1
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
2
|
Duysburgh C, Govaert M, Guillemet D, Marzorati M. Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties. Nutrients 2024; 16:1570. [PMID: 38892504 PMCID: PMC11173755 DOI: 10.3390/nu16111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).
Collapse
Affiliation(s)
- Cindy Duysburgh
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
| | - Marlies Govaert
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
| | | | - Massimo Marzorati
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Kostyuk AI, Rapota DD, Morozova KI, Fedotova AA, Jappy D, Semyanov AV, Belousov VV, Brazhe NA, Bilan DS. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy. Free Radic Biol Med 2024; 217:68-115. [PMID: 38508405 DOI: 10.1016/j.freeradbiomed.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Diana D Rapota
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kseniia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna A Fedotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
4
|
Yao F, Yuan K, Zhou W, Tang W, Tang T, Yang X, Liu H, Li F, Xu Q, Peng C. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions. J Ind Microbiol Biotechnol 2024; 51:kuae013. [PMID: 38632039 DOI: 10.1093/jimb/kuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.
Collapse
Affiliation(s)
- Fuwei Yao
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| | - Kai Yuan
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weiqiang Zhou
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weitao Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Tang Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Xiaofan Yang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Haijun Liu
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Fangliang Li
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Qing Xu
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
| | - Chao Peng
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| |
Collapse
|
5
|
Nontaleerak B, Eurtivong C, Weeraphan C, Buncherd H, Chokchaichamnankit D, Srisomsap C, Svasti J, Sukchawalit R, Mongkolsuk S. The redox-sensing mechanism of Agrobacterium tumefaciens NieR as a thiol-based oxidation sensor for hypochlorite stress. Free Radic Biol Med 2023; 208:211-220. [PMID: 37544488 DOI: 10.1016/j.freeradbiomed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
NieR is a TetR family transcriptional repressor previously shown to regulate the NaOCl-inducible efflux pump NieAB in Agrobacterium tumefaciens. NieR is an ortholog of Escherichia coli NemR that specifically senses hypochlorite through the redox switch of a reversible sulfenamide bond between C106 and K175. The amino acid sequence of NieR contains only one cysteine. NieR has C104 and R166, which correspond to C106 and K175 of NemR, respectively. The aim of this study was to investigate the redox-sensing mechanism of NieR under NaOCl stress. C104 and R166 were subjected to mutagenesis to determine their roles. Although the substitution of R166 by alanine slightly reduced its DNA-binding activity, NieR retained its repressor function. By contrast, the DNA-binding and repression activities of NieR were completely lost when C104 was replaced by alanine. C104 substitution with serine only partially impaired the repressor function. Mass spectrometry analysis revealed an intermolecular disulfide bond between the C104 residues of NieR monomers. This study demonstrates the engagement of C104 in the mechanism of NaOCl sensing. C104 oxidation induced the formation of a disulfide-linked dimer that was likely to alter conformation, thus abolishing the DNA-binding ability of NieR and derepressing the target genes.
Collapse
Affiliation(s)
- Benya Nontaleerak
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Si Ayutthaya Road, Ratchathewi, Bangkok 10400, Thailand
| | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Hansuk Buncherd
- Laboratory of Biochemistry, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand; Faculty of Medical Technology, Prince of Songkla University, Songkhla 90112, Thailand; Medical Science Research and Innovation Institute, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| |
Collapse
|
6
|
Crompton ME, Gaessler LF, Tawiah PO, Polzer L, Camfield SK, Jacobson GD, Naudszus MK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. J Bacteriol 2023; 205:e0006423. [PMID: 37791752 PMCID: PMC10601744 DOI: 10.1128/jb.00064-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Luca F. Gaessler
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Patrick O. Tawiah
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lisa Polzer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sydney K. Camfield
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Grady D. Jacobson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Maren K. Naudszus
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Colton Johnson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kennadi Meurer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mehdi Bennis
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Brendan Roseberry
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sadia Sultana
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
7
|
Crompton ME, Gaessler LF, Tawiah PO, Pfirsching L, Camfield SK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543251. [PMID: 37398214 PMCID: PMC10312555 DOI: 10.1101/2023.06.01.543251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acids side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections (UTIs), have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. The regulon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB . rcrB encodes the putative membrane protein RcrB, deletion of which substantially increases UPEC's susceptibility to HOCl. However, many questions regarding RcrB's role remain open including whether (i) the protein's mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. Here, we provide evidence that RcrB expression is sufficient to E. coli 's protection from HOCl and induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health exacerbating the demand for alternative treatment options. UPEC, the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be well equipped with powerful defense systems to fend off the toxic effects of RCS. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system towards HOCl-stress and phagocytosis. Thus, this novel HOCl-stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Luca F. Gaessler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Patrick O. Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Lisa Pfirsching
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sydney K. Camfield
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Kennadi Meurer
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Mehdi Bennis
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Brendan Roseberry
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sadia Sultana
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
8
|
Yamaji K, Taniguchi R, Urano H, Ogasawara H. Roles of methionine and cysteine residues of the Escherichia coli sensor kinase HprS in reactive chlorine species sensing. FEBS Lett 2023; 597:573-584. [PMID: 36647922 DOI: 10.1002/1873-3468.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
Sensor histidine kinase HprS, an oxidative stress sensor of Escherichia coli, senses reactive oxygen species (ROS) and reactive chlorine species (RCS), and is involved in the induction of oxidatively damaged protein repair periplasmic enzymes. We reinvestigated the roles of six methionine and four cysteine residues of HprS in the response to HClO, an RCS. The results of site-directed mutagenesis revealed that methionine residues in periplasmic and cytoplasmic regions (Met225) are involved in HprS activation. Interestingly, the Cys165Ser substitution reduced HprS activity, which was recovered by an additional Glu22Cys substitution. Our results demonstrate that the position of the inner membrane cysteine residues influences the extent of HprS activation in HClO sensing.
Collapse
Affiliation(s)
- Kotaro Yamaji
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Rumine Taniguchi
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroyuki Urano
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Ogasawara
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan.,Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto, Japan.,Renaissance Center for Applied Microbiology, Nagano, Japan.,Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
| |
Collapse
|
9
|
Vincent MS, Ezraty B. Methionine oxidation in bacteria: A reversible post-translational modification. Mol Microbiol 2023; 119:143-150. [PMID: 36350090 DOI: 10.1111/mmi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence.
Collapse
Affiliation(s)
- Maxence S Vincent
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
10
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
11
|
Zhu L, Chen L, Wu C, Shan W, Cai D, Lin Z, Wei W, Chen J, Lu W, Kuang J. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:150-166. [PMID: 36103229 DOI: 10.1111/jipb.13363] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Collapse
Affiliation(s)
- Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Wang F, Lin YN, Xu Y, Ba YB, Zhang ZH, Zhao L, Lam W, Guan FL, Zhao Y, Xu CH. Mechanisms of acidic electrolyzed water killing bacteria. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Maurais A, Weerapana E. A peptide-crosslinking approach identifies HSPA8 and PFKL as selective interactors of an actin-derived peptide containing reduced and oxidized methionine. RSC Chem Biol 2022; 3:1282-1289. [PMID: 36320891 PMCID: PMC9533414 DOI: 10.1039/d2cb00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 10/07/2023] Open
Abstract
The oxidation of methionine to methionine sulfoxide occurs under conditions of cellular oxidative stress, and modulates the function of a diverse array of proteins. Enzymatic systems that install and reverse the methionine sulfoxide modifications have been characterized, however, little is known about potential readers of this oxidative modification. Here, we apply a peptide-crosslinking approach to identify proteins that are able to differentially interact with reduced and oxidized methionine-containing peptides. Specifically, we generated a photo-crosslinking peptide derived from actin, which contains two sites of methionine oxidation, M44 and M47. Our proteomic studies identified heat shock proteins, including HSPA8, as selective for the reduced methionine-containing peptide, whereas the phosphofructokinase isoform, PFKL, preferentially interacts with the oxidized form. We then demonstrate that the favored interaction of PFKL with oxidized methionine is also observed in the full-length actin protein, suggesting a role of methionine oxidation in regulating the actin-PFKL interaction in cells. Our studies demonstrate the potential to identify proteins that can differentiate between reduced and oxidized methionine and thereby mediate downstream protein functions under conditions of oxidative stress. Furthermore, given that numerous sites of methionine oxidation have now been identified, these studies set the stage to identify putative readers of methionine oxidation on other protein targets.
Collapse
Affiliation(s)
- Aaron Maurais
- Department of Chemistry, Boston College Chestnut Hill MA 02467 USA
| | | |
Collapse
|
14
|
Redox-Mediated Inactivation of the Transcriptional Repressor RcrR is Responsible for Uropathogenic Escherichia coli's Increased Resistance to Reactive Chlorine Species. mBio 2022; 13:e0192622. [PMID: 36073817 PMCID: PMC9600549 DOI: 10.1128/mbio.01926-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC’s HOCl resistance.
Collapse
|
15
|
Xu N, Liu Y, Nai S, Tao Y, Ding Y, Jia L, Geng Q, Li J, Bai Y, Wei GH, Dong MQ, Luo L, Zhao M, Xu X, Li XX, Li J, Huang L. UBE3D Is Involved in Blue Light-Induced Retinal Damage by Regulating Double-Strand Break Repair. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 36094642 PMCID: PMC9482326 DOI: 10.1167/iovs.63.10.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is currently the leading cause of blindness worldwide. Previously, we identified ubiquitin-protein ligase E3D (UBE3D) as an AMD-associated protein for East Asian populations, and here we further demonstrate that UBE3D could be associated with DNA damage response. Methods The established I-SceI-inducible GFP reporter system was used to explore the effect of UBE3D on homologous recombination. Immunoprecipitation-mass spectrometry (MS) was used to explore potential UBE3D-interacting proteins and validated with coimmunoprecipitation assays and the pulldown assays. Micrococcal nuclease (MNase) assays were used to investigate the function of UBE3D on heterochromatin de-condensation upon DNA damage. An aged mouse model of blue light-induced eye damage was constructed, and electroretinography (ERG) and optical coherence tomography (OCT) were performed to compare the differences between wild-type and UBE3D+/- mice. Results First, we show that GFP-UBE3D is recruited to damage sites by PCNA, through a PCNA-interacting protein (PIP) box. Furthermore, UBE3D interacts with KAP1 via R377R378 and oxidation of the AMD-associated V379M mutation abolishes KAP1-UBE3D binding. By MNase assays, UBE3D depletion reduces the chromatin relaxation levels upon DNA damage. In addition, UBE3D depletion renders less KAP1 recruitment. Compared with wild type, blue light induces less damage in UBE3D+/- mice as measured by ERG and OCT, consistent with our biochemical results. Conclusions Hence, we propose that one potential mechanism that UBE3D-V379M contributes to AMD pathogenesis might be via defective DNA damage repair linked with oxidative stress and our results offered a potential direction for the treatment of AMD.
Collapse
Affiliation(s)
- Ningda Xu
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital Beijing, China
| | - Yue Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Lemei Jia
- National Institute of Biological Sciences, Beijing, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yujing Bai
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital Beijing, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Linyi Luo
- Department of Ophthalmology and Visual Sciences, Affiliated Dongguan Hospital, Southern Medical University, Guangdong, China
| | - Mingwei Zhao
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital Beijing, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xiao-Xin Li
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital Beijing, China
- Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital Beijing, China
| |
Collapse
|
16
|
Vergnes A, Henry C, Grassini G, Loiseau L, El Hajj S, Denis Y, Galinier A, Vertommen D, Aussel L, Ezraty B. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genet 2022; 18:e1010180. [PMID: 35816552 PMCID: PMC9302797 DOI: 10.1371/journal.pgen.1010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Camille Henry
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Gaia Grassini
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Laurent Loiseau
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Sara El Hajj
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Institut de Microbiologie de la Méditerranée, Plate-forme Transcriptomique, Marseille, France
| | - Anne Galinier
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Vertommen
- de Duve Institute, MASSPROT Platform, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Aussel
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Benjamin Ezraty
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
17
|
Chen C, Pan Y, Li D, Han Y, Zhang QW, Tian Y. An Intramolecular Charge Transfer-Förster Resonance Energy Transfer Integrated Unimolecular Platform for Two-Photon Ratiometric Fluorescence Sensing of Methionine Sulfoxide Reductases in Live-Neurons and Mouse Brain Tissues. Anal Chem 2022; 94:6289-6296. [PMID: 35412308 DOI: 10.1021/acs.analchem.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress in organisms is a factor leading to a series of diseases including tumors and neurological disorders, while methionine sulfoxide reductases (Msrs) may provide an antioxidant and self-repair mechanism through redox cycles of methionine residues in proteins. Thus, it is important to understand the crucial role of Msrs in maintaining the redox homeostasis. However, it remains a great challenge for real-time and quantitative monitoring of Msrs in live systems due to the lack of appropriate sensing tools. Herein, a novel unimolecular platform integrating the intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET) dual mechanisms was successfully developed. By employing the highly specific Msrs-catalyzed reduction from the electron-withdrawing sulfoxide moiety in the probe to an electron-donating sulfide group, a synergistic ICT-FRET activation process was achieved, leading to a ratiometric fluorescence response toward Msrs with high selectivity, sensitivity, and accuracy. Moreover, benefiting from the favorable features, including mitochondria-targeting, near-infrared two-photon excitation, low cytotoxicity, good stability, and biocompatibility, the probe was successfully used for monitoring mitochondrial Msrs levels in live-neurons, and a positively correlated up-regulation of endogenous Msrs levels under O2•- stimulation was observed for the first time, confirming a Msrs-involved adaptive antioxidant mechanism in neurons. Furthermore, two-photon microscopic imaging of various regions in Alzheimer's disease (AD) mice brains revealed a down-regulated Msrs levels compared with that in normal brains, especially in the cornuammonis of the hippocampus region, which may in turn lead to an aggravation of AD pathogenesis due to the weakened antioxidant and self-repair capability of neurons.
Collapse
Affiliation(s)
- Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yue Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Dong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
18
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
19
|
Wu Y, Wu ZM, Zhang SS, Liu LY, Sun F, Jiao WH, Wang SP, Lin HW. Axinellasins A-D, Immunosuppressive Cycloheptapeptide Diastereomers, Discovered via a Precursor Ion Scanning-Supercritical Fluid Chromatography Strategy from the Marine Sponge Axinella species. Org Lett 2022; 24:934-938. [PMID: 35044186 DOI: 10.1021/acs.orglett.1c04309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The precursor ion scanning-supercritical fluid chromatography (PI-SFC) method was applied to explore new methionine sulfoxide-containing cycloheptapeptides, axinellasins A-D (1-4), from the marine sponge Axinella sp. Their structures, including absolute configurations, were elucidated by detailed spectroscopic analyses and X-ray crystallography. The total synthesis of 4 was completed via an Fmoc solid/solution-phase synthesis. Compounds 1-4 exhibited immunosuppressive effects via inhibition of T and B cell proliferation, and 1 and 4 showed better inhibitory activities than their corresponding diastereomers.
Collapse
Affiliation(s)
- Ying Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zong-Mei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuai-Shuai Zhang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
20
|
Lee HM, Choi DW, Kim S, Lee A, Kim M, Roh YJ, Jo YH, Cho HY, Lee HJ, Lee SR, Tarrago L, Gladyshev VN, Kim JH, Lee BC. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sens 2022; 7:131-141. [PMID: 34936330 DOI: 10.1021/acssensors.1c01819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMetROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.
Collapse
Affiliation(s)
- Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Aro Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Yeon Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Chonnam National University Medical School, Gwangju 61186, Republic of Korea
| | - Lionel Tarrago
- INRAE, Aix Marseille University, BBF, Marseille F13108, France
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Freitas CSA, Maciel LF, Corrêa Dos Santos RA, Costa OMMM, Maia FCB, Rabelo RS, Franco HCJ, Alves E, Consonni SR, Freitas RO, Persinoti GF, Oliveira JVDC. Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 2022; 24:1430-1453. [PMID: 34995419 DOI: 10.1111/1462-2920.15876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.
Collapse
Affiliation(s)
- Carla Sant Anna Freitas
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucas Ferreira Maciel
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ohanna Maria Menezes Medeiro Costa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francisco Carlos Barbosa Maia
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Eduardo Alves
- Laboratory of Electron Microscopy and Ultrastructural Analysis, Plant Pathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raul Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Mortensen NP, Pathmasiri W, Snyder RW, Caffaro MM, Watson SL, Patel PR, Beeravalli L, Prattipati S, Aravamudhan S, Sumner SJ, Fennell TR. Oral administration of TiO 2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Part Fibre Toxicol 2022; 19:3. [PMID: 34986857 PMCID: PMC8728993 DOI: 10.1186/s12989-021-00444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) are increasingly incorporated in everyday products. To investigate the effects of early life exposure to orally ingested TiO2 NP, male and female Sprague-Dawley rat pups received four consecutive daily doses of 10 mg/kg body weight TiO2 NP (diameter: 21 ± 5 nm) or vehicle control (water) by gavage at three different pre-weaning ages: postnatal day (PND) 2-5, PND 7-10, or PND 17-20. Cardiac assessment and basic neurobehavioral tests (locomotor activity, rotarod, and acoustic startle) were conducted on PND 20. Pups were sacrificed at PND 21. Select tissues were collected, weighed, processed for neurotransmitter and metabolomics analyses. RESULTS Heart rate was found to be significantly decreased in female pups when dosed between PND 7-10 and PND 17-20. Females dosed between PND 2-5 showed decrease acoustic startle response and when dosed between PND 7-10 showed decreased performance in the rotarod test and increased locomotor activity. Male pups dosed between PND 17-20 showed decreased locomotor activity. The concentrations of neurotransmitters and related metabolites in brain tissue and the metabolomic profile of plasma were impacted by TiO2 NP administration for all dose groups. Metabolomic pathways perturbed by TiO2 NP administration included pathways involved in amino acid and lipid metabolism. CONCLUSION Oral administration of TiO2 NP to rat pups impacted basic cardiac and neurobehavioral performance, neurotransmitters and related metabolites concentrations in brain tissue, and the biochemical profiles of plasma. The findings suggested that female pups were more likely to experience adverse outcome following early life exposure to oral TiO2 NP than male pups. Collectively the data from this exploratory study suggest oral administration of TiO2 NP cause adverse biological effects in an age- and sex-related manner, emphasizing the need to understand the short- and long-term effects of early life exposure to TiO2 NP.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA.
| | - Wimal Pathmasiri
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Scott L Watson
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Purvi R Patel
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
23
|
HprSR is a Reactive Chlorine Species-Sensing, Two-Component System in Escherichia coli. J Bacteriol 2021; 204:e0044921. [PMID: 34898261 DOI: 10.1128/jb.00449-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, HprSR has recently been shown to be involved in the regulation of msrPQ, which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependant manner, whereas H2O2, NO and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HprS are important for its activity: as HOCl preferentially oxidizes Met residues, we provide evidence that HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli. This study represents an important step towards understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbiocidal oxidants. Therefore bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of MsrPQ, a repair system for HOCl-oxidized proteins. Moreover we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.
Collapse
|
24
|
Song B, Fu M, He F, Zhao H, Wang Y, Nie Q, Wu B. Methionine Deficiency Affects Liver and Kidney Health, Oxidative Stress, and Ileum Mucosal Immunity in Broilers. Front Vet Sci 2021; 8:722567. [PMID: 34631856 PMCID: PMC8493001 DOI: 10.3389/fvets.2021.722567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Methionine (Met) is the first limiting amino acid in broiler diets, but its unclear physiological effects hamper its effective use in the poultry production industry. This study assessed the effect of a Met-deficient (MD) diet on chicken liver and kidney health, exploring the associated mechanisms of antioxidant capacity and ileum mucosal immunity. Seventy-two broilers were administered either the control diet (0.46% Met in starter diet, 0.36% Met in grower diet) or the MD diet (0.22% Met in starter diet, 0.24% Met in grower diet). Liver and kidney samples were collected every 14 days for anatomical, histological, and ultrastructural analyses, accompanied by oxidative stress assessment. Meanwhile, T- and B-lymphocyte abundance and essential cytokine gene expression were measured in the ileum, the center of the gut–liver–kidney axis. Signs of kidney and liver injury were observed morphologically in the MD group at 42 days of age. Furthermore, aspartate aminotransferase, alanine aminotransferase, creatinine, and uric acid levels were decreased in the MD group compared with the control group, accompanied by decreased superoxide dismutase activity, increased malondialdehyde content, decreased numbers of T and B lymphocytes, and decreased cytokine expression in the ileum, such as IL-2, IL-6, LITAF, and IFN-γ. These results suggest that MD can induce kidney and liver injury, and the injury pathway might be related to oxidative stress and intestinal immunosuppression.
Collapse
Affiliation(s)
- Baolin Song
- College of Life Sciences, China West Normal University, Nanchong, China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Min Fu
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Fang He
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Huan Zhao
- College of Life Sciences, China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education P. R. China, Nanchong, China
| | - Yu Wang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Qihang Nie
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education P. R. China, Nanchong, China
| |
Collapse
|
25
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
26
|
Galloni C, Carra D, Abella JV, Kjær S, Singaravelu P, Barry DJ, Kogata N, Guérin C, Blanchoin L, Way M. MICAL2 enhances branched actin network disassembly by oxidizing Arp3B-containing Arp2/3 complexes. J Cell Biol 2021; 220:e202102043. [PMID: 34106209 PMCID: PMC8193582 DOI: 10.1083/jcb.202102043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 01/24/2023] Open
Abstract
The mechanisms regulating the disassembly of branched actin networks formed by the Arp2/3 complex still remain to be fully elucidated. In addition, the impact of Arp3 isoforms on the properties of Arp2/3 are also unexplored. We now demonstrate that Arp3 and Arp3B isocomplexes promote actin assembly equally efficiently but generate branched actin networks with different disassembly rates. Arp3B dissociates significantly faster than Arp3 from the network, and its depletion increases actin stability. This difference is due to the oxidation of Arp3B, but not Arp3, by the methionine monooxygenase MICAL2, which is recruited to the actin network by coronin 1C. Substitution of Arp3B Met293 by threonine, the corresponding residue in Arp3, increases actin network stability. Conversely, replacing Arp3 Thr293 with glutamine to mimic Met oxidation promotes disassembly. The ability of MICAL2 to enhance network disassembly also depends on cortactin. Our observations demonstrate that coronin 1C, cortactin, and MICAL2 act together to promote disassembly of branched actin networks by oxidizing Arp3B-containing Arp2/3 complexes.
Collapse
Affiliation(s)
- Chiara Galloni
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Davide Carra
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Jasmine V.G. Abella
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Pavithra Singaravelu
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Naoko Kogata
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Christophe Guérin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
27
|
Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, Ogba OM, Cassidy CK, Stansfeld PJ, Guillemin K. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation. mBio 2021; 12:e0017321. [PMID: 34154415 PMCID: PMC8262984 DOI: 10.1128/mbio.00173-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl. IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the same chemical used as a household disinfectant. In this work, we present findings showing that many host-associated bacteria possess a bleach-sensing protein that allows them to adapt to the presence of this chemical in their environment. We find that the bacterium Escherichia coli responds to bleach by hunkering down and producing a sticky matrix known as biofilm, which helps it aggregate and adhere to surfaces. This behavior may play an important role in pathogenicity for E. coli and other bacteria, as it allows the bacteria to detect and adapt to the weapons of the host immune system.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | - Lindsay Zumwalt
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - O. Maduka Ogba
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Moskovitz J, Smith A. Methionine sulfoxide and the methionine sulfoxide reductase system as modulators of signal transduction pathways: a review. Amino Acids 2021; 53:1011-1020. [PMID: 34145481 DOI: 10.1007/s00726-021-03020-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023]
Abstract
Methionine oxidation and reduction is a common phenomenon occurring in biological systems under both physiological and oxidative-stress conditions. The levels of methionine sulfoxide (MetO) are dependent on the redox status in the cell or organ, and they are usually elevated under oxidative-stress conditions, aging, inflammation, and oxidative-stress related diseases. MetO modification of proteins may alter their function or cause the accumulation of toxic proteins in the cell/organ. Accordingly, the regulation of the level of MetO is mediated through the ubiquitous and evolutionary conserved methionine sulfoxide reductase (Msr) system and its associated redox molecules. Recent published research has provided new evidence for the involvement of free MetO or protein-bound MetO of specific proteins in several signal transduction pathways that are important for cellular function. In the current review, we will focus on the role of MetO in specific signal transduction pathways of various organisms, with relation to their physiological contexts, and discuss the contribution of the Msr system to the regulation of the observed MetO effect.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
29
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
30
|
Wang W, Wu H, Xiao Q, Zhou H, Li M, Xu Q, Wang Q, Yu F, He J. Crystal structure details of Vibrio fischeri DarR and mutant DarR-M202I from LTTR family reveals their activation mechanism. Int J Biol Macromol 2021; 183:2354-2363. [PMID: 34081954 DOI: 10.1016/j.ijbiomac.2021.05.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023]
Abstract
DarR, a novel member of the LTTR family derived from Vibrio fischeri, activates transcription in response to d-Asp and regulates the overexpression of the racD genes encoding a putative aspartate racemase, RacD. Here, the crystal structure of full-length DarR and its mutant DarR-M202I were obtained by X-ray crystallography. According to the electron density map analysis of full-length DarR, the effector binding site of DarR is occupied by 2-Morpholinoethanesulfonic acid monohydrate (MES), which could interact with amino acids in the effector binding site and stabilize the effector binding site. Furthermore, we elaborated the structure of DarR-M202I, where methionine is replaced by isoleucine resulting in overexpression of the downstream operon. By comparing DarR-MES and DarR-M202I, we found similar behavior of DarR-MES in terms of the stability of the RD active pocket and the deflection angle of the DBD. The Isothermal titration calorimetry and Gel-filtration chromatography experiments showed that only when the target DNA sequence of a particular quasi-palindromic sequence exceeds 19 bp, DarR can effectively bind to racD promoter. This study will help enhance our understanding of the mechanism in the transcriptional regulation of LTTR family transcription factors.
Collapse
Affiliation(s)
- Weiwei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Minjun Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Genome-Wide Screening of Oxidizing Agent Resistance Genes in Escherichia coli. Antioxidants (Basel) 2021; 10:antiox10060861. [PMID: 34072091 PMCID: PMC8228696 DOI: 10.3390/antiox10060861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023] Open
Abstract
The use of oxidizing agents is one of the most favorable approaches to kill bacteria in daily life. However, bacteria have been evolving to survive in the presence of different oxidizing agents. In this study, we aimed to obtain a comprehensive list of genes whose expression can make Escherichiacoli cells resistant to different oxidizing agents. For this purpose, we utilized the ASKA library and performed a genome-wide screening of ~4200 E. coli genes. Hydrogen peroxide (H2O2) and hypochlorite (HOCl) were tested as representative oxidizing agents in this study. To further validate our screening results, we used different E. coli strains as host cells to express or inactivate selected resistance genes individually. More than 100 genes obtained in this screening were not known to associate with oxidative stress responses before. Thus, this study is expected to facilitate both basic studies on oxidative stress and the development of antibacterial agents.
Collapse
|
32
|
Aussel L, Ezraty B. Methionine Redox Homeostasis in Protein Quality Control. Front Mol Biosci 2021; 8:665492. [PMID: 33928125 PMCID: PMC8076862 DOI: 10.3389/fmolb.2021.665492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria live in different environments and are subject to a wide variety of fluctuating conditions. During evolution, they acquired sophisticated systems dedicated to maintaining protein structure and function, especially during oxidative stress. Under such conditions, methionine residues are converted into methionine sulfoxide (Met-O) which can alter protein function. In this review, we focus on the role in protein quality control of methionine sulfoxide reductases (Msr) which repair oxidatively protein-bound Met-O. We discuss our current understanding of the importance of Msr systems in rescuing protein function under oxidative stress and their ability to work in coordination with chaperone networks. Moreover, we highlight that bacterial chaperones, like GroEL or SurA, are also targeted by oxidative stress and under the surveillance of Msr. Therefore, integration of methionine redox homeostasis in protein quality control during oxidative stress gives a complete picture of this bacterial adaptive mechanism.
Collapse
Affiliation(s)
- Laurent Aussel
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Benjamin Ezraty
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
33
|
Role of DegQ in differential stability of flagellin subunits in Vibrio vulnificus. NPJ Biofilms Microbiomes 2021; 7:32. [PMID: 33833236 PMCID: PMC8032703 DOI: 10.1038/s41522-021-00206-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.
Collapse
|
34
|
Lee IG, Lee BJ. How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes. Antioxidants (Basel) 2021; 10:antiox10040502. [PMID: 33804871 PMCID: PMC8063818 DOI: 10.3390/antiox10040502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023] Open
Abstract
Bacteria, like humans, face diverse kinds of stress during life. Oxidative stress, which is produced by cellular metabolism and environmental factors, can significantly damage cellular macromolecules, ultimately negatively affecting the normal growth of the cell. Therefore, bacteria have evolved a number of protective strategies to defend themselves and respond to imposed stress by changing the expression pattern of genes whose products are required to convert harmful oxidants into harmless products. Structural biology combined with biochemical studies has revealed the mechanisms by which various bacterial redox sensor proteins recognize the cellular redox state and transform chemical information into structural signals to regulate downstream signaling pathways.
Collapse
Affiliation(s)
- In-Gyun Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Korea;
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
35
|
Effect of Met/Leu substitutions on the stability of NAD+-dependent formate dehydrogenases from Gossypium hirsutum. Appl Microbiol Biotechnol 2021; 105:2787-2798. [PMID: 33754169 DOI: 10.1007/s00253-021-11232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
NAD+-dependent formate dehydrogenases (FDHs) are extensively used in the regeneration of NAD(P)H and the reduction of CO2 to formate. In addition to their industrial importance, FDHs also play a crucial role in the maintenance of a reducing environment to combat oxidative stress in plants. Therefore, it is important to investigate the response of NAD+-dependent FDH against both temperature and H2O2, to understand the defense mechanisms, and to increase its stability under oxidative stress conditions. In the present study, we characterized the oxidative and thermal stability of NAD+-dependent FDH isolated from cotton, Gossypium hirsutum (GhFDH), by investigating the effect of Met/Leu substitutions in the positions of 225, 234, and 243. Results showed that the single mutant, M234L (0.72 s-1 mM-1), and the triple mutant, M225L/M234L/M243L (0.55 s-1 mM-1), have higher catalytic efficiency than the native enzyme. Substitution of methionine by leucine on the position of 243 increased the free energy gain by 670 J mol-1. The most remarkable results in chemical stability were seen for double and triple mutants, cumulatively. Double and triple substitution of Met to Leu (M225L/M243L and M225L/M243L/M234L) reduce the kefin by a factor of 2 (12.3×10-5 and 12.8×10-5 s-1, respectively.Key points• The closer the residue to NAD+, in which we substituted methionine to leucine, the lower the stability against H2O2 we observed.• The significant gain in the Tm value for the M243L mutant was observed as +5°C.• Residue 234 occupies a critical position for oxidation defense mechanisms. Graphical abstract (a) Methionine amino acids on the protein surface are susceptible to oxidative stress and can be converted to methionine sulfoxide by reactive oxygen derivatives (such as hydrogen peroxide). Therefore, they are critical regions in the change of protein conformation and loss of activity. (b) Replacing the amino acid methionine, which is susceptible to oxidation due to the sulfur group, with the oxidation-resistant leucine amino acid is an important strategy in increasing oxidative stability.
Collapse
|
36
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
37
|
Henry C, Loiseau L, Vergnes A, Vertommen D, Mérida-Floriano A, Chitteni-Pattu S, Wood EA, Casadesús J, Cox MM, Barras F, Ezraty B. Redox controls RecA protein activity via reversible oxidation of its methionine residues. eLife 2021; 10:63747. [PMID: 33605213 PMCID: PMC7943192 DOI: 10.7554/elife.63747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) cause damage to DNA and proteins. Here, we report that the RecA recombinase is itself oxidized by ROS. Genetic and biochemical analyses revealed that oxidation of RecA altered its DNA repair and DNA recombination activities. Mass spectrometry analysis showed that exposure to ROS converted four out of nine Met residues of RecA to methionine sulfoxide. Mimicking oxidation of Met35 by changing it for Gln caused complete loss of function, whereas mimicking oxidation of Met164 resulted in constitutive SOS activation and loss of recombination activity. Yet, all ROS-induced alterations of RecA activity were suppressed by methionine sulfoxide reductases MsrA and MsrB. These findings indicate that under oxidative stress MsrA/B is needed for RecA homeostasis control. The implication is that, besides damaging DNA structure directly, ROS prevent repair of DNA damage by hampering RecA activity.
Collapse
Affiliation(s)
- Camille Henry
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Laurent Loiseau
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Alexandra Vergnes
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Frédéric Barras
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France.,Institut Pasteur, Département de Microbiologie, SAMe Unit, Paris, France.,UMR CNRS-Institut Pasteur 2001 Integrated and Molecular Microbiology (IMM), Paris, France
| | - Benjamin Ezraty
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
38
|
Milanesi E, Manda G, Dobre M, Codrici E, Neagoe IV, Popescu BO, Bajenaru OA, Spiru L, Tudose C, Prada GI, Davidescu EI, Piñol-Ripoll G, Cuadrado A. Distinctive Under-Expression Profile of Inflammatory and Redox Genes in the Blood of Elderly Patients with Cardiovascular Disease. J Inflamm Res 2021; 14:429-442. [PMID: 33658823 PMCID: PMC7917358 DOI: 10.2147/jir.s280328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
Purpose Chronic low-grade inflammation and oxidative stress are present in most of the pathologic mechanisms underlying non-communicable diseases. Inflammation and redox biomarkers might therefore have a value in disease prognosis and therapy response. In this context, we performed a case–control study for assessing in whole blood the expression profile of inflammation and redox-related genes in elderly subjects with various comorbidities. Patients and Methods In the blood of 130 elderly subjects with various pathologies (cardiovascular disease, hypertension, dyslipidemia including hypercholesterolemia, type 2 diabetes mellitus), kept under control by polyvalent disease-specific medication, we investigated by pathway-focused qRT-PCR a panel comprising 84 inflammation-related and 84 redox-related genes. Results The study highlights a distinctive expression profile of genes critically involved in NF-κB-mediated inflammation and redox signaling in the blood of patients with cardiovascular disease, characterized by significant down-regulation of the genes NFKB2, NFKBIA, RELA, RELB, AKT1, IRF1, STAT1, CD40, LTA, TRAF2, PTGS1, ALOX12, DUOX1, DUOX2, MPO, GSR, TXNRD2, HSPA1A, MSRA, and PDLIM1. This gene expression profile defines the transcriptional status of blood leukocytes in stable disease under medication control, without discriminating between disease- and therapy-related changes. Conclusion The study brings preliminary proof on a minimally invasive strategy for monitoring disease in patients with cardiovascular pathology, from the point of view of inflammation or redox dysregulation in whole blood.
Collapse
Affiliation(s)
- Elena Milanesi
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Maria Dobre
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Elena Codrici
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | | | - Bogdan Ovidiu Popescu
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania.,Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,Neurology Department, Clinical Hospital Colentina, Bucharest, 020125, Romania
| | - Ovidiu Alexandru Bajenaru
- Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,Neurology Department, University Emergency Hospital, Bucharest, 050098, Romania
| | - Luiza Spiru
- Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,The Excellence Memory Center and Longevity Medicine, "Ana Aslan" International Foundation,, Bucharest, 050064, Romania
| | - Catalina Tudose
- Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,Section II, "Prof. Dr. Al. Obregia" Psychiatry Clinical Hospital & the Memory Center of the Romanian Alzheimer Society, Bucharest, 041914, Romania
| | - Gabriel-Ioan Prada
- Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,Section IV, "Ana Aslan" National Institute of Gerontology and Geriatrics, Bucharest, 011241, Romania
| | - Eugenia Irene Davidescu
- Clinical Neurosciences, Geriatrics and Gerontology Departments, "Carol Davila" University of Medicine and Pharmacy, Bucharest, 020021, Romania.,Neurology Department, Clinical Hospital Colentina, Bucharest, 020125, Romania
| | - Gerard Piñol-Ripoll
- Unitat Trastons Cognitius, Hospital Universitari Santa Maria-IRBLLeida, Lleida, 25198, Spain
| | - Antonio Cuadrado
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania.,Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| |
Collapse
|
39
|
Methionine Sulfoxide Reductase B Regulates the Activity of Ascorbate Peroxidase of Banana Fruit. Antioxidants (Basel) 2021; 10:antiox10020310. [PMID: 33670705 PMCID: PMC7922979 DOI: 10.3390/antiox10020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.
Collapse
|
40
|
Yan H, Jiang G, Wu F, Li Z, Xiao L, Jiang Y, Duan X. Sulfoxidation regulation of transcription factor NAC42 influences its functions in relation to stress-induced fruit ripening in banana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:682-699. [PMID: 33070185 DOI: 10.1093/jxb/eraa474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Redox modification of functional or regulatory proteins has emerged as an important mechanism of post-translational modification. However, the role of redox modifications of transcription factors mediated by methionine sulfoxide reductase (Msr) in regulating physiological processes in plants remains unclear, especially in fruit ripening. In this study, we determined that MaNAC42, a transcriptional activator, is involved in the regulation of fruit ripening in banana under oxidative stress. Integrated analysis of ChIP-qPCR and EMSA data showed that MaNAC42 directly binds to promoters of genes related to oxidative stress and ripening. Ectopic overexpression of MaNAC42 in Arabidopsis delays dark-induced senescence in leaves, indicating that MaNAC42 plays a negative role in senescence. Furthermore, we found that MaNAC42 is a target of MaMsrB2, a methionine sulfoxide reductase B. Methionine oxidation in MaNAC42 (i.e. sulfoxidation) or mimicking sulfoxidation by mutating methionine to glutamine both lead to decreased DNA-binding capacity and transcriptional activity. On the other hand, MaMsrB2 can partially repair oxidized MaNAC42 and restore its DNA-binding capacity. Thus, our results suggest a novel regulatory mechanism of fruit ripening in banana involving MaMsrB2-mediated redox regulation of the ripening-related transcription factor MaNAC42.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fuwang Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwei Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Xiao
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
41
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
42
|
Varatnitskaya M, Degrossoli A, Leichert LI. Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol Chem 2020; 402:299-316. [PMID: 33021957 DOI: 10.1515/hsz-2020-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Our organism is exposed to pathogens on a daily basis. Owing to this age-old interaction, both pathogen and host evolved strategies to cope with these encounters. Here, we focus on the consequences of the direct encounter of cells of the innate immune system with bacteria. First, we will discuss the bacterial strategies to counteract powerful reactive species. Our emphasis lies on the effects of hypochlorous acid (HOCl), arguably the most powerful oxidant produced inside the phagolysosome of professional phagocytes. We will highlight individual examples of proteins in gram-negative bacteria activated by HOCl via thiol-disulfide switches, methionine sulfoxidation, and N-chlorination of basic amino acid side chains. Second, we will discuss the effects of HOCl on proteins of the host. Recent studies have shown that both host and bacteria address failing protein homeostasis by activation of chaperone-like holdases through N-chlorination. After discussing the role of individual proteins in the HOCl-defense, we will turn our attention to the examination of effects on host and pathogen on a systemic level. Recent studies using genetically encoded redox probes and redox proteomics highlight differences in redox homeostasis in host and pathogen and give first hints at potential cellular HOCl signaling beyond thiol-disulfide switch mechanisms.
Collapse
Affiliation(s)
- Marharyta Varatnitskaya
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adriana Degrossoli
- Faculty of Health Science - Health Science Department, Federal University of Lavras, Lavras, Brazil
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
43
|
Sánchez‐López C, Labadie N, Lombardo VA, Biglione FA, Manta B, Jacob RS, Gladyshev VN, Abdelilah‐Seyfried S, Selenko P, Binolfi A. An NMR‐Based Biosensor to Measure Stereospecific Methionine Sulfoxide Reductase Activities in Vitro and in Vivo**. Chemistry 2020; 26:14838-14843. [DOI: 10.1002/chem.202002645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Carolina Sánchez‐López
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Natalia Labadie
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Verónica A. Lombardo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
- Centro de Estudios Interdisciplinarios (CEI) Universidad Nacional de Rosario 2000 Rosario Argentina
| | - Franco A. Biglione
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Bruno Manta
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Facultad de Medicina Departamento de Bioquímica and Centro de Investigaciones Biomédicas Universidad de la República CP 11800 Montevideo Uruguay
| | - Reeba Susan Jacob
- Department of Biological Regulation Weizmann Institute of Science 234 Herzl Street 761000 Rehovot Israel
| | - Vadim N. Gladyshev
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Salim Abdelilah‐Seyfried
- Institute of Biochemistry and Biology Potsdam University 14476 Potsdam Germany
- Institute of Molecular Biology Hannover Medical School 30625 Hannover Germany
| | - Philipp Selenko
- Department of Biological Regulation Weizmann Institute of Science 234 Herzl Street 761000 Rehovot Israel
| | - Andres Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
- Plataforma Argentina de Biología EstructuralyMetabolómica (PLABEM) Ocampo y Esmeralda 2000 Rosario Argentina
| |
Collapse
|
44
|
Aledo JC, Aledo P. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment-Ex Vivo Versus In Vitro: A Computational Insight. Antioxidants (Basel) 2020; 9:antiox9100987. [PMID: 33066324 PMCID: PMC7602125 DOI: 10.3390/antiox9100987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Methionine oxidation plays a relevant role in cell signaling. Recently, we built a database containing thousands of proteins identified as sulfoxidation targets. Using this resource, we have now developed a computational approach aimed at characterizing the oxidation of human methionyl residues. We found that proteins oxidized in both cell-free preparations (in vitro) and inside living cells (ex vivo) were enriched in methionines and intrinsically disordered regions. However, proteins oxidized ex vivo tended to be larger and less abundant than those oxidized in vitro. Another distinctive feature was their subcellular localizations. Thus, nuclear and mitochondrial proteins were preferentially oxidized ex vivo but not in vitro. The nodes corresponding with ex vivo and in vitro oxidized proteins in a network based on gene ontology terms showed an assortative mixing suggesting that ex vivo oxidized proteins shared among them molecular functions and biological processes. This was further supported by the observation that proteins from the ex vivo set were co-regulated more often than expected by chance. We also investigated the sequence environment of oxidation sites. Glutamate and aspartate were overrepresented in these environments regardless the group. In contrast, tyrosine, tryptophan and histidine were clearly avoided but only in the environments of the ex vivo sites. A hypothetical mechanism of methionine oxidation accounts for these observations presented.
Collapse
|
45
|
The Cu(II) Reductase RclA Protects Escherichia coli against the Combination of Hypochlorous Acid and Intracellular Copper. mBio 2020; 11:mBio.01905-20. [PMID: 32994322 PMCID: PMC7527725 DOI: 10.1128/mbio.01905-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enterobacteria, including Escherichia coli, bloom to high levels in the gut during inflammation and strongly contribute to the pathology of inflammatory bowel diseases. To survive in the inflamed gut, E. coli must tolerate high levels of antimicrobial compounds produced by the immune system, including toxic metals like copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show that extracellular copper is a potent detoxifier of HOCl and that the widely conserved bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to copper(I), specifically protects E. coli against damage caused by the combination of HOCl and intracellular copper. E. coli lacking RclA was highly sensitive to HOCl when grown in the presence of copper and was defective in colonizing an animal host. Our results indicate that there is unexpected complexity in the interactions between antimicrobial toxins produced by innate immune cells and that bacterial copper status is a key determinant of HOCl resistance and suggest an important and previously unsuspected role for copper redox reactions during inflammation.IMPORTANCE During infection and inflammation, the innate immune system uses antimicrobial compounds to control bacterial populations. These include toxic metals, like copper, and reactive oxidants, including hypochlorous acid (HOCl). We have now found that RclA, a copper(II) reductase strongly induced by HOCl in proinflammatory Escherichia coli and found in many bacteria inhabiting epithelial surfaces, is required for bacteria to resist killing by the combination of intracellular copper and HOCl and plays an important role in colonization of an animal host. This finding indicates that copper redox chemistry plays a critical and previously underappreciated role in bacterial interactions with the innate immune system.
Collapse
|
46
|
Wohlgemuth F, Gomes RL, Singleton I, Rawson FJ, Avery SV. Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Front Microbiol 2020; 11:575157. [PMID: 33101251 PMCID: PMC7546784 DOI: 10.3389/fmicb.2020.575157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023] Open
Abstract
We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30–750 mg mL–1), commonly associated with harvested produce. Soil with high organic load (98 mg g–1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL–1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.
Collapse
Affiliation(s)
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
47
|
Integrated Analysis to Study the Relationship between Tumor-Associated Selenoproteins: Focus on Prostate Cancer. Int J Mol Sci 2020; 21:ijms21186694. [PMID: 32933107 PMCID: PMC7555134 DOI: 10.3390/ijms21186694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Selenoproteins are proteins that contain selenium within selenocysteine residues. To date, twenty-five mammalian selenoproteins have been identified; however, the functions of nearly half of these selenoproteins are unknown. Although alterations in selenoprotein expression and function have been suggested to play a role in cancer development and progression, few detailed studies have been carried out in this field. Network analyses and data mining of publicly available datasets on gene expression levels in different cancers, and the correlations with patient outcome, represent important tools to study the correlation between selenoproteins and other proteins present in the human interactome, and to determine whether altered selenoprotein expression is cancer type-specific, and/or correlated with cancer patient prognosis. Therefore, in the present study, we used bioinformatics approaches to (i) build up the network of interactions between twenty-five selenoproteins and identify the most inter-correlated proteins/genes, which are named HUB nodes; and (ii) analyze the correlation between selenoprotein gene expression and patient outcome in ten solid tumors. Then, considering the need to confirm by experimental approaches the correlations suggested by the bioinformatics analyses, we decided to evaluate the gene expression levels of the twenty-five selenoproteins and six HUB nodes in androgen receptor-positive (22RV1 and LNCaP) and androgen receptor-negative (DU145 and PC3) cell lines, compared to human nontransformed, and differentiated, prostate epithelial cells (EPN) by RT-qPCR analysis. This analysis confirmed that the combined evaluation of some selenoproteins and HUB nodes could have prognostic value and may improve patient outcome predictions.
Collapse
|
48
|
da Cruz Nizer WS, Inkovskiy V, Overhage J. Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms 2020; 8:E1220. [PMID: 32796669 PMCID: PMC7464077 DOI: 10.3390/microorganisms8081220] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 01/29/2023] Open
Abstract
Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization.
Collapse
Affiliation(s)
| | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; (W.S.d.C.N.); (V.I.)
| |
Collapse
|
49
|
Valverde H, Cantón FR, Aledo JC. MetOSite: an integrated resource for the study of methionine residues sulfoxidation. Bioinformatics 2020; 35:4849-4850. [PMID: 31197322 DOI: 10.1093/bioinformatics/btz462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/27/2019] [Accepted: 05/29/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The oxidation of protein-bound methionine to form methionine sulfoxide has traditionally been regarded as an oxidative damage. However, growing evidences support the view of this reversible reaction also as a regulatory post-translational modification. Thus, the oxidation of methionine residues has been reported to have multiple and varied implications for protein function. However, despite the importance of this modification and the abundance of reports, all these data are scattered in the literature. No database/resource on methionine sulfoxidation exists currently. Since this information is useful to gain further insights into the redox regulation of cellular proteins, we have created a primary database of experimentally confirmed sulfoxidation sites. RESULTS MetOSite currently contains 7242 methionine sulfoxide sites found in 3562 different proteins from 23 species, with Homo sapiens, Arabidopsis thaliana and Bacillus cereus as the main contributors. Each collected site has been classified according to the effect of its sulfoxidation on the biological properties of the modified protein. Thus, MetOSite documents cases where the sulfoxidation of methionine leads to (i) gain of activity, (ii) loss of activity, (iii) increased protein-protein interaction susceptibility, (iv) decreased protein-protein interaction susceptibility, (v) changes in protein stability and (vi) changes in subcellular location. AVAILABILITY AND IMPLEMENTATION MetOSite is available at https://metosite.uma.es.
Collapse
Affiliation(s)
- Héctor Valverde
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga 29071, Spain
| | - Francisco R Cantón
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga 29071, Spain
| | - Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
50
|
Jiang G, Zeng J, Li Z, Song Y, Yan H, He J, Jiang Y, Duan X. Redox Regulation of the NOR Transcription Factor Is Involved in the Regulation of Fruit Ripening in Tomato. PLANT PHYSIOLOGY 2020; 183:671-685. [PMID: 32234754 PMCID: PMC7271799 DOI: 10.1104/pp.20.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Transcription factors (TFs) are important regulators of plant growth and development and responses to stresses. TFs themselves are also prone to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of TFs in plants remains poorly understood. Here, we established that NON-RIPENING (NOR), a master TF regulating tomato (Solanum lycopersicum) fruit ripening, is a target of the Met sulfoxide reductases A and B, namely E4 and SlMsrB2, respectively, in tomato. Met oxidation in NOR, i.e. sulfoxidation, or mimicking sulfoxidation by mutating Met-138 to Gln, reduces its DNA-binding capacity and transcriptional regulatory activity in vitro. E4 and SlMsrB2 partially repair oxidized NOR and restore its DNA-binding capacity. Transgenic complementation of the nor mutant with NOR partially rescues the ripening defects. However, transformation of nor with NOR-M138Q, containing mimicked Met sulfoxidation, inhibits restoration of the fruit ripening phenotype, and this is associated with the decreased DNA-binding and transcriptional activation of a number of ripening-related genes. Taken together, these observations reveal a PTM mechanism by which Msr-mediated redox modification of NOR regulates the expression of ripening-related genes, thereby influencing tomato fruit ripening. Our report describes how sulfoxidation of TFs regulates developmental processes in plants.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jing Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huiling Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|