1
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00800-5. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Rolles B, Tometten M, Meyer R, Kirschner M, Beier F, Brümmendorf TH. Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:292-309. [PMID: 39371255 PMCID: PMC11452174 DOI: 10.1159/000540109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Telomeres are the end-capping structures of all eukaryotic chromosomes thereby protecting the genome from damage and degradation. During the aging process, telomeres shorten continuously with each cell division until critically short telomeres prevent further proliferation whereby cells undergo terminal differentiation, senescence, or apoptosis. Premature aging due to critically short telomere length (TL) can also result from pathogenic germline variants in the telomerase complex or related genes that typically counteract replicative telomere shortening in germline and certain somatic cell populations, e.g., hematopoetic stem cells. Inherited diseases that result in altered telomere maintenance are summarized under the term telomere biology disorder (TBD). Summary Since TL both reflects but more importantly restricts the replicative capacity of various human tissues, a sufficient telomere reserve is particularly important in cells with high proliferative activity (e.g., hematopoiesis, immune cells, intestinal cells, liver, lung, and skin). Consequently, altered telomere maintenance as observed in TBDs typically results in premature replicative cellular exhaustion in the respective organ systems eventually leading to life-threatening complications such as bone marrow failure (BMF), pulmonary fibrosis, and liver cirrhosis. Key Messages The recognition of a potential congenital origin in approximately 10% of adult patients with clinical BMF is of utmost importance for the proper diagnosis, appropriate patient and family counseling, to prevent the use of inefficient treatment and to avoid therapy-related toxicities including appropriate donor selection when patients have to undergo stem cell transplantation from related donors. This review summarizes the current state of knowledge about TBDs with particular focus on the clinical manifestation patterns in children (termed early onset TBD) compared to adults (late-onset TBD) including typical treatment- and disease course-related complications as well as their prognosis and adequate therapy. Thereby, it aims to raise awareness for a disease group that is currently still highly underdiagnosed particularly when it first manifests itself in adulthood.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
3
|
Tanshee RR, Mahmud Z, Nabi AHMN, Sayem M. A comprehensive in silico investigation into the pathogenic SNPs in the RTEL1 gene and their biological consequences. PLoS One 2024; 19:e0309713. [PMID: 39240887 PMCID: PMC11379182 DOI: 10.1371/journal.pone.0309713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Regulator of Telomere Helicase 1 (RTEL1) gene encodes a critical DNA helicase intricately involved in the maintenance of telomeric structures and the preservation of genomic stability. Germline mutations in the RTEL1 gene have been clinically associated with Hoyeraal-Hreidarsson syndrome, a more severe version of Dyskeratosis Congenita. Although various research has sought to link RTEL1 mutations to specific disorders, no comprehensive investigation has yet been conducted on missense mutations. In this study, we attempted to investigate the functionally and structurally deleterious coding and non-coding SNPs of the RTEL1 gene using an in silico approach. Initially, out of 1392 nsSNPs, 43 nsSNPs were filtered out through ten web-based bioinformatics tools. With subsequent analysis using nine in silico tools, these 43 nsSNPs were further shortened to 11 most deleterious nsSNPs. Furthermore, analyses of mutated protein structures, evolutionary conservancy, surface accessibility, domains & PTM sites, cancer susceptibility, and interatomic interaction revealed the detrimental effect of these 11 nsSNPs on RTEL1 protein. An in-depth investigation through molecular docking with the DNA binding sequence demonstrated a striking change in the interaction pattern for F15L, M25V, and G706R mutant proteins, suggesting the more severe consequences of these mutations on protein structure and functionality. Among the non-coding variants, two had the highest likelihood of being regulatory variants, whereas one variant was predicted to affect the target region of a miRNA. Thus, this study lays the groundwork for extensive analysis of RTEL1 gene variants in the future, along with the advancement of precision medicine and other treatment modalities.
Collapse
Affiliation(s)
- Rifah Rownak Tanshee
- Department of Mathematics and Natural Sciences, BRAC University, Badda, Dhaka, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Sayem
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
4
|
Cortone G, Graewert MA, Kanade M, Longo A, Hegde R, González‐Magaña A, Chaves‐Arquero B, Blanco FJ, Napolitano LMR, Onesti S. Structural and biochemical characterization of the C-terminal region of the human RTEL1 helicase. Protein Sci 2024; 33:e5093. [PMID: 39180489 PMCID: PMC11344278 DOI: 10.1002/pro.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 08/26/2024]
Abstract
RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.
Collapse
Affiliation(s)
- Giuseppe Cortone
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
- International School for Advanced Studies (SISSA)TriesteItaly
| | | | - Manil Kanade
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| | - Antonio Longo
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
- Department of ChemistryUniversità degli Studi di TriesteTriesteItaly
| | - Raghurama Hegde
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| | - Amaia González‐Magaña
- Instituto Biofisika and Departamento de Bioquímica y Biología Molecular (CSIC, UPV/EHU)University of the Basque CountryLeioaSpain
| | | | | | | | - Silvia Onesti
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| |
Collapse
|
5
|
Smoom R, May CL, Lichtental D, Skordalakes E, Kaestner KH, Tzfati Y. Separation of telomere protection from length regulation by two different point mutations at amino acid 492 of RTEL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582005. [PMID: 38464183 PMCID: PMC10925190 DOI: 10.1101/2024.02.26.582005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
RTEL1 is an essential DNA helicase that plays multiple roles in genome stability and telomere length regulation. A variant of RTEL1 with a lysine at position 492 is associated with short telomeres in Mus spretus , while a conserved methionine at this position is found in M. musculus , which has ultra-long telomeres. In humans, a missense mutation at this position ( Rtel1 M492I ) causes a fatal telomere biology disease termed Hoyeraal-Hreidarsson syndrome (HHS). Introducing the Rtel1 M492K mutation into M. musculus shortened the telomeres of the resulting strain, termed 'Telomouse', to the length of human telomeres. Here, we report on a mouse strain carrying the Rtel1 M492I mutation, termed 'HHS mouse'. The HHS mouse telomeres are not as short as those of Telomice but nevertheless they display higher levels of telomeric DNA damage, fragility and recombination, associated with anaphase bridges and micronuclei. These observations indicate that the two mutations separate critical functions of RTEL1: M492K mainly reduces the telomere length setpoint, while M492I predominantly disrupts telomere protection. The two mouse models enable dissecting the mechanistic roles of RTEL1 and the different contributions of short telomeres and DNA damage to telomere biology diseases, genomic instability, cancer, and aging.
Collapse
|
6
|
Chaudhari S, Acharya LP, Jasti DB, Ware AP, Gorthi SP, Satyamoorthy K. Discovery of a Novel Shared Variant Among RTEL1 Gene and RTEL1-TNFRSF6B lncRNA at Chromosome 20q13.33 in Familial Progressive Myoclonus Epilepsy. Int J Genomics 2024; 2024:7518528. [PMID: 39156922 PMCID: PMC11330336 DOI: 10.1155/2024/7518528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Methods: Clinical assessments and molecular analyses, such as the repeat expansion test for CSTB; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. Results: A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, KCNH8 [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 (RTEL1) [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, RTEL1-TNFRSF6B [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of RTEL1 and RTEL1-TNFRSF6B revealed that RTEL1-TNFRSF6B may modulate RTEL1 via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in SLC22A17 was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Conclusions: Our study is the first to report variants in KCNH8, RTEL1, and RTEL1-TNFRSF6B among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Lavanya Prakash Acharya
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Dushyanth Babu Jasti
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
| | - Akshay Pramod Ware
- Department of BioinformaticsManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Sankar Prasad Gorthi
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
- Department of NeurologyBharati Hospital and Research CenterBharati Vidyapeeth (Deemed to Be University) Medical College and Hospital, Dhankawadi 411043, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
- SDM College of Medical Sciences and HospitalShri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur 580009, Dharwad, Karnataka, India
| |
Collapse
|
7
|
Villa A, William WN, Hanna GJ. Cancer Precursor Syndromes and Their Detection in the Head and Neck. Hematol Oncol Clin North Am 2024; 38:813-830. [PMID: 38705773 DOI: 10.1016/j.hoc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This article explores the multifaceted landscape of oral cancer precursor syndromes. Hereditary disorders like dyskeratosis congenita and Fanconi anemia increase the risk of malignancy. Oral potentially malignant disorders, notably leukoplakia, are discussed as precursors influenced by genetic and immunologic facets. Molecular insights delve into genetic mutations, allelic imbalances, and immune modulation as key players in precancerous progression, suggesting potential therapeutic targets. The article navigates the controversial terrain of management strategies of leukoplakia, encompassing surgical resection, chemoprevention, and immune modulation, while emphasizing the ongoing challenges in developing effective, evidence-based preventive approaches.
Collapse
Affiliation(s)
- Alessandro Villa
- Oral Medicine, Oral Oncology and Dentistry, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive. Miami, FL 33176, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - William N William
- Thoracic Oncology Program, Grupo Oncoclínicas Grupo Oncoclínicas, Av. Pres. Juscelino Kubitschek, 510, 2º andar, São Paulo, São Paulo 04543-906, Brazil
| | - Glenn J Hanna
- Department of Medical Oncology, Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Dana Building, Room 2-140. Boston, MA 02215, USA.
| |
Collapse
|
8
|
Kumar N, Taneja A, Ghosh M, Rothweiler U, Sundaresan N, Singh M. Harmonin homology domain-mediated interaction of RTEL1 helicase with RPA and DNA provides insights into its recruitment to DNA repair sites. Nucleic Acids Res 2024; 52:1450-1470. [PMID: 38153196 PMCID: PMC10853778 DOI: 10.1093/nar/gkad1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
The regulator of telomere elongation helicase 1 (RTEL1) plays roles in telomere DNA maintenance, DNA repair, and genome stability by dismantling D-loops and unwinding G-quadruplex structures. RTEL1 comprises a helicase domain, two tandem harmonin homology domains 1&2 (HHD1 and HHD2), and a Zn2+-binding RING domain. In vitro D-loop disassembly by RTEL1 is enhanced in the presence of replication protein A (RPA). However, the mechanism of RTEL1 recruitment at non-telomeric D-loops remains unknown. In this study, we have unravelled a direct physical interaction between RTEL1 and RPA. Under DNA damage conditions, we showed that RTEL1 and RPA colocalise in the cell. Coimmunoprecipitation showed that RTEL1 and RPA interact, and the deletion of HHDs of RTEL1 significantly reduced this interaction. NMR chemical shift perturbations (CSPs) showed that RPA uses its 32C domain to interact with the HHD2 of RTEL1. Interestingly, HHD2 also interacted with DNA in the in vitro experiments. HHD2 structure was determined using X-ray crystallography, and NMR CSPs mapping revealed that both RPA 32C and DNA competitively bind to HHD2 on an overlapping surface. These results establish novel roles of accessory HHDs in RTEL1's functions and provide mechanistic insights into the RPA-mediated recruitment of RTEL1 to DNA repair sites.
Collapse
Affiliation(s)
- Niranjan Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Arushi Taneja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Ulli Rothweiler
- The Norwegian Structural Biology Centre, Department of Chemistry, The Arctic University of Norway, N-9037, Tromsø, Norway
| | | | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
9
|
Hourvitz N, Awad A, Tzfati Y. The many faces of the helicase RTEL1 at telomeres and beyond. Trends Cell Biol 2024; 34:109-121. [PMID: 37532653 DOI: 10.1016/j.tcb.2023.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Regulator of telomere elongation 1 (RTEL1) is known as a DNA helicase that is important for telomeres and genome integrity. However, the diverse phenotypes of RTEL1 dysfunction, the wide spectrum of symptoms caused by germline RTEL1 mutations, and the association of RTEL1 mutations with cancers suggest that RTEL1 is a complex machine that interacts with DNA, RNA, and proteins, and functions in diverse cellular pathways. We summarize the proposed functions of RTEL1 and discuss their implications for telomere maintenance. Studying RTEL1 is crucial for understanding the complex interplay between telomere maintenance and other nuclear pathways, and how compromising these pathways causes telomere biology diseases, various aging-associated pathologies, and cancer.
Collapse
Affiliation(s)
- Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Liao P, Yan B, Wang C, Lei P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis 2023; 15:2595-2631. [PMID: 38270117 PMCID: PMC11567242 DOI: 10.14336/ad.2023.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.
Collapse
Affiliation(s)
- Pan Liao
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ping Lei
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
11
|
Smoom R, May CL, Ortiz V, Tigue M, Kolev HM, Rowe M, Reizel Y, Morgan A, Egyes N, Lichtental D, Skordalakes E, Kaestner KH, Tzfati Y. Telomouse-a mouse model with human-length telomeres generated by a single amino acid change in RTEL1. Nat Commun 2023; 14:6708. [PMID: 37872177 PMCID: PMC10593777 DOI: 10.1038/s41467-023-42534-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
Telomeres, the ends of eukaryotic chromosomes, protect genome integrity and enable cell proliferation. Maintaining optimal telomere length in the germline and throughout life limits the risk of cancer and enables healthy aging. Telomeres in the house mouse, Mus musculus, are about five times longer than human telomeres, limiting the use of this common laboratory animal for studying the contribution of telomere biology to aging and cancer. We identified a key amino acid variation in the helicase RTEL1, naturally occurring in the short-telomere mouse species M. spretus. Introducing this variation into M. musculus is sufficient to reduce the telomere length set point in the germline and generate mice with human-length telomeres. While these mice are fertile and appear healthy, the regenerative capacity of their colonic epithelium is compromised. The engineered Telomouse reported here demonstrates a dominant role of RTEL1 in telomere length regulation and provides a unique model for aging and cancer.
Collapse
Affiliation(s)
- Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Lee May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Ortiz
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Tigue
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah M Kolev
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melissa Rowe
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yitzhak Reizel
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, 3200003, Israel
| | - Ashleigh Morgan
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nachshon Egyes
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dan Lichtental
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Emmanuel Skordalakes
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, VA, 23298, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
12
|
Rakotopare J, Lejour V, Duval C, Eldawra E, Escoffier H, Toledo F. A systematic approach identifies p53-DREAM pathway target genes associated with blood or brain abnormalities. Dis Model Mech 2023; 16:dmm050376. [PMID: 37661832 PMCID: PMC10581385 DOI: 10.1242/dmm.050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Carla Duval
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | | | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| |
Collapse
|
13
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
14
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Tobai H, Endo M, Ishimura M, Moriya K, Yano J, Kanamori K, Sato N, Amanuma F, Maruyama H, Muramatsu H, Shibahara J, Narita M, Fumoto S, Peltier D, Ohga S. Neonatal intestinal obstruction in Hoyeraal-Hreidarsson syndrome with novel RTEL1 variants. Pediatr Blood Cancer 2023; 70:e30250. [PMID: 36776130 DOI: 10.1002/pbc.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023]
Affiliation(s)
- Hiromi Tobai
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Mikiya Endo
- Department of Pediatrics, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Kunihiko Moriya
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan.,Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Jun Yano
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Keita Kanamori
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Norio Sato
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Fumitaka Amanuma
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Hidekazu Maruyama
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Japan
| | - Masami Narita
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Japan
| | - Seiko Fumoto
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Japan
| | - Daniel Peltier
- Pediatric Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| |
Collapse
|
16
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Hassani MA, Murid J, Yan J. Regulator of telomere elongation helicase 1 gene and its association with malignancy. Cancer Rep (Hoboken) 2022; 6:e1735. [PMID: 36253342 PMCID: PMC9875622 DOI: 10.1002/cnr2.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With the progression of next-generation sequencing technologies, researchers have identified numerous variants of the regulator of telomere elongation helicase 1 (RTEL1) gene that are associated with a broad spectrum of phenotypic manifestations, including malignancies. At the molecular level, RTEL1 is involved in the regulation of the repair, replication, and transcription of deoxyribonucleic acid (DNA) and the maintenance of telomere length. RTEL1 can act both as a promotor and inhibitor of tumorigenesis. Here, we review the potential mechanisms implicated in the malignant transformation of tissues under conditions of RTEL1 deficiency or its aberrant overexpression. RECENT FINDINGS A major hemostatic challenge during RTEL1 dysfunction could arise from its unbalanced activity for unwinding guanine-rich quadruplex DNA (G4-DNA) structures. In contrast, RTEL1 deficiency leads to alterations in telomeric and genome-wide DNA maintenance mechanisms, ribonucleoprotein metabolism, and the creation of an inflammatory and immune-deficient microenvironment, all promoting malignancy. Additionally, we hypothesize that functionally similar molecules could act to compensate for the deteriorated functions of RTEL1, thereby facilitating the survival of malignant cells. On the contrary, RTEL1 over-expression was directed toward G4-unwinding, by promoting replication fork progression and maintaining intact telomeres, may facilitate malignant transformation and proliferation of various pre-malignant cellular compartments. CONCLUSIONS Therefore, restoring the equilibrium of RTEL1 functions could serve as a therapeutic approach for preventing and treating malignancies.
Collapse
Affiliation(s)
- Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jamshid Murid
- Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Diamond Bay Institute of HematologySecond Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
18
|
Milardi G, Di Lorenzo B, Gerosa J, Barzaghi F, Di Matteo G, Omrani M, Jofra T, Merelli I, Barcella M, Filippini M, Conti A, Ferrua F, Pozzo Giuffrida F, Dionisio F, Rovere‐Querini P, Marktel S, Assanelli A, Piemontese S, Brigida I, Zoccolillo M, Cirillo E, Giardino G, Danieli MG, Specchia F, Pacillo L, Di Cesare S, Giancotta C, Romano F, Matarese A, Chetta AA, Trimarchi M, Laurenzi A, De Pellegrin M, Darin S, Montin D, Marinoni M, Dellepiane RM, Sordi V, Lougaris V, Vacca A, Melzi R, Nano R, Azzari C, Bongiovanni L, Pignata C, Cancrini C, Plebani A, Piemonti L, Petrovas C, Di Micco R, Ponzoni M, Aiuti A, Cicalese MP, Fousteri G. Follicular helper T cell signature of replicative exhaustion, apoptosis, and senescence in common variable immunodeficiency. Eur J Immunol 2022; 52:1171-1189. [PMID: 35562849 PMCID: PMC9542315 DOI: 10.1002/eji.202149480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary antibody deficiency whereby follicular helper T (Tfh) cells fail to establish productive responses with B cells in germinal centers. Here, we analyzed the frequency, phenotype, transcriptome, and function of circulating Tfh (cTfh) cells in CVID patients displaying autoimmunity as an additional phenotype. A group of patients showed a high frequency of cTfh1 cells and a prominent expression of PD-1 and ICOS as well as a cTfh mRNA signature consistent with highly activated, but exhausted, senescent, and apoptotic cells. Plasmatic CXCL13 levels were elevated in this group and positively correlated with cTfh1 cell frequency and PD-1 levels. Monoallelic variants in RTEL1, a telomere length- and DNA repair-related gene, were identified in four patients belonging to this group. Their blood lymphocytes showed shortened telomeres, while their cTfh were more prone to apoptosis. These data point toward a novel pathogenetic mechanism in CVID, whereby alterations in DNA repair and telomere elongation might predispose to antibody deficiency. A Th1, highly activated but exhausted and apoptotic cTfh phenotype was associated with this form of CVID.
Collapse
Affiliation(s)
- Giulia Milardi
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Biagio Di Lorenzo
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Jolanda Gerosa
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor VergataVia Cracovia 50Rome00133Italy
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of PediatricsBambino Gesù Children's HospitalIRCCSPiazza di Sant'Onofrio 4Rome00165Italy
| | - Maryam Omrani
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Department of Computer Science, Systems and Communication, University of Milano‐BicoccaPiazza dell'Ateneo Nuovo 1Milan20126Italy
| | - Tatiana Jofra
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Ivan Merelli
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Department of BioinformaticsInstitute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi 93Segrate20090Italy
| | - Matteo Barcella
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Matteo Filippini
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Anastasia Conti
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Francesco Pozzo Giuffrida
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Francesca Dionisio
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Patrizia Rovere‐Querini
- Department of ImmunologyTransplantation and Infectious DiseasesIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Simona Piemontese
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Immacolata Brigida
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Matteo Zoccolillo
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Emilia Cirillo
- Department of Translational Medical SciencesSection of PediatricsFederico II University of NaplesCorso Umberto I, 40, 80138Italy
| | - Giuliana Giardino
- Department of Translational Medical SciencesSection of PediatricsFederico II University of NaplesCorso Umberto I, 40, 80138Italy
| | - Maria Giovanna Danieli
- Department of Clinical and Molecular SciencesMarche Polytechnic University of AnconaClinica MedicaVia Tronto 10/aAncona60126Italy
| | - Fernando Specchia
- Department of PediatricsS. Orsola‐Malpighi HospitalUniversity of BolognaVia Giuseppe Massarenti 9Bologna40138Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor VergataVia Cracovia 50Rome00133Italy
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of PediatricsBambino Gesù Children's HospitalIRCCSPiazza di Sant'Onofrio 4Rome00165Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor VergataVia Cracovia 50Rome00133Italy
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of PediatricsBambino Gesù Children's HospitalIRCCSPiazza di Sant'Onofrio 4Rome00165Italy
| | - Carmela Giancotta
- Department of Systems Medicine, University of Rome Tor VergataVia Cracovia 50Rome00133Italy
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of PediatricsBambino Gesù Children's HospitalIRCCSPiazza di Sant'Onofrio 4Rome00165Italy
| | - Francesca Romano
- Pediatric Immunology DivisionDepartment of PediatricsAnna Meyer Children's University HospitalViale Gaetano Pieraccini 24Florence50139Italy
| | - Alessandro Matarese
- Department of Respiratory MedicineSanti AntonioBiagio and Cesare Arrigo HospitalVia Venezia 16Alessandria15121Italy
| | - Alfredo Antonio Chetta
- Department of Medicine and SurgeryRespiratory Disease and Lung Function UnitUniversity of ParmaStr. dell'Università 12Parma43121Italy
| | - Matteo Trimarchi
- Otorhinolaryngology Unit, Head and Neck Department, IRCCS San Raffaele Scientific InstituteVia Olgettina 60Milan20132Italy
- Pathology UnitIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Andrea Laurenzi
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Maurizio De Pellegrin
- Unit of Orthopaedics, IRCCS San Raffaele Scientific InstituteVia Olgettina 60Milan20132Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Davide Montin
- Department of Pediatrics and Public HealthRegina Margherita HospitalPiazza Polonia 94Turin10126Italy
| | - Maddalena Marinoni
- Pediatric UnitOspedale “F. Del Ponte”Via Filippo del Ponte 19Varese21100Italy
| | - Rosa Maria Dellepiane
- Department of PediatricsFondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoUniversity of MilanVia Francesco Sforza 35Milan20122Italy
| | - Valeria Sordi
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental SciencesPediatrics Clinic and Institute for Molecular Medicine A. NocivelliUniversity of BresciaPiazza del Mercato 15Brescia25121Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human OncologyUniversity of Bari Medical SchoolPiazza Umberto I, 1Bari70121Italy
| | - Raffaella Melzi
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Rita Nano
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Chiara Azzari
- Pediatric Immunology DivisionDepartment of PediatricsAnna Meyer Children's University HospitalViale Gaetano Pieraccini 24Florence50139Italy
| | - Lucia Bongiovanni
- Pathology UnitIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Claudio Pignata
- Department of Translational Medical SciencesSection of PediatricsFederico II University of NaplesCorso Umberto I, 40, 80138Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor VergataVia Cracovia 50Rome00133Italy
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of PediatricsBambino Gesù Children's HospitalIRCCSPiazza di Sant'Onofrio 4Rome00165Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental SciencesPediatrics Clinic and Institute for Molecular Medicine A. NocivelliUniversity of BresciaPiazza del Mercato 15Brescia25121Italy
| | - Lorenzo Piemonti
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Faculty of MedicineUniversity Vita‐Salute San RaffaeleVia Olgettina 60Milan20132Italy
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology LaboratoryVaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of Health9000 Rockville PikeBethesdaMD20892USA
| | - Raffaella Di Micco
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Maurilio Ponzoni
- Pathology UnitIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Faculty of MedicineUniversity Vita‐Salute San RaffaeleVia Olgettina 60Milan20132Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Faculty of MedicineUniversity Vita‐Salute San RaffaeleVia Olgettina 60Milan20132Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
- Pathogenesis and therapy of primary immunodeficiencies UnitSan Raffaele Telethon Institute for Gene TherapySr‐TIGETIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| | - Georgia Fousteri
- Division of Immunology, Transplantation, and Infectious DiseasesDiabetes Research InstituteIRCCS San Raffaele HospitalVia Olgettina 60Milan20132Italy
| |
Collapse
|
19
|
Yuan H, Wu Y, Wang J, Qin X, Huang Y, Yan L, Fana Y, Zedenius J, Juhlin CC, Larsson C, Lui WO, Xu D. Synergistic effects of telomerase reverse transcriptase and regulator of telomere elongation helicase 1 on aggressiveness and outcomes in adrenocortical carcinoma. Biomed Pharmacother 2022; 149:112796. [PMID: 35279598 DOI: 10.1016/j.biopha.2022.112796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is one of the deadliest endocrine malignancies and telomere maintenance by activated telomerase is critically required for ACC development and progression. Because telomerase reverse transcriptase (TERT) and regulator of telomere elongation helicase 1 (RTEL1) play key roles in telomere homeostasis, we determined their effect on ACC pathogenesis and outcomes. Analyses of TCGA and GEO datasets showed significantly higher expression of RTEL1 but not TERT in ACC tumors, compared to their benign or normal counterparts. Furthermore, gains/amplifications of both TERT and RTEL1 genes were widespread in ACC tumors and their expression correlated with their gene copy numbers. Higher expression of either TERT or RTEL1 was associated with shorter overall and progression-free survival (OS and PFS) in the TCGA ACC patient cohort, and higher levels of both TERT and RTEL1 mRNA predicted the shortest patient OS and PFS. However, multivariate analyses showed that only RTEL1 independently predicted patient OS and PFS. Gene set enrichment analysis further showed enrichments of wnt/β-catenin, MYC, glycolysis, MTOR, and DNA repair signaling pathways in ACC tumors expressing high TERT and RTEL1 mRNA levels. Taken together, TERT and RTEL1 promote ACC aggressiveness synergistically and may serve as prognostic factors and therapeutic targets for ACC.
Collapse
Affiliation(s)
- Huiyang Yuan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yujiao Wu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden
| | - Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Xin Qin
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongsheng Huang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Yidong Fana
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden.
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden
| | - C Christofer Juhlin
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden.
| |
Collapse
|
20
|
Kermasson L, Churikov D, Awad A, Smoom R, Lainey E, Touzot F, Audebert-Bellanger S, Haro S, Roger L, Costa E, Mouf M, Bottero A, Oleastro M, Abdo C, de Villartay JP, Géli V, Tzfati Y, Callebaut I, Danielian S, Soares G, Kannengiesser C, Revy P. Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood 2022; 139:2427-2440. [PMID: 35007328 PMCID: PMC11022855 DOI: 10.1182/blood.2021010791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.
Collapse
Affiliation(s)
- Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Dmitri Churikov
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-Assistance Publique-Hôpitaux de Paris (APHP); INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Fabien Touzot
- Department of Immunology-Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire (CHU), Sainte Justine Research Center, Université de Montréal, Montréal, Quebec, Canada
| | | | - Sophie Haro
- Department of Paediatrics and Medical Genetics, CHU de Brest, Brest, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, “Muséum National d'Histoire Naturelle” (MNHN), INSERM U1154, CNRS UMR 7196, Paris, France
| | - Emilia Costa
- Serviço de Pediatria, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Maload Mouf
- 68HAL Meddle Laboratory, Zenon Skelter Institute, Green Hills, Eggum, Norway
| | | | - Matias Oleastro
- Rheumathology and Immunology Service, Hospital Nacional de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Chrystelle Abdo
- Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris and Institut Necker Enfants Malades, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Vincent Géli
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Isabelle Callebaut
- UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Silvia Danielian
- Department of Immunology, JP Garrahan National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Gabriela Soares
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Caroline Kannengiesser
- Service de Génétique, Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Université Paris Diderot, Paris, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
21
|
Kumar N, Ghosh M, Manikandan P, Basak S, Deepa A, Singh M. Resonance assignment and secondary structure of the tandem harmonin homology domains of human RTEL1. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:159-164. [PMID: 35320499 DOI: 10.1007/s12104-022-10074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Regulator of telomere elongation helicase 1 (RTEL1) is an Fe-S cluster containing DNA helicase that plays important roles in telomere DNA maintenance, DNA repair, and genomic stability. It is a modular protein comprising an N-terminal helicase domain, two tandem harmonin homology domains 1 & 2 (HHD1 and HHD2), and a C-terminal C4C4 type RING domain. The N-terminal helicase domain disassembles the telomere t/D-loop and unwinds the G-quadruplex via its helicase activity. The C-terminal RING domain interacts with telomere DNA binding protein TRF2 and helps RTEL1 recruitment to the telomere. The tandem HHD1 and HHD2 are characterized as a putative protein-protein interaction domain and have recently been shown to interact with a DNA repair protein SLX4. Several mutations associated with Hoyeraal-Hreidarsson syndrome and pulmonary fibrosis have been found in HHD1 and HHD2 of RTEL1. However, these domains have not been characterized for their structures. We have expressed and purified HHD1 and HHD2 of human RTEL1 for their characterization using solution NMR spectroscopy. Here, we report near complete backbone and sidechain 1H, 13C and 15N chemical shift assignments and secondary structure of the HHD1 and HHD2 domains of human RTEL1.
Collapse
Affiliation(s)
- Niranjan Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Sanmoyee Basak
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Akula Deepa
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
- Indian Institute of Technology, Hyderabad, 502285, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
22
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Lin CYG, Näger AC, Lunardi T, Vančevska A, Lossaint G, Lingner J. The human telomeric proteome during telomere replication. Nucleic Acids Res 2021; 49:12119-12135. [PMID: 34747482 PMCID: PMC8643687 DOI: 10.1093/nar/gkab1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Christina Näger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gérald Lossaint
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Baddock H, Newman J, Yosaatmadja Y, Bielinski M, Schofield C, Gileadi O, McHugh P. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res 2021; 49:9294-9309. [PMID: 34387694 PMCID: PMC8450094 DOI: 10.1093/nar/gkab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
The SNM1 nucleases which help maintain genome integrity are members of the metallo-β-lactamase (MBL) structural superfamily. Their conserved MBL-β-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | | | - Marcin Bielinski
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| |
Collapse
|
25
|
Vieri M, Brümmendorf TH, Beier F. Treatment of telomeropathies. Best Pract Res Clin Haematol 2021; 34:101282. [PMID: 34404536 DOI: 10.1016/j.beha.2021.101282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Telomeropathies or telomere biology disorders (TBDs) are a group of rare diseases characterised by altered telomere maintenance. Most patients with TBDs show pathogenic variants of genes that encode factors involved in the prevention of telomere shortening. Particularly in adults, TBDs mostly present themselves with heterogeneous clinical features that often include bone marrow failure, hepatopathies, interstitial lung disease and other organ sites. Different degrees of severity are also observed among patients with TBDs, ranging from very severe syndromes manifesting themselves in early childhood, such as Revesz syndrome, Hoyeraal-Hreidarsson syndrome, and Coats plus disease, to dyskeratosis congenita (DKC) and adult-onset "cryptic" forms of TBD, which often affect fewer organ systems. Overall, the most relevant clinical complications of TBD are bone marrow failure, lung fibrosis, and liver cirrhosis. In this review, we summarise recent advances in the management and treatment of TBD and provide a brief overview of the various treatment approaches.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
26
|
Blumhagen RZ, Schwartz DA, Langefeld CD, Fingerlin TE. Identification of Influential Variants in Significant Aggregate Rare Variant Tests. Hum Hered 2021; 85:1-13. [PMID: 33567433 PMCID: PMC8353006 DOI: 10.1159/000513290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Studies that examine the role of rare variants in both simple and complex disease are increasingly common. Though the usual approach of testing rare variants in aggregate sets is more powerful than testing individual variants, it is of interest to identify the variants that are plausible drivers of the association. We present a novel method for prioritization of rare variants after a significant aggregate test by quantifying the influence of the variant on the aggregate test of association. METHODS In addition to providing a measure used to rank variants, we use outlier detection methods to present the computationally efficient Rare Variant Influential Filtering Tool (RIFT) to identify a subset of variants that influence the disease association. We evaluated several outlier detection methods that vary based on the underlying variance measure: interquartile range (Tukey fences), median absolute deviation, and SD. We performed 1,000 simulations for 50 regions of size 3 kb and compared the true and false positive rates. We compared RIFT using the Inner Tukey to 2 existing methods: adaptive combination of p values (ADA) and a Bayesian hierarchical model (BeviMed). Finally, we applied this method to data from our targeted resequencing study in idiopathic pulmonary fibrosis (IPF). RESULTS All outlier detection methods observed higher sensitivity to detect uncommon variants (0.001 < minor allele frequency, MAF > 0.03) compared to very rare variants (MAF <0.001). For uncommon variants, RIFT had a lower median false positive rate compared to the ADA. ADA and RIFT had significantly higher true positive rates than that observed for BeviMed. When applied to 2 regions found previously associated with IPF including 100 rare variants, we identified 6 polymorphisms with the greatest evidence for influencing the association with IPF. DISCUSSION In summary, RIFT has a high true positive rate while maintaining a low false positive rate for identifying polymorphisms influencing rare variant association tests. This work provides an approach to obtain greater resolution of the rare variant signals within significant aggregate sets; this information can provide an objective measure to prioritize variants for follow-up experimental studies and insight into the biological pathways involved.
Collapse
Affiliation(s)
- Rachel Z Blumhagen
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA,
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA,
| | - David A Schwartz
- School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
- School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
27
|
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine SPR, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. eLife 2021; 10:70452. [PMID: 34545807 PMCID: PMC8492063 DOI: 10.7554/elife.70452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Colin D Veal
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Andrei J Parker
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Diana Martin
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Simon PR Romaine
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom,NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center GroningenGroningenNetherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec CityQuébecCanada
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Nicola J Royle
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
28
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Wang T, Zhang Y, Cui B, Wang M, Li Y, Gao K. miR-4530 inhibits the malignant biological behaviors of human glioma cells by directly targeting RTEL1. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1394-1403. [PMID: 33200790 DOI: 10.1093/abbs/gmaa126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/14/2022] Open
Abstract
Human glioma is the most common primary brain tumor and is associated with high morbidity and mortality. Aberrant expressions of microRNAs (miRNAs) are involved in glioma progression. In the present study, we aimed to elucidate the roles of miR-4530 in the pathogenesis of gliomas. miR-4530 expression was examined in human glioma clinical tissues and cell lines including U251 and T98G. The target gene of miR-4530, RTEL1, was predicted with online tools and validated by luciferase reporter assay. Lentivirus infection, transfection of plasmids, and miRNA mimics were used to manipulate gene expression. Cell proliferation was determined using the CCK-8 method, and migration and invasion assays were determined with transwell experiments. Colony formation was measured by crystal violet staining, while apoptosis was determined by Annexin V/PI staining. The anti-tumor effects of miR-4530 were evaluated in nude mice xenografted using U251 cells. Our results showed that miR-4530 was significantly down-regulated in human glioma tissues and cell lines. miR-4530 over-expression inhibited the malignant behaviors of U251 and T98G cells, including reduced proliferation, diminished colony formation, migration and invasion, and increased apoptosis. Further mechanistic investigations revealed that RTEL1 is a direct functional target of miR-4530 in gliomas, and its over-expression remarkably reverses the effects of miR-4530 mimics on inhibiting these malignant behaviors. In addition, miR-4530 over-expression inhibited the growth of xenografted U251 glioma in nude mice. Therefore, miR-4530 acts as a tumor-suppressor gene and inhibits the malignant biological behaviors of human glioma cells, which is associated with directly targeting RTEL1. The miR-4530/RTEL1 axis is a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Zhang
- Department of Operation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Cui
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Maode Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ya Li
- Department of Anesthesia Surgery, Affiliated Baoji Hospital of Xi'an Medical University, Baoji 721006, China
| | - Ke Gao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
30
|
Drosopoulos WC, Deng Z, Twayana S, Kosiyatrakul ST, Vladimirova O, Lieberman PM, Schildkraut CL. TRF2 Mediates Replication Initiation within Human Telomeres to Prevent Telomere Dysfunction. Cell Rep 2020; 33:108379. [PMID: 33176153 PMCID: PMC7790361 DOI: 10.1016/j.celrep.2020.108379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
The telomeric shelterin protein telomeric repeat-binding factor 2 (TRF2) recruits origin recognition complex (ORC) proteins, the foundational building blocks of DNA replication origins, to telomeres. We seek to determine whether TRF2-recruited ORC proteins give rise to functional origins in telomere repeat tracts. We find that reduction of telomeric recruitment of ORC2 by expression of an ORC interaction-defective TRF2 mutant significantly reduces telomeric initiation events in human cells. This reduction in initiation events is accompanied by telomere repeat loss, telomere aberrations and dysfunction. We demonstrate that telomeric origins are activated by induced replication stress to provide a key rescue mechanism for completing compromised telomere replication. Importantly, our studies also indicate that the chromatin remodeler SNF2H promotes telomeric initiation events by providing access for ORC2. Collectively, our findings reveal that active recruitment of ORC by TRF2 leads to formation of functional origins, providing an important mechanism for avoiding telomere dysfunction and rescuing challenged telomere replication.
Collapse
Affiliation(s)
- William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Shyam Twayana
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Settapong T Kosiyatrakul
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Olga Vladimirova
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
32
|
Ziv A, Werner L, Konnikova L, Awad A, Jeske T, Hastreiter M, Mitsialis V, Stauber T, Wall S, Kotlarz D, Klein C, Snapper SB, Tzfati Y, Weiss B, Somech R, Shouval DS. An RTEL1 Mutation Links to Infantile-Onset Ulcerative Colitis and Severe Immunodeficiency. J Clin Immunol 2020; 40:1010-1019. [PMID: 32710398 DOI: 10.1007/s10875-020-00829-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE More than 50 different monogenic disorders causing inflammatory bowel disease (IBD) have been identified. Our goal was to characterize the clinical phenotype, genetic workup, and immunologic alterations in an Ashkenazi Jewish patient that presented during infancy with ulcerative colitis and unique clinical manifestations. METHODS Immune workup and whole-exome sequencing were performed, along with Sanger sequencing for confirmation. Next-generation sequencing of the TCRB and IgH was conducted for immune repertoire analysis. Telomere length was evaluated by in-gel hybridization assay. Mass cytometry was performed on patient's peripheral blood mononuclear cells, and compared with control subjects and patients with UC. RESULTS The patient presented in infancy with failure to thrive and dysmorphic features, consistent with a diagnosis of dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Severe ulcerative colitis manifested in the first year of life and proceeded to the development of a primary immunodeficiency, presenting as Pneumocystis jiroveci pneumonia and hypogammaglobulinemia. Genetic studies identified a deleterious homozygous C.3791G>A missense mutation in the helicase regulator of telomere elongation 1 (RTEL1), leading to short telomeres in the index patient. Immune repertoire studies showed polyclonal T and B cell receptor distribution, while mass cytometry analysis demonstrated marked immunological alterations, including a predominance of naïve T cells, paucity of B cells, and a decrease in various innate immune subsets. CONCLUSIONS RTEL1 mutations are associated with significant alterations in immune landscape and can manifest with infantile-onset IBD. A high index of suspicion is required in Ashkenazi Jewish families where the carriage rate of the C.3791G>A variant is high.
Collapse
Affiliation(s)
- Alma Ziv
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tim Jeske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Hastreiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tali Stauber
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sarah Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Awad A, Glousker G, Lamm N, Tawil S, Hourvitz N, Smoom R, Revy P, Tzfati Y. Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase. Nucleic Acids Res 2020; 48:7239-7251. [PMID: 32542379 PMCID: PMC7367169 DOI: 10.1093/nar/gkaa503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and distinguish them from broken DNA ends to suppress DNA damage response, cell cycle arrest and genomic instability. Telomeres are elongated by telomerase to compensate for incomplete replication and nuclease degradation and to extend the proliferation potential of germ and stem cells and most cancers. However, telomeres in somatic cells gradually shorten with age, ultimately leading to cellular senescence. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and diverse symptoms including bone marrow failure, immunodeficiency, and neurodevelopmental defects. HHS is caused by germline mutations in telomerase subunits, factors essential for its biogenesis and recruitment to telomeres, and in the helicase RTEL1. While diverse phenotypes were associated with RTEL1 deficiency, the telomeric role of RTEL1 affected in HHS is yet unknown. Inducible ectopic expression of wild-type RTEL1 in patient fibroblasts rescued the cells, enabled telomerase-dependent telomere elongation and suppressed the abnormal cellular phenotypes, while silencing its expression resulted in gradual telomere shortening. Our observations reveal an essential role of the RTEL1 C-terminus in facilitating telomerase action at the telomeric 3' overhang. Thus, the common etiology for HHS is the compromised telomerase action, resulting in telomere shortening and reduced lifespan of telomerase positive cells.
Collapse
Affiliation(s)
- Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Lamm
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Shadi Tawil
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Tomáška Ľ, Cesare AJ, AlTurki TM, Griffith JD. Twenty years of t-loops: A case study for the importance of collaboration in molecular biology. DNA Repair (Amst) 2020; 94:102901. [PMID: 32620538 DOI: 10.1016/j.dnarep.2020.102901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Collaborative studies open doors to breakthroughs otherwise unattainable by any one laboratory alone. Here we describe the initial collaboration between the Griffith and de Lange laboratories that led to thinking about the telomere as a DNA template for homologous recombination, the proposal of telomere looping, and the first electron micrographs of t-loops. This was followed by collaborations that revealed t-loops across eukaryotic phyla. The Griffith and Tomáška/Nosek collaboration revealed circular telomeric DNA (t-circles) derived from the linear mitochondrial chromosomes of nonconventional yeast, which spurred discovery of t-circles in ALT-positive human cells. Collaborative work between the Griffith and McEachern labs demonstrated t-loops and t-circles in a series of yeast species. The de Lange and Zhuang laboratories then applied super-resolution light microscopy to demonstrate a genetic role for TRF2 in loop formation. Recent work from the Griffith laboratory linked telomere transcription with t-loop formation, providing a new model of the t-loop junction. A recent collaboration between the Cesare and Gaus laboratories utilized super-resolution light microscopy to provide details about t-loops as protective elements, followed by the Boulton and Cesare laboratories showing how cell cycle regulation of TRF2 and RTEL enables t-loop opening and reformation to promote telomere replication. Twenty years after the discovery of t-loops, we reflect on the collective history of their research as a case study in collaborative molecular biology.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215, Bratislava, Slovakia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Taghreed M AlTurki
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
35
|
Telomere replication-When the going gets tough. DNA Repair (Amst) 2020; 94:102875. [PMID: 32650286 DOI: 10.1016/j.dnarep.2020.102875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Telomeres consist of repetitive tracts of DNA that shield a chromosome's contents from erosion and replicative attrition. However, telomeres are also late-replicating regions of the genome in which a myriad of replicative obstructions reside. The obstacles contained within telomeres, as well as their genomic location, drive replicative stalling and subsequent fork collapse in these regions. Consequently, large scale deletions, under-replicated DNA, translocations, and fusion events arise following telomere replication failure. Further, under-replicated DNA and telomere fusions that are permitted to enter mitosis will produce mitotic DNA bridges - known drivers of genetic loss and chromothripsis. Thus, aberrant telomere replication promotes genomic instability, which, in turn leads either to cellular death, senescence or oncogenic transformation. The importance of these issues for organismal well-being necessitates a need for resolute telomere maintenance. Here, we describe recent advances in identifying and understanding the molecular mechanisms that are in place in human cells to escort the replisome through the telomere's unwieldy structures and repetitive sequences. Finally, we review the pathways that combat the deleterious outcomes that occur when telomeric replication forks do collapse.
Collapse
|
36
|
Björkman A, Johansen SL, Lin L, Schertzer M, Kanellis DC, Katsori AM, Christensen ST, Luo Y, Andersen JS, Elsässer SJ, Londono-Vallejo A, Bartek J, Schou KB. Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev 2020; 34:1065-1074. [PMID: 32561545 PMCID: PMC7397856 DOI: 10.1101/gad.330050.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
In this study from Björkman et al., the authors sought to understand how RTEL1 helicase preserves genomic stability during replication. They demonstrate that RTEL1 and the Polδ subunit Poldip3 form a complex and are mutually dependent in chromatin binding after replication stress, and loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, thus highlighting a previously unknown role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect. RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.
Collapse
Affiliation(s)
- Andrea Björkman
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren L Johansen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Mike Schertzer
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Dimitris C Kanellis
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Anna-Maria Katsori
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren T Christensen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Simon J Elsässer
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Arturo Londono-Vallejo
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden.,Danish Cancer Society Research Centre, DK-2100 Copenhagen, Denmark
| | - Kenneth B Schou
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| |
Collapse
|
37
|
Wu W, Bhowmick R, Vogel I, Özer Ö, Ghisays F, Thakur RS, Sanchez de Leon E, Richter PH, Ren L, Petrini JH, Hickson ID, Liu Y. RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat Struct Mol Biol 2020; 27:424-437. [PMID: 32398827 DOI: 10.1038/s41594-020-0408-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Oncogene activation during tumorigenesis generates DNA replication stress, a known driver of genome rearrangements. In response to replication stress, certain loci, such as common fragile sites and telomeres, remain under-replicated during interphase and subsequently complete locus duplication in mitosis in a process known as 'MiDAS'. Here, we demonstrate that RTEL1 (regulator of telomere elongation helicase 1) has a genome-wide role in MiDAS at loci prone to form G-quadruplex-associated R-loops, in a process that is dependent on its helicase function. We reveal that SLX4 is required for the timely recruitment of RTEL1 to the affected loci, which in turn facilitates recruitment of other proteins required for MiDAS, including RAD52 and POLD3. Our findings demonstrate that RTEL1 is required for MiDAS and suggest that RTEL1 maintains genome stability by resolving conflicts that can arise between the replication and transcription machineries.
Collapse
Affiliation(s)
- Wei Wu
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Rahul Bhowmick
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Vogel
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Özgün Özer
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- Institute of Cancer Research, London, UK
| | - Fiorella Ghisays
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Roshan S Thakur
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Esther Sanchez de Leon
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Philipp H Richter
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Liqun Ren
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- The Basic Medical Research Institute, Chengde Medical University, Chengde, China
| | - John H Petrini
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ian D Hickson
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| | - Ying Liu
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis 2020; 11:238. [PMID: 32303682 PMCID: PMC7165179 DOI: 10.1038/s41419-020-2421-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Approximately half of all cases of Hoyeraal–Hreidarsson syndrome (HHS), a multisystem disorder characterized by bone marrow failure, developmental defects and very short telomeres, are caused by germline mutations in genes related to telomere biology. However, the varying symptoms and severity of the disease indicate that additional mechanisms are involved. Here, a 3-year-old boy with HHS was found to carry biallelic germline mutations in WRAP53 (WD40 encoding RNA antisense to p53), that altered two highly conserved amino acids (L283F and R398W) in the WD40 scaffold domain of the protein encoded. WRAP53β (also known as TCAB1 or WDR79) is involved in intracellular trafficking of telomerase, Cajal body functions and DNA repair. We found that both mutations cause destabilization, mislocalization and faulty interactions of WRAP53β, defects linked to misfolding by the TRiC chaperonin complex. Consequently, WRAP53β HHS mutants cannot elongate telomeres, maintain Cajal bodies or repair DNA double-strand breaks. These findings provide a molecular explanation for the pathogenesis underlying WRAP53β-associated HHS and highlight the potential contribution of DNA damage and/or defects in Cajal bodies to the early onset and/or severity of this disease.
Collapse
|
39
|
Qiu C, Yu F, Su K, Zhao Q, Zhang L, Xu C, Hu W, Wang Z, Zhao L, Tian Q, Wang Y, Deng H, Shen H. Multi-omics Data Integration for Identifying Osteoporosis Biomarkers and Their Biological Interaction and Causal Mechanisms. iScience 2020; 23:100847. [PMID: 32058959 PMCID: PMC6997862 DOI: 10.1016/j.isci.2020.100847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is characterized by low bone mineral density (BMD). The advancement of high-throughput technologies and integrative approaches provided an opportunity for deciphering the mechanisms underlying osteoporosis. Here, we generated genomic, transcriptomic, methylomic, and metabolomic datasets from 119 subjects with high (n = 61) and low (n = 58) BMDs. By adopting sparse multiple discriminative canonical correlation analysis, we identified an optimal multi-omics biomarker panel with 74 differentially expressed genes (DEGs), 75 differentially methylated CpG sites (DMCs), and 23 differential metabolic products (DMPs). By linking genetic data, we identified 199 targeted BMD-associated expression/methylation/metabolite quantitative trait loci (eQTLs/meQTLs/metaQTLs). The reconstructed networks/pathways showed extensive biomarker interactions, and a substantial proportion of these biomarkers were enriched in RANK/RANKL, MAPK/TGF-β, and WNT/β-catenin pathways and G-protein-coupled receptor, GTP-binding/GTPase, telomere/mitochondrial activities that are essential for bone metabolism. Five biomarkers (FADS2, ADRA2A, FMN1, RABL2A, SPRY1) revealed causal effects on BMD variation. Our study provided an innovative framework and insights into the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Kuanjui Su
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis 38163, TN, USA
| | - Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, OK, USA
| | - Wenxing Hu
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Zun Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Lanjuan Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA.
| |
Collapse
|
40
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
41
|
Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis. Nat Commun 2019; 10:5479. [PMID: 31792215 PMCID: PMC6889149 DOI: 10.1038/s41467-019-13448-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres cap the physical ends of eukaryotic chromosomes to ensure complete DNA replication and genome stability. Heritable natural variation in telomere length exists in yeast, mice, plants and humans at birth; however, major effect loci underlying such polymorphism remain elusive. Here, we employ quantitative trait locus (QTL) mapping and transgenic manipulations to identify genes controlling telomere length set point in a multi-parent Arabidopsis thaliana mapping population. We detect several QTL explaining 63.7% of the total telomere length variation in the Arabidopsis MAGIC population. Loss-of-function mutants of the NOP2A candidate gene located inside the largest effect QTL and of two other ribosomal genes RPL5A and RPL5B establish a shorter telomere length set point than wild type. These findings indicate that evolutionarily conserved components of ribosome biogenesis and cell proliferation pathways promote telomere elongation. Major effect loci controlling natural, heritable variation in telomere length are not known. Here, the authors use QTL mapping and transgenic manipulations in Arabidopsis to implicate the rRNA-processing genes NOP2A and RPL5 in telomere length set point regulation in this model species.
Collapse
|
42
|
Lansdorp P, van Wietmarschen N. Helicases FANCJ, RTEL1 and BLM Act on Guanine Quadruplex DNA in Vivo. Genes (Basel) 2019; 10:genes10110870. [PMID: 31683575 PMCID: PMC6896191 DOI: 10.3390/genes10110870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/03/2023] Open
Abstract
Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.
Collapse
Affiliation(s)
- Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Dodson LM, Baldan A, Nissbeck M, Gunja SMR, Bonnen PE, Aubert G, Birchansky S, Virtanen A, Bertuch AA. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum Mutat 2019; 40:2414-2429. [PMID: 31448843 DOI: 10.1002/humu.23898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.
Collapse
Affiliation(s)
- Lois M Dodson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alessandro Baldan
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Mikael Nissbeck
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sethu M R Gunja
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Geraldine Aubert
- Repeat Diagnostics Inc., North Vancouver, British Columbia, Canada
| | - Sherri Birchansky
- Department of Radiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Anders Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
44
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A, Jean S, Cadungog MG, Borowsky ME, Drapkin R, Lieberman PM, Abate-Shen CT, Zhang R. ARID1A promotes genomic stability through protecting telomere cohesion. Nat Commun 2019; 10:4067. [PMID: 31492885 PMCID: PMC6731242 DOI: 10.1038/s41467-019-12037-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
ARID1A inactivation causes mitotic defects. Paradoxically, cancers with high ARID1A mutation rates typically lack copy number alterations (CNAs). Here, we show that ARID1A inactivation causes defects in telomere cohesion, which selectively eliminates gross chromosome aberrations during mitosis. ARID1A promotes the expression of cohesin subunit STAG1 that is specifically required for telomere cohesion. ARID1A inactivation causes telomere damage that can be rescued by STAG1 expression. Colony formation capability of single cells in G2/M, but not G1 phase, is significantly reduced by ARID1A inactivation. This correlates with an increase in apoptosis and a reduction in tumor growth. Compared with ARID1A wild-type tumors, ARID1A-mutated tumors display significantly less CNAs across multiple cancer types. Together, these results show that ARID1A inactivation is selective against gross chromosome aberrations through causing defects in telomere cohesion, which reconciles the long-standing paradox between the role of ARID1A in maintaining mitotic integrity and the lack of genomic instability in ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Bo Zhao
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianhuang Lin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Lijie Rong
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joseph Zundell
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Stephanie Jean
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark G Cadungog
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark E Borowsky
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Cory T Abate-Shen
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Porreca RM, Glousker G, Awad A, Matilla Fernandez MI, Gibaud A, Naucke C, Cohen SB, Bryan TM, Tzfati Y, Draskovic I, Londoño-Vallejo A. Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension. Nucleic Acids Res 2019. [PMID: 29522136 PMCID: PMC5961080 DOI: 10.1093/nar/gky173] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase.
Collapse
Affiliation(s)
- Rosa M Porreca
- Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244 Telomere and cancer lab, 75005 Paris, France
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem 91904, Israel
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem 91904, Israel
| | | | - Anne Gibaud
- Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244 Telomere and cancer lab, 75005 Paris, France
| | - Christian Naucke
- Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244 Telomere and cancer lab, 75005 Paris, France
| | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem 91904, Israel
| | - Irena Draskovic
- Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244 Telomere and cancer lab, 75005 Paris, France
| | - Arturo Londoño-Vallejo
- Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244 Telomere and cancer lab, 75005 Paris, France
| |
Collapse
|
47
|
Chiu V, Hogen R, Sher L, Wadé N, Conti D, Martynova A, Li H, Liang G, O'Connell C. Telomerase Variants in Patients with Cirrhosis Awaiting Liver Transplantation. Hepatology 2019; 69:2652-2663. [PMID: 30964210 PMCID: PMC6594079 DOI: 10.1002/hep.30557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/27/2019] [Indexed: 12/16/2022]
Abstract
Telomeres are repetitive DNA sequences that protect the ends of linear chromosomes, and they are maintained by a ribonucleoprotein complex called telomerase. Variants in genes encoding for telomerase components have been associated with a spectrum of disease in the lung, skin, bone marrow, and liver. Mutations in the telomerase reverse transcriptase and telomerase RNA component genes have been observed at a higher prevalence in patients with liver disease compared with the general population; however, the presence of variants in other components of the telomerase complex and their impact on clinical outcomes has not been explored. We evaluated 86 patients with end-stage liver disease for variants in an expanded panel of eight genes, and found that 17 patients (20%) had likely deleterious variants by in silico analysis. Seven unique likely deleterious variants were identified in the regulator of telomere elongation helicase 1 (RTEL1) gene that encodes for a DNA helicase important in telomere maintenance and genomic stability. In gene burden association analysis of their clinical data, the presence of any RTEL1 variant was associated with a 29% lower baseline white blood cell count (95% confidence interval [CI], -7% to -46%; P Value = 0.01) compared with patients without RTEL1 variants, and the presence of any exonic missense RTEL1 variant was associated with a 42% lower baseline platelet count (95% CI, -5% to -65%: P Value = 0.03). The presence of any telomerase variant was associated with an increased number of readmissions within 1 year after transplantation demonstrated by an incident rate ratio (IRR) of 3.15 (95% CI, 1.22 to 8.57). No association with survival was observed. Conclusion: Among patients who underwent liver transplantation, the presence of any exonic missense variant was associated with a longer postoperative length of stay with an IRR of 2.16 (95% CI, 1.31 to 3.68).
Collapse
Affiliation(s)
- Victor Chiu
- Norris Comprehensive Cancer Center and Hospital, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA,Division of Hematology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Rachel Hogen
- Department of Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Linda Sher
- Department of Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Niquelle Wadé
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - David Conti
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Anastasia Martynova
- Norris Comprehensive Cancer Center and Hospital, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA,Division of Hematology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Hongtao Li
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Gangning Liang
- Norris Comprehensive Cancer Center and Hospital, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA,Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Casey O'Connell
- Norris Comprehensive Cancer Center and Hospital, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA,Division of Hematology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
48
|
Dorn A, Feller L, Castri D, Röhrig S, Enderle J, Herrmann NJ, Block-Schmidt A, Trapp O, Köhler L, Puchta H. An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genet 2019; 15:e1008174. [PMID: 31120885 PMCID: PMC6550410 DOI: 10.1371/journal.pgen.1008174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Castri
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalie J. Herrmann
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Astrid Block-Schmidt
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Köhler
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
49
|
Lisco A, Wong CS, Lage SL, Levy I, Brophy J, Lennox J, Manion M, Anderson MV, Mejia Y, Grivas C, Mystakelis H, Burbelo PD, Perez-Diez A, Rupert A, Martens CA, Anzick SL, Morse C, Chan S, Deleage C, Sereti I. Identification of rare HIV-1-infected patients with extreme CD4+ T cell decline despite ART-mediated viral suppression. JCI Insight 2019; 4:127113. [PMID: 30996137 PMCID: PMC6538352 DOI: 10.1172/jci.insight.127113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress HIV-1 replication and reconstitute CD4+ T cells. Here, we report on HIV-infected individuals who had a paradoxical decline in CD4+ T cells despite ART-mediated suppression of plasma HIV-1 load (pVL). We defined such an immunological outcome as extreme immune decline (EXID). METHODS EXID's clinical and immunological characteristics were compared to immunological responders (IRs), immunological nonresponders (INRs), healthy controls (HCs), and idiopathic CD4+ lymphopenia (ICL) patients. T cell immunophenotyping and assembly/activation of inflammasomes were evaluated by flow cytometry. PBMC transcriptome analysis and genetic screening for pathogenic variants were performed. Levels of cytokines/chemokines were measured by electrochemiluminescence. Luciferase immunoprecipitation system and NK-mediated antibody-dependent cellular cytotoxicity (ADCC) assays were used to identify anti-lymphocyte autoantibodies. RESULTS EXIDs were infected with non-B HIV-1 subtypes and after 192 weeks of consistent ART-mediated pVL suppression had a median CD4+ decrease of 157 cells/μl, compared with CD4+ increases of 193 cells/μl and 427 cells/μl in INR and IR, respectively. EXID had reduced naive CD4+ T cells, but similar proportions of cycling CD4+ T cells and HLA-DR+CD38+CD8+ T cells compared with IR and INR. Levels of inflammatory cytokines were also similar in EXID and INR, but the IL-7 axis was profoundly perturbed compared with HC, IR, INR, and ICL. Genes involved in T cell and monocyte/macrophage function, autophagy, and cell migration were differentially expressed in EXID. Two of the 5 EXIDs had autoantibodies causing ADCC, while 2 different EXIDs had an increased inflammasome/caspase-1 activation despite consistently ART-suppressed pVL. CONCLUSIONS EXID is a distinct immunological outcome compared with previously described INR. Anti-CD4+ T cell autoantibodies and aberrant inflammasome/caspase-1 activation despite suppressed HIV-1 viremia are among the mechanisms responsible for EXID.
Collapse
Affiliation(s)
- Andrea Lisco
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Chun-Shu Wong
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Silvia Lucena Lage
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Itzchak Levy
- Sheba Medical Center, Tel Hashomer and the Sackler Medical School, Tel Aviv, Israel
| | - Jason Brophy
- Children’s Hospital of Eastern Ontario, Ottawa, Canada
| | - Jeffrey Lennox
- Grady Memorial Hospital, Emory University, Atlanta, Georgia, USA
| | - Maura Manion
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Megan V. Anderson
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Yolanda Mejia
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Christopher Grivas
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Harry Mystakelis
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Peter D. Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Ainhoa Perez-Diez
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Adam Rupert
- AIDS Monitoring Laboratory, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Craig A. Martens
- Rocky Mountain Laboratory, Genomics Unit, NIAID, NIH, Hamilton, Montana, USA
| | - Sarah L. Anzick
- Rocky Mountain Laboratory, Genomics Unit, NIAID, NIH, Hamilton, Montana, USA
| | - Caryn Morse
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Shanna Chan
- Winnipeg Regional Health Authority, Manitoba, Canada
| | - Claire Deleage
- Tissue Analysis Core, AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, HIV Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|