad libitum over 9 days. Mice received either normal drinking water and peanut butter (control), 2% DSS in drinking water and peanut butter or 2% DSS in drinking water and AZD3241 (30 mg/kg) dispersed in peanut butter daily for 9 days. Administered AZD3241 attenuated body weight loss (10% p<0.05) and improved clinical score (9 fold p<0.05; a score comprising the time-dependent assessment of stool consistency and extent of rectal bleeding), loss of colonic crypts (p<0.001), preserved surface epithelium (p<0.001) and enhanced expression of the transcription factor Nrf-2 (regulator of antioxidants) and enhanced expression of the downstream antioxidant response element haeoxygenase-1 (HO-1) in the colon tissue. Also, the concentration of fecal hemoglobin and the myeloperoxidase specific oxidative damage biomarker 3-chlorotyrosine in the colon were significantly decreased in the presence of AZD3241. This latter result was consistent with AZD3241 inhibiting MPO activity in vitro. Overall, AZD3241 ameliorated the course and severity of experimental colitis through ameliorating MPO derived tissue damage and could be considered a potential therapeutic option, subject to further validation in chronic IBD models.
Collapse
Affiliation(s)
- Gulfam Ahmad
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Belal Chami
- Discipline of Oral Pathology, Faculty of Medicine and Health, School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| | - Yuyang Liu
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Angie L Schroder
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Patrick T San Gabriel
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Antony Gao
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Genevieve Fong
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - XiaoSuo Wang
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Paul K Witting
- Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease. Int J Mol Sci 2020; 21:ijms21176450. [PMID: 32899436 PMCID: PMC7503669 DOI: 10.3390/ijms21176450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Thiocyanate (SCN−) is a pseudohalide anion omnipresent across mammals and is particularly concentrated in secretions within the oral cavity, digestive tract and airway. Thiocyanate can outcompete chlorine anions and other halides (F−, Br−, I−) as substrates for myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their respective hypohalous acids (HOX where X− = halides) and in the case of thiocyanate, hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and cause imbalances in the oxidative profile, where typically favoured oxidative species, such as hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes vary significantly across different disease models. To date, most studies have focused on therapeutic effects in respiratory and cardiovascular animal models. However, we note other conditions such as rheumatic arthritis where SCN− administration may worsen patient outcomes. Here, we discuss the pathophysiological role of SCN− in diseases where MPO is implicated.
Collapse
|
32
|
Krzystek-Korpacka M, Kempiński R, Bromke MA, Neubauer K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics (Basel) 2020; 10:E601. [PMID: 32824619 PMCID: PMC7459713 DOI: 10.3390/diagnostics10080601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Precise diagnostic biomarker in inflammatory bowel diseases (IBD) is still missing. We conducted a comprehensive overview of oxidative stress markers (OSMs) as potential diagnostic, differential, progression, and prognostic markers in IBD. A Pubmed, Web of Knowledge, and Scopus search of original articles on OSMs in IBD, published between January 2000 and April 2020, was conducted. Out of 874 articles, 79 eligible studies were identified and used to prepare the interpretative synthesis. Antioxidants followed by lipid peroxidation markers were the most popular and markers of oxidative DNA damage the least popular. There was a disparity in the number of retrieved papers evaluating biomarkers in the adult and pediatric population (n = 6). Of the reviewed OSMs, a promising performance has been reported for serum total antioxidant status as a mucosal healing marker, mucosal 8-OHdG as a progression marker, and for multi-analyte panels of lipid peroxidation products assessed non-invasively in breath as diagnostic and differential markers in the pediatric population. Bilirubin, in turn, was the only validated marker. There is a desperate need for non-invasive biomarkers in IBD which, however, will not be met in the near future by oxidative stress markers as they are promising but mostly at the early research phase of discovery.
Collapse
Affiliation(s)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Mariusz A. Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland;
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
33
|
Liu Y, Burton T, Rayner BS, San Gabriel PT, Shi H, El Kazzi M, Wang X, Dennis JM, Ahmad G, Schroder AL, Gao A, Witting PK, Chami B. The role of sodium thiocyanate supplementation during dextran sodium sulphate-stimulated experimental colitis. Arch Biochem Biophys 2020; 692:108490. [PMID: 32721434 DOI: 10.1016/j.abb.2020.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis is a condition characterised by the infiltration of leukocytes into the gastrointestinal wall. Leukocyte-MPO catalyses hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) formation from chloride (Cl-) and thiocyanous (SCN-) anions, respectively. While HOCl indiscriminately oxidises biomolecules, HOSCN primarily targets low-molecular weight protein thiols. Oxidative damage mediated by HOSCN may be reversible, potentially decreasing MPO-associated host tissue destruction. This study investigated the effect of SCN- supplementation in a model of acute colitis. Female mice were supplemented dextran sodium sulphate (DSS, 3% w/v) in the presence of 10 mM Cl- or SCN- in drinking water ad libitum, or with salts (NaCl and NaSCN only) or water only (controls). Behavioural studies showed mice tolerated NaSCN and NaCl-treated water with water-seeking frequency. Ion-exchange chromatography showed increased fecal and plasma SCN- levels in thiocyanate supplemented mice; plasma SCN- reached similar fold-increase for smokers. Overall there was no difference in weight loss and clinical score, mucin levels, crypt integrity and extent of cellular infiltration between DSS/SCN- and DSS/Cl- groups. Neutrophil recruitment remained unchanged in DSS-treated mice, as assessed by fecal calprotectin levels. Total thiol and tyrosine phosphatase activity remained unchanged between DSS/Cl- and DSS/SCN- groups, however, colonic tissue showed a trend in decreased 3-chlorotyrosine (1.5-fold reduction, p < 0.051) and marked increase in colonic GCLC, the rate-limiting enzyme in glutathione synthesis. These data suggest that SCN- administration can modulate MPO activity towards a HOSCN-specific pathway, however, this does not alter the development of colitis within a DSS murine model.
Collapse
Affiliation(s)
- Yuyang Liu
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Thomas Burton
- Animal Behavioural Facility, Charles Perkins Centre, School of Medical Sciences and the Bosch Institute, The University of Sydney, NSW, 2006, Australia.
| | - Benjamin Saul Rayner
- Heart Research Institute, Sydney Medical School, The University of Sydney, NSW, 2006, Australia.
| | - Patrick T San Gabriel
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Han Shi
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Mary El Kazzi
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - XiaoSuo Wang
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Angie L Schroder
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Antony Gao
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
34
|
O'Connor KM, Das AB, Winterbourn CC, Hampton MB. Inhibition of DNA methylation in proliferating human lymphoma cells by immune cell oxidants. J Biol Chem 2020; 295:7839-7848. [PMID: 32312750 PMCID: PMC7278342 DOI: 10.1074/jbc.ra120.013092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Excessive generation of oxidants by immune cells results in acute tissue damage. One mechanism by which oxidant exposure could have long-term effects is modulation of epigenetic pathways. We hypothesized that methylation of newly synthesized DNA in proliferating cells can be altered by oxidants that target DNA methyltransferase activity or deplete its substrate, the methyl donor SAM. To this end, we investigated the effect of two oxidants produced by neutrophils, H2O2 and glycine chloramine, on maintenance DNA methylation in Jurkat T lymphoma cells. Using cell synchronization and MS-based analysis, we measured heavy deoxycytidine isotope incorporation into newly synthesized DNA and observed that a sublethal bolus of glycine chloramine, but not H2O2, significantly inhibited DNA methylation. Both oxidants inhibited DNA methyltransferase 1 activity, but only chloramine depleted SAM, suggesting that removal of substrate was the most effective means of inhibiting DNA methylation. These results indicate that immune cell-derived oxidants generated during inflammation have the potential to affect the epigenome of neighboring cells.
Collapse
Affiliation(s)
- Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
35
|
Wu H, Liu H, Zhao X, Zheng Y, Liu B, Zhang L, Gao C. IKIP Negatively Regulates NF-κB Activation and Inflammation through Inhibition of IKKα/β Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2019; 204:418-427. [PMID: 31826938 DOI: 10.4049/jimmunol.1900626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 01/27/2023]
Abstract
Stringent regulation of the transcription factor NF-κB signaling is essential for the activation of host immune responses and maintaining homeostasis, yet the molecular mechanisms involved in its tight regulation are not completely understood. In this study, we report that IKK-interacting protein (IKIP) negatively regulates NF-κB activation. IKIP interacted with IKKα/β to block its association with NEMO, thereby inhibiting the phosphorylation of IKKα/β and the activation of NF-κB. Upon LPS, TNF-α, and IL-1β stimulation, IKIP-deficient macrophages exhibited more and prolonged IKKα/β phosphorylation, IκB, and p65 phosphorylation and production of NF-κB-responsive genes. Moreover, IKIP-deficient mice were more susceptible to LPS-induced septic shock and dextran sodium sulfate-induced colitis. Our study identifies a previously unrecognized role for IKIP in the negative regulation of NF-κB activation by inhibition of IKKα/β phosphorylation through the disruption of IKK complex formation.
Collapse
Affiliation(s)
- Haifeng Wu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Hansen Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Xueying Zhao
- Department of Transfusion, The Second Hospital of Shandong University, Jinan 250000, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| |
Collapse
|
36
|
Chami B, San Gabriel PT, Kum-Jew S, Wang X, Dickerhof N, Dennis JM, Witting PK. The nitroxide 4-methoxy-tempo inhibits the pathogenesis of dextran sodium sulfate-stimulated experimental colitis. Redox Biol 2019; 28:101333. [PMID: 31593888 PMCID: PMC6812268 DOI: 10.1016/j.redox.2019.101333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterised by leukocyte recruitment to the gut mucosa. Leukocyte myeloperoxidase (MPO) produces the two-electron oxidant hypochlorous acid (HOCl), damaging tissue and playing a role in cellular recruitment, thereby exacerbating gut injury. We tested whether the MPO-inhibitor, 4-Methoxy-TEMPO (MetT), ameliorates experimental IBD. Colitis was induced in C57BL/6 mice by 3% w/v dextran-sodium-sulfate (DSS) in drinking water ad libitum over 9-days with MetT (15 mg/kg; via i. p. injection) or vehicle control (10% v/v DMSO+90% v/v phosphate buffered saline) administered twice daily during DSS challenge. MetT attenuated body-weight loss (50%, p < 0.05, n = 6), improved clinical score (53%, p < 0.05, n = 6) and inhibited serum lipid peroxidation. Histopathological damage decreased markedly in MetT-treated mice, as judged by maintenance of crypt integrity, goblet cell density and decreased cellular infiltrate. Colonic Ly6C+, MPO-labelled cells and 3-chlorotyrosine (3-Cl-Tyr) decreased in MetT-treated mice, although biomarkers for nitrosative stress (3-nitro-tyrosine-tyrosine; 3-NO2-Tyr) and low-molecular weight thiol damage (assessed as glutathione sulfonamide; GSA) were unchanged. Interestingly, MetT did not significantly impact colonic IL-10 and IL-6 levels, suggesting a non-immunomodulatory pathway. Overall, MetT ameliorated the severity of experimental IBD, likely via a mechanism involving the modulation of MPO-mediated damage.
Collapse
Affiliation(s)
- Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Patrick T San Gabriel
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Stephen Kum-Jew
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - XiaoSuo Wang
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Joanne M Dennis
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Paul K Witting
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Hurtubise R, Audiger C, Dominguez-Punaro MC, Chabot-Roy G, Chognard G, Raymond-Marchand L, Coderre L, Chemtob S, Michnick SW, Rioux JD, Lesage S. Induced and spontaneous colitis mouse models reveal complex interactions between IL-10 and IL-12/IL-23 pathways. Cytokine 2019; 121:154738. [DOI: 10.1016/j.cyto.2019.154738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
|
38
|
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83:102673. [PMID: 31387777 DOI: 10.1016/j.dnarep.2019.102673] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
Collapse
Affiliation(s)
- Jennifer Kay
- Department of Biological Engineering, United States.
| | | | - Leona Samson
- Department of Biological Engineering, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | | |
Collapse
|
39
|
Roy S, Rizvi ZA, Awasthi A. Metabolic Checkpoints in Differentiation of Helper T Cells in Tissue Inflammation. Front Immunol 2019; 9:3036. [PMID: 30692989 PMCID: PMC6340303 DOI: 10.3389/fimmu.2018.03036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Naïve CD4+ T cell differentiate into effector and regulatory subsets of helper T (Th) cells in various pathophysiological conditions and modulate tissue inflammation in autoimmune diseases. While cytokines play a key role in determining the fate of Th cells differentiation, metabolites, and metabolic pathways profoundly influence Th cells fate and their functions. Emerging literature suggests that interplay between metabolic pathways and cytokines potentiates T cell differentiation and functions in tissue inflammation in autoimmune diseases. Metabolic pathways, which are essential for the differentiation and functions of Th cell subsets, are regulated by cytokines, nutrients, growth factors, local oxygen levels, co-activation receptors, and metabolites. Dysregulation of metabolic pathways not only alters metabolic regulators in Th cells but also affect the outcome of tissue inflammation in autoimmune and allergic diseases. Understanding the modulation of metabolic pathways during T cells differentiation may potentially lead to a therapeutic strategy for immune-modulation of autoimmune and allergic diseases. In this review, we summarize the role of metabolic checkpoints and their crosstalk with different master transcription factors and signaling molecules in differentiation and function of Th subsets, which may potentially unravel novel therapeutic interventions for tissue inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Zaigham Abbas Rizvi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
40
|
Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H 2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 2018; 182:289-298. [PMID: 30144577 DOI: 10.1016/j.biomaterials.2018.07.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an intestinal inflammatory disorder. Exogenous hydrogen sulfide (H2S) donors such as diallyl trisulfide (DATS) have been used as anti-inflammatory mediators. However, an ideal method of administering DATS has yet to be established owing to its poor water solubility. Herein, a self-spray coating system that is derived from a DATS-loaded capsule with foaming capability (CAP-w-FC) is proposed for treating colitis. Following the rectal administration of CAP-w-FC into rats bearing colitis and its subsequent dissolution in the intestinal fluid, a spray coating system is self-assembled in situ. This system greatly promotes the dissolution of the poorly water-soluble DATS by producing nano-scaled micellar particles that are sprayed onto the large luminal surface of the colorectal tract. Following the internalization of the micellar particles by colon epithelial cells, their loaded DATS reacts with intracellular glutathione to yield H2S. This exogenous H2S then diffuses through plasma membranes to carry out its biological functions, including suppressing the overproduction of pro-inflammatory cytokines, inhibiting the adhesion of macrophages on the vascular endothelium, and repairing colonic inflamed tissues. Analytical results demonstrate that this self-spray coating system may be used as a unique drug delivery technique for covering the large colorectal surface to treat IBD.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Wen-Yu Pan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Chen-Kao Liu
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Wu-Xuan Huang
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan ROC
| | - Kai-Sheng Chang
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC.
| |
Collapse
|
41
|
Cellular Stress Responses and Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7192646. [PMID: 30026758 PMCID: PMC6031203 DOI: 10.1155/2018/7192646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Progresses in the past two decades have greatly expanded our understanding of inflammatory bowel disease (IBD), an incurable disease with multifaceted and challenging clinical manifestations. The pathogenesis of IBD involves multiple processes on the cellular level, which include the stress response signaling such as endoplasmic reticulum (ER) stress, oxidative stress, and hypoxia. Under physiological conditions, the stress responses play key roles in cell survival, mucosal barrier integrity, and immunomodulation. However, they can also cause energy depletion, trigger cell death and tissue injury, promote inflammatory response, and drive the progression of clinical disease. In recent years, gut microflora has emerged as an essential pathogenic factor and therapeutic target for IBD. Altered compositional and metabolic profiles of gut microbiota, termed dysbiosis, are associated with IBD. Recent studies, although limited, have shed light on how ER stress, oxidative stress, and hypoxic stress interact with gut microorganisms, a potential source of stress in the microenvironment of gastrointestinal tract. Our knowledge of cellular stress responses in intestinal homeostasis as well as their cross-talks with gut microbiome will further our understanding of the pathogenesis of inflammatory bowel disease and probably open avenues for new therapies.
Collapse
|
42
|
Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
|
43
|
Li F, Li XM, Sheng D, Chen SR, Nie X, Liu Z, Wang D, Zhao Q, Wang Y, Wang Y, Zhou GC. Discovery and preliminary SAR of 14-aryloxy-andrographolide derivatives as antibacterial agents with immunosuppressant activity. RSC Adv 2018; 8:9440-9456. [PMID: 35541862 PMCID: PMC9078697 DOI: 10.1039/c8ra01063c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
Antibacterials (which restore gut flora balance) and immunosuppressants (which correct immune defects) are two important and effective therapeutic agents for the treatment of inflammatory bowel disease (IBD) in clinical use today. Since the structural skeleton of andrographolide, isolated from Andrographis paniculata, has become known as a natural antibiotic with anti-inflammation and heat-clearing and detoxifying properties, 14-aryloxy andrographolide derivatives have been designed, synthesized, and tested for their antibacterial effects on E. coli, S. aureus, and E. faecalis, which are related to IBD. It has been discovered in this study that the andrographolide skeleton is more selective against E. faecalis, the 14-aryloxy group with basicity is important for antibacterial functions, and the 14-(8'-quinolinyloxy) group is a good pharmacophore with antibacterial activity. In addition, we found that 7b1 and 8b1 are good and selective inhibitors of E. faecalis; two 14β-(8'-quinolinyloxy) andrographolide derivatives, 6b17 and 9b, exhibit good activity against E. coli, S. aureus, and E. faecalis. Likewise and importantly, further exploration of immunosuppressant activity for IBD shows that compound 7b1 is a selective inhibitor of the TNF-α/NF-κB signaling pathway, whereas 8b1 is selectively active against the TLR4/NF-κB signaling pathway; moreover, the compounds 6b17 and 9b are active in inhibiting the IL-6/STAT3, TLR4/NF-κB, and TNF-α/NF-κB signaling pathways. Based on these results, we have further focused on the development of dual function inhibitors of IBD as antibacterial and immunosuppressant agents by structural modification of andrographolide.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Xiao-Min Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Dekuan Sheng
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Xin Nie
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| |
Collapse
|
44
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
45
|
Zheng X, Lv Y, Li S, Zhang Q, Zhang X, Hao Z. Adeno-associated virus-mediated colonic secretory expression of HMGB1 A box attenuates experimental colitis in mice. J Gene Med 2018; 18:261-272. [PMID: 27572454 DOI: 10.1002/jgm.2899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) is crucially implicated in the pathogenesis of inflammatory bowel diseases (IBDs). A box domain of HMGB1 has been identified as a specific antagonist of HMGB1. In the present study, we tested the effects of adeno-associated virus (AAV)-mediated colonic secretory expression of HMGB1 A box on murine experimental colitis. METHODS Self-complementary AAV-2 carrying mouse immunoglobin Gκ leader-human HMGB1 A box (AAV-HMGB1 A box) was constructed. The effects of intracolonically administered AAV-HMGB1 A box on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were assessed by the disease activity index (DAI), colon length, macroscopic and histological scoring, myeloperoxidase (MPO) activity, and epithelial apoptosis and complementary proliferation. Colonic immune cell infiltrates, mucosal malondialdehyde content and superoxide dismutase activity, colonic tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 levels, serum HMGB1 concentration, and colonic HMGB1 release were determined to investigate the underlying mechanisms. RESULTS Intracolonically administered AAV-HMGB1 A box efficiently mediated secretory expression of HMGB1 A box and led to significant decreases in DAI, macroscopic and histological scores and colonic epithelial apoptosis in both DSS- and TNBS-treated mice. Modulating inflammation-associated cytokines, such as inhibiting colonic TNF-α and IL-1β expression, decreasing HMGB1 release, and restoring colonic IL-10 levels, and thereby inhibiting inflammatory cell infiltration and alleviating oxidant damage, might be the underlying mechanism. CONCLUSIONS Intracolonic application of AAV-HMGB1 A box is effective in alleviating murine colitis and has therapeutic potential in human IBDs.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qiannan Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xueting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhiming Hao
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China. .,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
46
|
You B, Liu Y, Chen J, Huang X, Peng H, Liu Z, Tang Y, Zhang K, Xu Q, Li X, Cheng G, Shi R, Zhang G. Vascular peroxidase 1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation, apoptosis resistance and migration. Cardiovasc Res 2017; 114:188-199. [PMID: 29186367 DOI: 10.1093/cvr/cvx234] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/25/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Reactive oxygen species (ROS) play essential roles in the pulmonary vascular remodelling associated with hypoxia-induced pulmonary hypertension (PH). Vascular peroxidase 1 (VPO1) is a newly identified haeme-containing peroxidase that accelerates oxidative stress development in the vasculature. This study aimed to determine the potential role of VPO1 in hypoxia-induced PH-related vascular remodelling.
Methods and results
The vascular morphology and VPO1 expression were assessed in the pulmonary arteries of Sprague–Dawley (SD) rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and VPO1 expression and HOCl production were significantly increased in hypoxic rats, which also exhibited obvious vascular remodelling. Furthermore, a hypoxia-induced PH model was generated by exposing primary rat pulmonary artery smooth muscle cells (PASMCs) to hypoxic conditions (3% O2, 48 h), which significantly increased the expression of NOX4 and VPO1 and the production of HOCl. These hypoxic changes were accompanied by enhanced proliferation, apoptosis resistance, and migration. In PASMCs, hypoxia-induced changes, including effects on the expression of cell cycle regulators (cyclin B1 and cyclin D1), apoptosis-related proteins (bax, bcl-2, and cleaved caspase-3), migration promoters (matrix metalloproteinases 2 and 9), and NF-κB expression, as well as the production of HOCl, were all inhibited by silencing VPO1 with small interfering RNAs. Moreover, treatment with HOCl under hypoxic conditions upregulated NF-κB expression and enhanced proliferation, apoptosis resistance, and migration in PASMCs, whereas BAY 11-7082 (an inhibitor of NF-κB) significantly inhibited these effects.
Conclusion
Collectively, these results demonstrate that VPO1 promotes hypoxia-induced proliferation, apoptosis resistance, and migration in PASMCs via the NOX4/VPO1/HOCl/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Baiyang You
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanbo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yixin Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Wang C, Gong G, Sheh A, Muthupalani S, Bryant EM, Puglisi DA, Holcombe H, Conaway EA, Parry NAP, Bakthavatchalu V, Short SP, Williams CS, Wogan GN, Tannenbaum SR, Fox JG, Horwitz BH. Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer. Mucosal Immunol 2017; 10:1504-1517. [PMID: 28198364 PMCID: PMC5557711 DOI: 10.1038/mi.2017.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 02/08/2023]
Abstract
The risk of colon cancer is increased in patients with Crohn's disease and ulcerative colitis. Inflammation-induced DNA damage could be an important link between inflammation and cancer, although the pathways that link inflammation and DNA damage are incompletely defined. RAG2-deficient mice infected with Helicobacter hepaticus (Hh) develop colitis that progresses to lower bowel cancer. This process depends on nitric oxide (NO), a molecule with known mutagenic potential. We have previously hypothesized that production of NO by macrophages could be essential for Hh-driven carcinogenesis, however, whether Hh infection induces DNA damage in this model and whether this depends on NO has not been determined. Here we demonstrate that Hh infection of RAG2-deficient mice rapidly induces expression of iNOS and the development of DNA double-stranded breaks (DSBs) specifically in proliferating crypt epithelial cells. Generation of DSBs depended on iNOS activity, and further, induction of iNOS, the generation of DSBs, and the subsequent development of dysplasia were inhibited by depletion of the Hh-induced cytokine IL-22. These results demonstrate a strong association between Hh-induced DNA damage and the development of dysplasia, and further suggest that IL-22-dependent induction of iNOS within crypt epithelial cells rather than macrophages is a driving force in this process.
Collapse
Affiliation(s)
- C Wang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - EM Bryant
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - DA Puglisi
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - H Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - EA Conaway
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - NAP Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - SP Short
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - CS Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and Department of Cancer Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | - GN Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - SR Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JG Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - BH Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Péré-Védrenne C, Flahou B, Loke MF, Ménard A, Vadivelu J. Other Helicobacters, gastric and gut microbiota. Helicobacter 2017; 22 Suppl 1. [PMID: 28891140 DOI: 10.1111/hel.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current article is a review of the most important and relevant literature published in 2016 and early 2017 on non-Helicobacter pylori Helicobacter infections in humans and animals, as well as interactions between H. pylori and the microbiota of the stomach and other organs. Some putative new Helicobacter species were identified in sea otters, wild boars, dogs, and mice. Many cases of Helicobacter fennelliae and Helicobacter cinaedi infection have been reported in humans, mostly in immunocompromised patients. Mouse models have been used frequently as a model to investigate human Helicobacter infection, although some studies have investigated the pathogenesis of Helicobacters in their natural host, as was the case for Helicobacter suis infection in pigs. Our understanding of both the gastric and gut microbiome has made progress and, in addition, interactions between H. pylori and the microbiome were demonstrated to go beyond the stomach. Some new approaches of preventing Helicobacter infection or its related pathologies were investigated and, in this respect, the probiotic properties of Saccharomyces, Lactobacillus and Bifidobacterium spp. were confirmed.
Collapse
Affiliation(s)
- Christelle Péré-Védrenne
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Armelle Ménard
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
50
|
Yang W, Liu Z, Xu Q, Peng H, Chen L, Huang X, Yang T, Yu Z, Cheng G, Zhang G, Shi R. Involvement of vascular peroxidase 1 in angiotensin II–induced hypertrophy of H9c2 cells. ACTA ACUST UNITED AC 2017; 11:519-529.e1. [DOI: 10.1016/j.jash.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 01/26/2023]
|