1
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
3
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Koo KC, Halawani A, Wong VK, Lange D, Chew BH. Monogenic features of urolithiasis: A comprehensive review. Asian J Urol 2024; 11:169-179. [PMID: 38680588 PMCID: PMC11053333 DOI: 10.1016/j.ajur.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/28/2023] [Indexed: 05/01/2024] Open
Abstract
Objective Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component. Methods This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation. Results Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers. Conclusion The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans.
Collapse
Affiliation(s)
- Kyo Chul Koo
- Department of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Victor K.F. Wong
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Dirk Lange
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ben H. Chew
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Wang Y, Xu L, Zhang Y, Fu H, Gao L, Guan Y, Gu W, Sun J, Chen X, Yang F, Lai E, Wang J, Jin Y, Kou Z, Qiu X, Mao J, Hu L. Dent disease 1-linked novel CLCN5 mutations result in aberrant location and reduced ion currents. Int J Biol Macromol 2024; 257:128564. [PMID: 38061527 DOI: 10.1016/j.ijbiomac.2023.128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - EnYin Lai
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziqi Kou
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingyu Qiu
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
6
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
7
|
Münch J, Goodyer PR, Wagner CA. Tubular Diseases and Stones Seen From Pediatric and Adult Nephrology Perspectives. Semin Nephrol 2023; 43:151437. [PMID: 37968178 DOI: 10.1016/j.semnephrol.2023.151437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The tubular system of the kidneys is a complex series of morphologic and functional units orchestrating the content of tubular fluid as it flows along the nephron and collecting ducts. Renal tubules maintain body water, regulate electrolytes and acid-base balance, reabsorb precious organic solutes, and eliminate specific metabolites, toxins, and drugs. In addition, decisive mechanisms to adjust blood pressure are governed by the renal tubules. Genetic as well as acquired disorders of these tubular functions may cause serious diseases that manifest both in childhood and adulthood. This article addresses a selection of tubulopathies and the underlying pathomechanisms, while highlighting the important differences in pediatric and adult nephrology care. These range from rare monogenic conditions such as nephrogenic diabetes insipidus, cystinosis, and Bartter syndrome that present in childhood, to the genetic and acquired tubular pathologies causing hypertension or nephrolithiasis that are more prevalent in adults. Both pediatric and adult nephrologists must be aware of these conditions and the age-dependent manifestations that warrant close interaction between the two subspecialties.
Collapse
Affiliation(s)
- Johannes Münch
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Institute of Human Genetics, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland
| | - Paul R Goodyer
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland.
| |
Collapse
|
8
|
Arnous MG, Arroyo J, Cogal AG, Anglani F, Kang HG, Sas D, Harris PC, Lieske JC. The Site and Type of CLCN5 Genetic Variation Impact the Resulting Dent Disease-1 Phenotype. Kidney Int Rep 2023; 8:1220-1230. [PMID: 37284679 PMCID: PMC10239918 DOI: 10.1016/j.ekir.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Dent disease is an X-linked recessive disorder associated with low molecular weight proteinuria (LMWP), nephrocalcinosis, kidney stones, and kidney failure in the third to fifth decade of life. It consists of Dent disease 1 (DD1) (60% of patients) because of pathogenic variants in the CLCN5 gene and Dent disease 2 (DD2) with changes in OCRL. Methods Retrospective review of 162 patients from 121 different families with genetically confirmed DD1 (82 different pathogenic variants validated using American College of Medical Genetics [ACMG] guidelines). Clinical and genetic factors were compared using observational statistics. Results A total of 110 patients had 51 different truncating (nonsense, frameshifting, large deletions, and canonical splicing) variants, whereas 52 patients had 31 different nontruncating (missense, in-frame, noncanonical splicing, and stop-loss) changes. Sixteen newly described pathogenic variants were found in our cohort. Among patients with truncating variants, lifetime stone events positively correlated with chronic kidney disease (CKD) evolution. Patients with truncating changes also experienced stone events earlier in life and manifested a higher albumin excretion rate than the nontruncating group. Nevertheless, neither age of nephrocalcinosis nor CKD progression varied between the truncating versus nontruncating patients. A large majority of nontruncating changes (26/31; 84%) were clustered in the middle exons that encode the voltage ClC domain whereas truncating changes were spread across the protein. Variants associated with kidney failure were restricted to truncating (11/13 cases), plus a single missense variant previously shown to markedly reduce ClC-5 functional activity that was found in the other 2 individuals. Conclusion DD1 manifestations, including the risk of kidney stones and progression to kidney failure, may relate to the degree of residual ClC-5 function.
Collapse
Affiliation(s)
- Muhammad G. Arnous
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer Arroyo
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G. Cogal
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Department of Medicine, University of Padua, Italy
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - David Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C. Harris
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - John C. Lieske
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Howles SA, Gorvin CM, Cranston T, Rogers A, Gluck AK, Boon H, Gibson K, Rahman M, Root A, Nesbit MA, Hannan FM, Thakker RV. GNA11 Variants Identified in Patients with Hypercalcemia or Hypocalcemia. J Bone Miner Res 2023; 38:907-917. [PMID: 36970776 PMCID: PMC10947407 DOI: 10.1002/jbmr.4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/20/2023]
Abstract
Familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2) are due to loss- and gain-of-function mutations, respectively, of the GNA11 gene that encodes the G protein subunit Gα11, a signaling partner of the calcium-sensing receptor (CaSR). To date, four probands with FHH2-associated Gα11 mutations and eight probands with ADH2-associated Gα11 mutations have been reported. In a 10-year period, we identified 37 different germline GNA11 variants in >1200 probands referred for investigation of genetic causes for hypercalcemia or hypocalcemia, comprising 14 synonymous, 12 noncoding, and 11 nonsynonymous variants. The synonymous and noncoding variants were predicted to be benign or likely benign by in silico analysis, with 5 and 3, respectively, occurring in both hypercalcemic and hypocalcemic individuals. Nine of the nonsynonymous variants (Thr54Met, Arg60His, Arg60Leu, Gly66Ser, Arg149His, Arg181Gln, Phe220Ser, Val340Met, Phe341Leu) identified in 13 probands have been reported to be FHH2- or ADH2-causing. Of the remaining nonsynonymous variants, Ala65Thr was predicted to be benign, and Met87Val, identified in a hypercalcemic individual, was predicted to be of uncertain significance. Three-dimensional homology modeling of the Val87 variant suggested it was likely benign, and expression of Val87 variant and wild-type Met87 Gα11 in CaSR-expressing HEK293 cells revealed no differences in intracellular calcium responses to alterations in extracellular calcium concentrations, consistent with Val87 being a benign polymorphism. Two noncoding region variants, a 40bp-5'UTR deletion and a 15bp-intronic deletion, identified only in hypercalcemic individuals, were associated with decreased luciferase expression in vitro but no alterations in GNA11 mRNA or Gα11 protein levels in cells from the patient and no abnormality in splicing of the GNA11 mRNA, respectively, confirming them to be benign polymorphisms. Thus, this study identified likely disease-causing GNA11 variants in <1% of probands with hypercalcemia or hypocalcemia and highlights the occurrence of GNA11 rare variants that are benign polymorphisms. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sarah A. Howles
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Caroline M. Gorvin
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Institute of Metabolism and Systems Research, University of Birmingham, and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health PartnersBirminghamUK
| | - Treena Cranston
- Oxford Molecular Genetics LaboratoryChurchill HospitalOxfordUK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Anna K. Gluck
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hannah Boon
- Oxford Molecular Genetics LaboratoryChurchill HospitalOxfordUK
| | - Kate Gibson
- Oxford Molecular Genetics LaboratoryChurchill HospitalOxfordUK
| | - Mushtaqur Rahman
- Department of EndocrinologyNorthwick Park Hospital, North West London Hospitals NHS TrustHarrowUK
| | - Allen Root
- Department of EndocrinologyJohn Hopkins All Children's HospitalSt. PetersburgFloridaUSA
| | - M. Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxfordUK
| |
Collapse
|
10
|
Wu HHL, Goldys EM, Pollock CA, Saad S. Exfoliated Kidney Cells from Urine for Early Diagnosis and Prognostication of CKD: The Way of the Future? Int J Mol Sci 2022; 23:7610. [PMID: 35886957 PMCID: PMC9324667 DOI: 10.3390/ijms23147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| |
Collapse
|
11
|
Soares RB, Bhat N. Dent Disease Type 1: A Diagnostic Dilemma and Review. Cureus 2022; 14:e23910. [PMID: 35530822 PMCID: PMC9076049 DOI: 10.7759/cureus.23910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
This case report describes a boy with a rare genetic disease that primarily affects the kidneys and has implications on growth and development. Dent disease type 1 is an X-linked tubulopathy mainly caused by inactivating mutations in the chloride voltage-gated channel 5 (CLCN5) gene. It is a rare but important diagnosis for children with variable phenotypic presentations that can include low molecular weight proteinuria (LMWP), nephrocalcinosis, bony deformities and possible progression to early-onset renal failure. A delay in diagnosis is often encountered when it comes to Dent disease. This is due to the similarities in presentation of the disease to other commonly seen pediatric conditions (such as minimal change nephrotic syndrome, nutritional rickets, renal tubular acidosis [RTA], etc.) and also since it can present with variable phenotypes and has a great amount of allelic heterogeneity. In this case, it was diagnosed after 13 years from symptom onset. The patient was subjected to alternative forms of medicine, multiple working diagnoses and associated treatments at various hospitals which most likely contributed to a faster disease progression. In addition to the treatment of the disease, growth hormone (GH) therapy has proven to be beneficial but was not offered to this patient. In this case, we would also like to report some rare findings such as persistent hypercholesterolemia and steroid-resistant nephrotic syndrome (SRNS) biopsy pattern. We decided to pursue this particular disease to highlight the importance of having a high clinical suspicion with a view to attain a definitive diagnosis and instituting appropriate treatment as soon as possible. We also highlight the importance of keeping the patient informed about their disease, the possible therapeutic options and the importance of genetic counselling and patient education.
Collapse
|
12
|
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype. Cells 2022; 11:cells11010177. [PMID: 35011739 PMCID: PMC8750898 DOI: 10.3390/cells11010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.
Collapse
|
13
|
Durán M, Burballa C, Cantero-Recasens G, Butnaru CM, Malhotra V, Ariceta G, Sarró E, Meseguer A. Novel Dent disease 1 cellular models reveal biological processes underlying ClC-5 loss-of-function. Hum Mol Genet 2021; 30:1413-1428. [PMID: 33987651 PMCID: PMC8283206 DOI: 10.1093/hmg/ddab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.
Collapse
Affiliation(s)
- Mónica Durán
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Carla Burballa
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerard Cantero-Recasens
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Gema Ariceta
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Pediatric Nephrology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Sarró
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
14
|
Bondue T, Arcolino FO, Veys KRP, Adebayo OC, Levtchenko E, van den Heuvel LP, Elmonem MA. Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells 2021; 10:cells10061413. [PMID: 34204173 PMCID: PMC8230018 DOI: 10.3390/cells10061413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Fanny O. Arcolino
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Koenraad R. P. Veys
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Correspondence:
| |
Collapse
|
15
|
Sakhi I, Bignon Y, Frachon N, Hureaux M, Arévalo B, González W, Vargas-Poussou R, Lourdel S. Diversity of functional alterations of the ClC-5 exchanger in the region of the proton glutamate in patients with Dent disease 1. Hum Mutat 2021; 42:537-550. [PMID: 33600050 DOI: 10.1002/humu.24184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023]
Abstract
Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.
Collapse
Affiliation(s)
- Imène Sakhi
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Yohan Bignon
- Centre Universitaire des Saints Pères, INSERM, Université Paris Descartes, Paris, France
| | - Nadia Frachon
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Marguerite Hureaux
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bárbara Arévalo
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Rosa Vargas-Poussou
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Lourdel
- Laboratoire Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| |
Collapse
|
16
|
Edwards A, Christensen EI, Unwin RJ, Norden AGW. Predicting the protein composition of human urine in normal and pathological states: Quantitative description based on Dent1 disease (
CLCN5
mutation). J Physiol 2020; 599:323-341. [DOI: 10.1113/jp280740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering Boston University Boston MA USA
| | | | - Robert J. Unwin
- Department of Renal Medicine Royal Free Campus University College London London UK
| | - Anthony G. W. Norden
- Department of Renal Medicine Royal Free Campus University College London London UK
| |
Collapse
|
17
|
Shipman KE, Weisz OA. Making a Dent in Dent Disease. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa017. [PMID: 33015630 PMCID: PMC7519470 DOI: 10.1093/function/zqaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Dent disease (DD) is a rare kidney disorder caused by mutations in the Cl-/H+ exchanger ClC-5. Extensive physiologic characterization of the transporter has begun to illuminate its role in endosomal ion homeostasis. Nevertheless, we have yet to understand how loss of ClC-5 function in the kidney proximal tubule impairs membrane traffic of megalin and cubilin receptors to cause the low molecular weight proteinuria characteristic of DD. This review identifies open questions that remain to be answered, evaluates the current literature addressing these questions, and suggests new testable models that may link loss of ClC-5 function to tubular proteinuria in DD.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Address correspondence to O.A.W. (e-mail: )
| |
Collapse
|
18
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
19
|
Abstract
Kidney stone disease (nephrolithiasis) is a common problem that can be associated with alterations in urinary solute composition including hypercalciuria. Studies suggest that the prevalence of monogenic kidney stone disorders, including renal tubular acidosis with deafness, Bartter syndrome, primary hyperoxaluria and cystinuria, in patients attending kidney stone clinics is ∼15%. However, for the majority of individuals, nephrolithiasis has a multifactorial aetiology involving genetic and environmental factors. Nonetheless, the genetic influence on stone formation in these idiopathic stone formers remains considerable and twin studies estimate a heritability of >45% for nephrolithiasis and >50% for hypercalciuria. The contribution of polygenic influences from multiple loci have been investigated by genome-wide association and candidate gene studies, which indicate that a number of genes and molecular pathways contribute to the risk of stone formation. Genetic approaches, studying both monogenic and polygenic factors in nephrolithiasis, have revealed that the following have important roles in the aetiology of kidney stones: transporters and channels; ions, protons and amino acids; the calcium-sensing receptor (a G protein-coupled receptor) signalling pathway; and the metabolic pathways for vitamin D, oxalate, cysteine, purines and uric acid. These advances, which have increased our understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of targeted therapies for precision medicine approaches in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
21
|
Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO J 2020; 39:e103358. [PMID: 32118314 PMCID: PMC7196918 DOI: 10.15252/embj.2019103358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3.
Collapse
Affiliation(s)
- Stefanie Weinert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Niclas Gimber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dorothea Deuschel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Zohreh Farsi
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Carmen F Ludwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gaia Novarino
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Karen I López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Lines KE, Filippakopoulos P, Stevenson M, Müller S, Lockstone HE, Wright B, Knapp S, Buck D, Bountra C, Thakker RV. Effects of epigenetic pathway inhibitors on corticotroph tumour AtT20 cells. Endocr Relat Cancer 2020; 27:163-174. [PMID: 31935194 PMCID: PMC7040567 DOI: 10.1530/erc-19-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Medical treatments for corticotrophinomas are limited, and we therefore investigated the effects of epigenetic modulators, a new class of anti-tumour drugs, on the murine adrenocorticotropic hormone (ACTH)-secreting corticotrophinoma cell line AtT20. We found that AtT20 cells express members of the bromo and extra-terminal (BET) protein family, which bind acetylated histones, and therefore, studied the anti-proliferative and pro-apoptotic effects of two BET inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, using CellTiter Blue and Caspase Glo assays, respectively. JQ1 and PFI-1 significantly decreased proliferation by 95% (P < 0.0005) and 43% (P < 0.0005), respectively, but only JQ1 significantly increased apoptosis by >50-fold (P < 0.0005), when compared to untreated control cells. The anti-proliferative effects of JQ1 and PFI-1 remained for 96 h after removal of the respective compound. JQ1, but not PFI-1, affected the cell cycle, as assessed by propidium iodide staining and flow cytometry, and resulted in a higher number of AtT20 cells in the sub G1 phase. RNA-sequence analysis, which was confirmed by qRT-PCR and Western blot analyses, revealed that JQ1 treatment significantly altered expression of genes involved in apoptosis, such as NFκB, and the somatostatin receptor 2 (SSTR2) anti-proliferative signalling pathway, including SSTR2. JQ1 treatment also significantly reduced transcription and protein expression of the ACTH precursor pro-opiomelanocortin (POMC) and ACTH secretion by AtT20 cells. Thus, JQ1 treatment has anti-proliferative and pro-apoptotic effects on AtT20 cells and reduces ACTH secretion, thereby indicating that BET inhibition may provide a novel approach for treatment of corticotrophinomas.
Collapse
Affiliation(s)
- K E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - M Stevenson
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - S Müller
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - H E Lockstone
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Wright
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - S Knapp
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - D Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - C Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - R V Thakker
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
23
|
Festa BP, Berquez M, Gassama A, Amrein I, Ismail HM, Samardzija M, Staiano L, Luciani A, Grimm C, Nussbaum RL, De Matteis MA, Dorchies OM, Scapozza L, Wolfer DP, Devuyst O. OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum Mol Genet 2020; 28:1931-1946. [PMID: 30590522 PMCID: PMC6548226 DOI: 10.1093/hmg/ddy449] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in OCRL encoding the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) disrupt phosphoinositide homeostasis along the endolysosomal pathway causing dysfunction of the cells lining the kidney proximal tubule (PT). The dysfunction can be isolated (Dent disease 2) or associated with congenital cataracts, central hypotonia and intellectual disability (Lowe syndrome). The mechanistic understanding of Dent disease 2/Lowe syndrome remains scarce due to limitations of animal models of OCRL deficiency. Here, we investigate the role of OCRL in Dent disease 2/Lowe syndrome by using OcrlY/− mice, where the lethal deletion of the paralogue Inpp5b was rescued by human INPP5B insertion, and primary culture of proximal tubule cells (mPTCs) derived from OcrlY/− kidneys. The OcrlY/− mice show muscular defects with dysfunctional locomotricity and present massive urinary losses of low-molecular-weight proteins and albumin, caused by selective impairment of receptor-mediated endocytosis in PT cells. The latter was due to accumulation of phosphatidylinositol 4,5–bisphosphate PI(4,5)P2 in endolysosomes, driving local hyper-polymerization of F-actin and impairing trafficking of the endocytic LRP2 receptor, as evidenced in OcrlY/− mPTCs. The OCRL deficiency was also associated with a disruption of the lysosomal dynamic and proteolytic activity. Partial convergence of disease-pathways and renal phenotypes observed in OcrlY/− and Clcn5Y/− mice suggest shared mechanisms in Dent diseases 1 and 2. These studies substantiate the first mouse model of Lowe syndrome and give insights into the role of OCRL in cellular trafficking of multiligand receptors. These insights open new avenues for therapeutic interventions in Lowe syndrome and Dent disease.
Collapse
Affiliation(s)
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Hesham M Ismail
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Christian Grimm
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.,Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Robert L Nussbaum
- Department of Medicine and Institute of Human Genetics, University of California, San Francisco, CA, USA.,Invitae Corporation, San Francisco, CA, USA
| | | | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - David Paul Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Gianesello L, Ceol M, Bertoldi L, Terrin L, Priante G, Murer L, Peruzzi L, Giordano M, Paglialonga F, Cantaluppi V, Musetti C, Valle G, Del Prete D, Anglani F. Genetic Analyses in Dent Disease and Characterization of CLCN5 Mutations in Kidney Biopsies. Int J Mol Sci 2020; 21:ijms21020516. [PMID: 31947599 PMCID: PMC7014080 DOI: 10.3390/ijms21020516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered.
Collapse
Affiliation(s)
- Lisa Gianesello
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Monica Ceol
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Loris Bertoldi
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Liliana Terrin
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Giovanna Priante
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Luisa Murer
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padua, Italy;
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children’s Hospital, 10126 CDSS Turin, Italy;
| | - Mario Giordano
- Pediatric Nephrology Unit, University Hospital, P.O. Giovanni XXIII, 70126 Bari, Italy;
| | - Fabio Paglialonga
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Claudio Musetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (V.C.); (C.M.)
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
| | - Dorella Del Prete
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Clinical Nephrology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (L.G.); (M.C.); (L.T.); (G.P.); (D.D.P.)
- CRIBI Biotechnology Centre, University of Padua, 35131 Padua, Italy; (L.B.); (G.V.)
- Correspondence: ; Tel.: +39-049-8212-155
| | | |
Collapse
|
25
|
Gaynor KU, Grigorieva IV, Mirczuk SM, Piret SE, Kooblall KG, Stevenson M, Rizzoti K, Bowl MR, Nesbit MA, Christie PT, Fraser WD, Hough T, Whyte MP, Lovell-Badge R, Thakker RV. Studies of mice deleted for Sox3 and uc482: relevance to X-linked hypoparathyroidism. Endocr Connect 2020; 9:EC-19-0478.R1. [PMID: 31961795 PMCID: PMC7040864 DOI: 10.1530/ec-19-0478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families, is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, that could alter SOX3 expression,. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from 3 affected males, 3 unaffected males, and 4 carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3-/Y and uc482-/Y) and female heterozygous (Sox3+/- and uc482+/-) knock-out mice, together with wild-type littermates (male Sox3+/Y and uc482+/Y, and female Sox3+/+ and uc482+/+), revealed Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism, and that XLHPT likely reflects a more complex mechanism.
Collapse
Affiliation(s)
- Katherine U Gaynor
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Irina V Grigorieva
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Samantha M Mirczuk
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Kreepa G Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | | | - Michael R Bowl
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - M Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Paul T Christie
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - William D Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Tertius Hough
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Michael P Whyte
- Washington University in St Louis School of Medicine, Center for Metabolic Bone Disease and Molecular Research, St Louis, Missouri, USA
| | | | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| |
Collapse
|
26
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
27
|
Janssen MJ, Nieskens TTG, Steevels TAM, Caetano-Pinto P, den Braanker D, Mulder M, Ponstein Y, Jones S, Masereeuw R, den Besten C, Wilmer MJ. Therapy with 2'-O-Me Phosphorothioate Antisense Oligonucleotides Causes Reversible Proteinuria by Inhibiting Renal Protein Reabsorption. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:298-307. [PMID: 31610379 PMCID: PMC6796739 DOI: 10.1016/j.omtn.2019.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
Antisense oligonucleotide therapy has been reported to be associated with renal injury. Here, the mechanism of reversible proteinuria was investigated by combining clinical, pre-clinical, and in vitro data. Urine samples were obtained from Duchenne muscular dystrophy (DMD) patients treated with drisapersen, a modified 2′O-methyl phosphorothioate antisense oligonucleotide (6 mg/kg). Urine and kidney tissue samples were collected from cynomolgus monkeys (Macaca fascicularis) dosed with drisapersen (39 weeks). Cell viability and protein uptake were evaluated in vitro using human conditionally immortalized proximal tubule epithelial cells (ciPTECs). Oligonucleotide treatment in DMD patients was associated with an increase in urinary alpha-1-microglobulin (A1M), which returned to baseline following treatment interruptions. In monkeys, increased urinary A1M correlated with dose-dependent accumulation of oligonucleotide in kidney tissue without evidence of tubular damage. Furthermore, oligonucleotides accumulated in the lysosomes of ciPTECs and reduced the absorption of A1M, albumin, and receptor-associated protein, but did not affect cell viability when incubated for up to 7 days. In conclusion, phosphorothioate oligonucleotides appear to directly compete for receptor-mediated endocytosis in proximal tubules. We postulate that oligonucleotide-induced low molecular weight proteinuria in patients is therefore a transient functional change and not indicative of tubular damage.
Collapse
Affiliation(s)
- Manoe J Janssen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands.
| | - Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Pedro Caetano-Pinto
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Dirk den Braanker
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | | | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Gorvin CM, Loh NY, Stechman MJ, Falcone S, Hannan FM, Ahmad BN, Piret SE, Reed AA, Jeyabalan J, Leo P, Marshall M, Sethi S, Bass P, Roberts I, Sanderson J, Wells S, Hough TA, Bentley L, Christie PT, Simon MM, Mallon AM, Schulz H, Cox RD, Brown MA, Huebner N, Brown SD, Thakker RV. Mice with a Brd4 Mutation Represent a New Model of Nephrocalcinosis. J Bone Miner Res 2019; 34:1324-1335. [PMID: 30830987 PMCID: PMC6658219 DOI: 10.1002/jbmr.3695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Falcone
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Ac Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul Bass
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Ian Roberts
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Jeremy Sanderson
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | | | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Gorvin CM, Ahmad BN, Stechman MJ, Loh NY, Hough TA, Leo P, Marshall M, Sethi S, Bentley L, Piret SE, Reed A, Jeyabalan J, Christie PT, Wells S, Simon MM, Mallon AM, Schulz H, Huebner N, Brown MA, Cox RD, Brown SD, Thakker RV. An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. J Bone Miner Res 2019; 34:497-507. [PMID: 30395686 PMCID: PMC6446808 DOI: 10.1002/jbmr.3624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Abstract
Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018; 8:14133. [PMID: 30237523 PMCID: PMC6148293 DOI: 10.1038/s41598-018-32389-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Collapse
|
31
|
Lines KE, Newey PJ, Yates CJ, Stevenson M, Dyar R, Walls GV, Bowl MR, Thakker RV. MiR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs. J Endocrinol 2018; 240:JOE-18-0278.R2. [PMID: 30389902 PMCID: PMC6347280 DOI: 10.1530/joe-18-0278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. MicroRNAs (miRNA) are non-coding single stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative 'tumour suppressor' miRNAs, miR-15a, miR-16-1 and let-7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knock out of the Men1 gene (Men1+/- mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, p<0.05; 2.1-fold p<0.01 and 1.6-fold p<0.05, respectively) of Men1+/- mice, compared to normal wild type pituitaries. MiR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knock down of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (p<0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - P J Newey
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - C J Yates
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - R Dyar
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - G V Walls
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - M R Bowl
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
32
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
33
|
Solanki AK, Arif E, Morinelli T, Wilson RC, Hardiman G, Deng P, Arthur JM, Velez JC, Nihalani D, Janech MG, Budisavljevic MN. A Novel CLCN5 Mutation Associated With Focal Segmental Glomerulosclerosis and Podocyte Injury. Kidney Int Rep 2018; 3:1443-1453. [PMID: 30426109 PMCID: PMC6224352 DOI: 10.1016/j.ekir.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Tubular dysfunction is characteristic of Dent’s disease; however, focal segmental glomerulosclerosis (FSGS) can also be present. Glomerulosclerosis could be secondary to tubular injury, but it remains uncertain whether the CLCN5 gene, which encodes an endosomal chloride and/or hydrogen exchanger, plays a role in podocyte biology. Here, we implicate a role for CLCN5 in podocyte function and pathophysiology. Methods Whole exome capture and sequencing of the proband and 5 maternally-related family members was conducted to identify X-linked mutations associated with biopsy-proven FSGS. Human podocyte cultures were used to characterize the mutant phenotype on podocyte function. Results We identified a novel mutation (L521F) in CLCN5 in 2 members of a Hispanic family who presented with a histologic diagnosis of FSGS and low-molecular-weight proteinuria without hypercalciuria. Presence of CLCN5 was confirmed in cultured human podocytes. Podocytes transfected with the wild-type or the mutant (L521F) CLCN5 constructs showed differential localization. CLCN5 knockdown in podocytes resulted in defective transferrin endocytosis and was associated with decreased cell proliferation and increased cell migration, which are hallmarks of podocyte injury. Conclusions The CLCN5 mutation, which causes Dent’s disease, may be associated with FSGS without hyercalcuria and nepthrolithiasis. The present findings supported the hypothesis that CLCN5 participates in protein trafficking in podocytes and plays a critical role in organizing the components of the podocyte slit diaphragm to help maintain normal cell physiology and a functional filtration barrier. In addition to tubular dysfunction, mutations in CLCN5 may also lead to podocyte dysfunction, which results in a histologic picture of FSGS that may be a primary event and not a consequence of tubular damage.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Morinelli
- Division of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peifeng Deng
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John M Arthur
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juan Cq Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael G Janech
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
34
|
Bignon Y, Alekov A, Frachon N, Lahuna O, Jean-Baptiste Doh-Egueli C, Deschênes G, Vargas-Poussou R, Lourdel S. A novel CLCN5 pathogenic mutation supports Dent disease with normal endosomal acidification. Hum Mutat 2018; 39:1139-1149. [PMID: 29791050 DOI: 10.1002/humu.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
Dent disease is an X-linked recessive renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. Inactivating mutations of CLCN5, the gene encoding the 2Cl- /H+ exchanger ClC-5, have been reported in patients with Dent disease 1. In vivo studies in mice harboring an artificial mutation in the "gating glutamate" of ClC-5 (c.632A > C, p.Glu211Ala) and mathematical modeling suggest that endosomal chloride concentration could be an important parameter in endocytosis, rather than acidification as earlier hypothesized. Here, we described a novel pathogenic mutation affecting the "gating glutamate" of ClC-5 (c.632A>G, p.Glu211Gly) and investigated its molecular consequences. In HEK293T cells, the p.Glu211Gly ClC-5 mutant displayed unaltered N-glycosylation and normal plasma membrane and early endosomes localizations. In Xenopus laevis oocytes and HEK293T cells, we found that contrasting with wild-type ClC-5, the mutation abolished the outward rectification, the sensitivity to extracellular H+ and converted ClC-5 into a Cl- channel. Investigation of endosomal acidification in HEK293T cells using the pH-sensitive pHluorin2 probe showed that the luminal pH of cells expressing a wild-type or p.Glu211Gly ClC-5 was not significantly different. Our study further confirms that impaired acidification of endosomes is not the only parameter leading to defective endocytosis in Dent disease 1.
Collapse
Affiliation(s)
- Yohan Bignon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | - Alexi Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadia Frachon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | | | | | - Georges Deschênes
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Néphrologie Pédiatrique, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de génétique, Paris, France.,Université Paris-Descartes, Faculté de Médecine, Paris, France
| | - Stéphane Lourdel
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| |
Collapse
|
35
|
Anglani F, Terrin L, Brugnara M, Battista M, Cantaluppi V, Ceol M, Bertoldi L, Valle G, Joy MP, Pober BR, Longoni M. Hypercalciuria and nephrolithiasis: Expanding the renal phenotype of Donnai-Barrow syndrome. Clin Genet 2018. [PMID: 29532936 DOI: 10.1111/cge.13242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whole exome sequencing detected novel likely pathogenic variants in LRP2 gene in 2 patients presenting with hearing and vision loss, and the Dent disease (DD) classical renal phenotype, that is, low molecular weight proteinuria (LMWP), hypercalciuria and nephrocalcinosis/nephrolithiasis. We propose that a subset of patients presenting as DD may represent unrecognized cases or mild forms of Donnai-Barrow/facio-oculo-acustico-renal (DB/FOAR) syndrome or be on the phenotypic continuum between the 2 conditions.
Collapse
Affiliation(s)
- F Anglani
- Clinical Nephrology Division, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - L Terrin
- Clinical Nephrology Division, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - M Brugnara
- Pediatric Division, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - M Battista
- Nephrology and Transplantation Division, Department of Clinical and Experimental Medicine, Amedeo Avogadro University, Novara, Italy
| | - V Cantaluppi
- Nephrology and Transplantation Division, Department of Clinical and Experimental Medicine, Amedeo Avogadro University, Novara, Italy
| | - M Ceol
- Clinical Nephrology Division, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - L Bertoldi
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - G Valle
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - M P Joy
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - B R Pober
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Longoni
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Gorvin CM, Rogers A, Hastoy B, Tarasov AI, Frost M, Sposini S, Inoue A, Whyte MP, Rorsman P, Hanyaloglu AC, Breitwieser GE, Thakker RV. AP2σ Mutations Impair Calcium-Sensing Receptor Trafficking and Signaling, and Show an Endosomal Pathway to Spatially Direct G-Protein Selectivity. Cell Rep 2018; 22:1054-1066. [PMID: 29420171 PMCID: PMC5792449 DOI: 10.1016/j.celrep.2017.12.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Spatial control of G-protein-coupled receptor (GPCR) signaling, which is used by cells to translate complex information into distinct downstream responses, is achieved by using plasma membrane (PM) and endocytic-derived signaling pathways. The roles of the endomembrane in regulating such pleiotropic signaling via multiple G-protein pathways remain unknown. Here, we investigated the effects of disease-causing mutations of the adaptor protein-2 σ subunit (AP2σ) on signaling by the class C GPCR calcium-sensing receptor (CaSR). These AP2σ mutations increase CaSR PM expression yet paradoxically reduce CaSR signaling. Hypercalcemia-associated AP2σ mutations reduced CaSR signaling via Gαq/11 and Gαi/o pathways. The mutations also delayed CaSR internalization due to prolonged residency time of CaSR in clathrin structures that impaired or abolished endosomal signaling, which was predominantly mediated by Gαq/11. Thus, compartmental bias for CaSR-mediated Gαq/11 endomembrane signaling provides a mechanistic basis for multidimensional GPCR signaling. Disease-causing AP2σ mutants impair Gαq/11 and Gαi/o signaling by CaSR, a class C GPCR AP2σ mutants impair trafficking of the CaSR The CaSR can signal by a sustained endosomal pathway CaSR differentially uses Gαq/11 and Gαi/o for cell-surface and endosomal signaling
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit Hastoy
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrei I Tarasov
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Morten Frost
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Sposini
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Tohoku University, Sendai, Japan; Japan Science and Technology (JST) Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA
| | - Patrik Rorsman
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Gerda E Breitwieser
- Geisinger Clinic, Weis Center for Research, Department of Functional and Molecular Genomics, Danville, PA, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Decreased expression of megalin and cubilin and altered mitochondrial activity in tenofovir nephrotoxicity. Hum Pathol 2018; 73:89-101. [PMID: 29309806 DOI: 10.1016/j.humpath.2017.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/06/2017] [Accepted: 12/16/2017] [Indexed: 11/20/2022]
Abstract
Tenofovir disoproxil fumarate (TDF) is a commonly used antiretroviral drug for HIV, rarely causing Fanconi syndrome and acute kidney injury. We retrospectively analyzed the clinico pathological presentation of 20 cases of tenofovir-induced tubulopathy, and investigated the renal expression of the megalin and cubilin proteins, as well as the mitochondrial respiratory chain activity. Estimated glomerular filtration rate (eGFR) before TDF exposure was 92 ml/min/1.73m2, decreasing to 27.5 ml/min/1.73m2 at the time of biopsy, with 30% of patients requiring renal replacement therapy. Proximal tubular expression of megalin and cubilin was altered in 19 and 18 cases, respectively, whereas it was preserved in patients exposed to TDF without proximal tubular dysfunction and in HIV-negative patients with acute tubular necrosis. Loss of megalin/cubilin was correlated with low eGFR and high urine retinol binding protein at the time of biopsy, low eGFR at last follow-up, and was more severe in patients with multifactorial toxicity. Patients with additional nephrotoxic conditions promoting tenofovir accumulation showed a lower eGFR at presentation and at last follow-up, and more severe lesions of acute tubular necrosis, than those with isolated tenofovir toxicity. Altered mitochondrial COX activity in proximal tubules was observed and may be an early cellular alteration in tenofovir nephrotoxicity. In conclusion, altered megalin/cubilin expression represents a distinctive feature in tenofovir-induced tubulopathy, and its severity is correlated with urine retinol binding protein loss and is associated with a poor renal prognosis. Concomitant exposure to other nephrotoxic conditions severely impacts the renal presentation and outcome.
Collapse
|
38
|
Ranches G, Lukasser M, Schramek H, Ploner A, Stasyk T, Mayer G, Mayer G, Hüttenhofer A. In Vitro Selection of Cell-Internalizing DNA Aptamers in a Model System of Inflammatory Kidney Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:198-210. [PMID: 28918021 PMCID: PMC5504087 DOI: 10.1016/j.omtn.2017.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD) is a progressive pathological condition marked by a gradual loss of kidney function. Treatment of CKD is most effective when diagnosed at an early stage and patients are still asymptomatic. However, current diagnostic biomarkers (e.g., serum creatinine and urine albumin) are insufficient for prediction of the pathogenesis of the disease. To address this need, we applied a cell-SELEX (systematic evolution of ligands by exponential enrichment) approach and identified a series of DNA aptamers, which exhibit high affinity and selectivity for cytokine-stimulated cells, resembling some aspects of a CKD phenotype. The cell-SELEX approach was driven toward the enrichment of aptamers that internalize via the endosomal pathway by isolating the endosomal fractions in each selection cycle. Indeed, we demonstrated co-localization of selected aptamers with lysosomal-associated membrane protein 1 (LAMP-1), a late endosomal and lysosomal marker protein, by fluorescence in situ hybridization. These findings are consistent with binding and subsequent internalization of the aptamers into cytokine-stimulated cells. Thus, our study sets the stage for applying selected DNA aptamers as theragnostic reagents for the development of targeted therapies to combat CKD.
Collapse
Affiliation(s)
- Glory Ranches
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Melanie Lukasser
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Herbert Schramek
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Andreas Ploner
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Sandoz GmbH, Biochemiestrasse 10, Kundl 6250, Austria
| | - Taras Stasyk
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Gert Mayer
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Mayer
- Life and Medical Sciences Institute, Chemical Biology and Chemical Genetics, University of Bonn, Bonn 53115, Germany; Centre of Aptamer Research and Development, University of Bonn, Bonn 53115, Germany
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
39
|
Lines KE, Stevenson M, Filippakopoulos P, Müller S, Lockstone HE, Wright B, Grozinsky-Glasberg S, Grossman AB, Knapp S, Buck D, Bountra C, Thakker RV. Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis 2017; 6:e332. [PMID: 28504695 PMCID: PMC5523063 DOI: 10.1038/oncsis.2017.30] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer is associated with alterations in epigenetic mechanisms such as histone modifications and methylation of DNA, and inhibitors targeting epigenetic mechanisms represent a novel class of anti-cancer drugs. Neuroendocrine tumors (NETs) of the pancreas (PNETs) and bronchus (BNETs), which may have 5-year survivals of <50% and as low as 5%, respectively, represent targets for such drugs, as >40% of PNETs and ~35% of BNETs have mutations of the multiple endocrine neoplasia type 1 (MEN1) gene, which encodes menin that modifies histones by interacting with histone methyltransferases. We assessed 9 inhibitors of epigenetic pathways, for their effects on proliferation, by CellTiter Blue assay, and apoptosis, by CaspaseGlo assay, using 1 PNET and 2 BNET cell lines. Two inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, targeting the bromo and extra terminal (BET) protein family which bind acetylated histone residues, were most effective in decreasing proliferation (by 40-85%, P<0.001) and increasing apoptosis (by 2-3.6 fold, P<0.001) in all 3 NET cell lines. The anti-proliferative effects of JQ1 and PFI-1 remained present for at least 48 hours after removal of the compound. JQ1, but not PFI-1, had cell cycle effects, assessed by propidium iodide staining and flow cytometry, resulting in increased and decreased proportions of NET cells in G1, and S and G2 phases, respectively. RNA Sequencing analysis revealed that these JQ1 effects were associated with increased histone 2B expression, and likely mediated through altered activity of bromodomain-containing (Brd) proteins. Assessment of JQ1 in vivo, using a pancreatic beta cell-specific conditional Men1 knockout mouse model that develops PNETs, revealed that JQ1 significantly reduced proliferation (by ~50%, P<0.0005), assessed by bromodeoxyuridine incorporation, and increased apoptosis (by ~3 fold, P<0.0005), assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling, of PNETs. Thus, our studies demonstrate that BET protein inhibitors may provide new treatments for NETs.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - M Stevenson
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - P Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - S Müller
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - H E Lockstone
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - B Wright
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - S Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, Endocrinology & Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A B Grossman
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - S Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, Frankfurt am Main, Jerusalem, Germany
| | - D Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - C Bountra
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - R V Thakker
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
40
|
Gorvin CM, Rogers A, Stewart M, Paudyal A, Hough TA, Teboul L, Wells S, Brown SD, Cox RD, Thakker RV. N-ethyl-N-nitrosourea-Induced Adaptor Protein 2 Sigma Subunit 1 ( Ap2s1) Mutations Establish Ap2s1 Loss-of-Function Mice. JBMR Plus 2017; 1:3-15. [PMID: 29479578 PMCID: PMC5824975 DOI: 10.1002/jbm4.10001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adaptor protein‐2 sigma subunit (AP2σ), encoded by AP2S1, forms a heterotetrameric complex, with AP2α, AP2β, and AP2μ subunits, that is pivotal for clathrin‐mediated endocytosis, and AP2σ loss‐of‐function mutations impair internalization of the calcium‐sensing receptor (CaSR), a G‐protein–coupled receptor, and cause familial hypocalciuric hypercalcemia type‐3 (FHH3). Mice with AP2σ mutations that would facilitate investigations of the in vivo role of AP2σ, are not available, and we therefore embarked on establishing such mice. We screened >10,000 mice treated with the mutagen N‐ethyl‐N‐nitrosourea (ENU) for Ap2s1 mutations and identified 5 Ap2s1 variants, comprising 2 missense (Tyr20Asn and Ile123Asn) and 3 intronic base substitutions, one of which altered the invariant donor splice site dinucleotide gt to gc. Three‐dimensional modeling and cellular expression of the missense Ap2s1 variants did not reveal them to alter AP2σ structure or CaSR‐mediated signaling, but investigation of the donor splice site variant revealed it to result in an in‐frame deletion of 17 evolutionarily conserved amino acids (del17) that formed part of the AP2σ α1‐helix, α1‐β3 loop, and β3 strand. Heterozygous mutant mice (Ap2s1+/del17) were therefore established, and these had AP2σ haplosufficiency but were viable with normal appearance and growth. Ap2s1+/del17 mice, when compared with Ap2s1+/+ mice, also had normal plasma concentrations of calcium, phosphate, magnesium, creatinine, urea, sodium, potassium, and alkaline phosphatase activity; normal urinary fractional excretion of calcium, phosphate, sodium, and potassium; and normal plasma parathyroid hormone (PTH) and 1,25‐dihydroxyvitamin D (1,25(OH)2) concentrations. However, homozygous Ap2s1del17/del17 mice were non‐viable and died between embryonic days 3.5 and 9.5 (E3.5–9.5), thereby indicating that AP2σ likely has important roles at the embryonic patterning stages and organogenesis of the heart, thyroid, liver, gut, lungs, pancreas, and neural systems. Thus, our studies have established a mutant mouse model that is haplosufficient for AP2σ. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Michelle Stewart
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Anju Paudyal
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Lydia Teboul
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Steve Dm Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| |
Collapse
|
41
|
Ruhe F, Olling A, Abromeit R, Rataj D, Grieschat M, Zeug A, Gerhard R, Alekov A. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB. Front Cell Infect Microbiol 2017; 7:67. [PMID: 28348980 PMCID: PMC5346576 DOI: 10.3389/fcimb.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.
Collapse
Affiliation(s)
- Frederike Ruhe
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Alexandra Olling
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Rasmus Abromeit
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Dennis Rataj
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | | | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Alexi Alekov
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
42
|
Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, Lindström K. Proximal Tubular Expression Patterns of Megalin and Cubilin in Proteinuric Nephropathies. Kidney Int Rep 2017; 2:721-732. [PMID: 29142988 PMCID: PMC5678615 DOI: 10.1016/j.ekir.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubules. For albumin this process involves at least 2 interacting receptors, megalin and cubilin. Albumin is not usually present in the urine, indicating a highly efficient tubular reuptake under physiological conditions. However, early appearance of albuminuria may mean that the tubular system is overwhelmed by large quantities of albumin or that the function is impaired. Methods To better understand the physiological role of megalin and cubilin in human renal disease, renal biopsies from 15 patients with a range of albuminuria and 3 healthy living donors were analyzed for proximal tubular expression of megalin and cubilin using immunohistochemistry (IHC) and semiquantitative immune-electron microscopy. Their expression in proteinuric zebrafish was also studied. Results Megalin and cubilin were expressed in brush border and cytoplasmic vesicles. Patients with microalbuminuric IgA nephropathy and thin membrane disease had significantly higher megalin in proximal tubules, whereas those with macro- or nephrotic-range albuminuria had unchanged levels. Cubilin expression was significantly higher in all patients. In a proteinuric zebrafish nphs2 knockdown model, we found a dose-dependent increase in the expression of tubular megalin and cubilin in response to tubular protein uptake. Discussion Megalin and cubilin show different expression patterns in different human diseases, which indicates that the 2 tubular proteins differently cooperate in cleaning up plasma proteins in kidney tubules.
Collapse
Affiliation(s)
- Jia Sun
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Axelsson
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden.,Department Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Nordström
- Division of Transplantation, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplant Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindström
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Fu Y, Zhu JY, Zhang F, Richman A, Zhao Z, Han Z. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell Tissue Res 2017; 368:615-627. [PMID: 28180992 DOI: 10.1007/s00441-017-2575-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Collapse
Affiliation(s)
- Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| |
Collapse
|
44
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
45
|
Comper WD, Russo LM, Vuchkova J. Are filtered plasma proteins processed in the same way by the kidney? J Theor Biol 2016; 410:18-24. [PMID: 27647256 DOI: 10.1016/j.jtbi.2016.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 11/19/2022]
Abstract
In order to understand the mechanism of albuminuria we have explored how other plasma proteins are processed by the kidney as compared to inert molecules like Ficolls. When fractional clearances are plotted versus protein radius there is a remarkable parallelism between protein (molecular weight range 30-150kDa) clearance in healthy controls, in Dent's disease, in nephrotic states and the clearance of Ficolls. Although there are significant differences in the levels of fractional clearances in these states. Dent's disease results in a 2-fold increase in the fractional clearance of proteins as compared to healthy controls whereas in nephrotic states there is a further 3-fold increase in fractional clearance. Previous thinking that albumin uptake was controlled primarily by the megalin/cubilin receptor does not explain the albumin urinary excretion data and is therefore an incorrect concept. Protein clearance in nephrotic states approach the fractional clearance of inert Ficolls for a given radius. It therefore appears that there are two pathways processing these proteins. A low capacity pathway associated with megalin/cubilin that degrades filtered protein (that is inhibited in Dent's disease) and a high capacity pathway that retrieves the filtered protein and returns it to the blood supply (without retrieval nephrotic protein excretion will occur and this will account for hypoproteinemia). On the other hand low molecular weight proteins (<20kDa) are processed entirely differently by the kidney. They are not retrieved but are comprehensively degraded in the kidney with the degradation products predominantly returned to the blood supply.
Collapse
Affiliation(s)
- W D Comper
- SalAqua Diagnostics, New York and Kantum Diagnostics, NH, United States.
| | - L M Russo
- Systems Biology, Massachusetts General Hospital, Boston, United States
| | - J Vuchkova
- Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
46
|
Yu KS, Lin MM, Lee HJ, Tae KS, Kang BS, Lee JH, Lee NS, Jeong YG, Han SY, Kim DK. Receptor-Meditated Endocytosis by Hyaluronic Acid@Superparamagnetic Nanovetor for Targeting of CD44-Overexpressing Tumor Cells. NANOMATERIALS 2016; 6:nano6080149. [PMID: 28335277 PMCID: PMC5224623 DOI: 10.3390/nano6080149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
The present report proposes a more rational hyaluronic acid (HA) conjugation protocol that can be used to modify the surface of the superparamagnetic iron oxide nanoparticles (SPIONs) by covalently binding the targeting molecules (HA) with glutamic acid as a molecular linker on peripheral surface of SPIONs. The synthesis of HA-Glutamic Acid (GA)@SPIONs was included oxidization of nanoparticle’s surface with H2O2 followed by activation of hydroxyl group and reacting glutamic acid as an intermediate molecule demonstrating transfection of lung cancer cells. Fourier transform infrared (FTIR) and zeta-potential studies confirmed the chemical bonding between amino acid linker and polysaccharides. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay showed that HA-SPIONs-treated cells remained 82.9% ± 2.7% alive at high particle dosage (200 µg/mL iron concentration), whereas GA-SPIONs and bare SPIONs (B-SPIONs) treated cells had only 59.3% ± 13.4% and 26.5% ± 3.1% survival rate at the same conditions, respectively. Confocal microscopy analysis showed increased cellular internalization of HA-SPIONs compared to non-interacting agarose coated SPIONs (AgA-SPIONs).
Collapse
Affiliation(s)
- Kwang Sik Yu
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| | - Meng Meng Lin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Hyun-Ju Lee
- Physical Therapy, Konyang University, Daejeon 302-718, Korea.
| | - Ki-Sik Tae
- Biomedical Engineering, Konyang University, Daejeon 302-718, Korea.
| | - Bo-Sun Kang
- Radiological Science, Konyang University, Daejeon 302-718, Korea.
| | - Je Hun Lee
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| | - Nam Seob Lee
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| | - Young Gil Jeong
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| | - Seung-Yun Han
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| | - Do Kyung Kim
- Department of Anatomy, Konyang University, Daejeon 302-718, Korea.
| |
Collapse
|
47
|
Nieskens TTG, Wilmer MJ. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 2016; 790:46-56. [PMID: 27401035 DOI: 10.1016/j.ejphar.2016.07.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular drug secretion a continuous challenge for researchers. Currently available renal cell culture models often lack sufficient physiological relevance and reliability. Introducing complex biological culture systems in a 3D microfluidic design improves the physiological relevance of in vitro renal proximal tubule epithelium models. Organ-on-a-chip technology provides a promising alternative, as it allows the reconstruction of a renal tubule structure. These microfluidic systems mimic the in vivo microenvironment including multi-compartmentalization and exposure to fluid shear stress. Increasing data supports that fluid shear stress impacts the phenotype and functionality of proximal tubule cultures, for which we provide an extensive background. In this review, we discuss recent developments of kidney-on-a-chip platforms with current and future applications. The improved proximal tubule functionality using 3D microfluidic systems is placed in perspective of investigating cellular signalling that can elucidate mechanistic aberrations involved in drug-induced kidney toxicity.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun 2016; 7:11550. [PMID: 27180806 PMCID: PMC4873671 DOI: 10.1038/ncomms11550] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station.
Collapse
|
49
|
Assmann N, Dettmer K, Simbuerger JMB, Broeker C, Nuernberger N, Renner K, Courtneidge H, Klootwijk ED, Duerkop A, Hall A, Kleta R, Oefner PJ, Reichold M, Reinders J. Renal Fanconi Syndrome Is Caused by a Mistargeting-Based Mitochondriopathy. Cell Rep 2016; 15:1423-1429. [PMID: 27160910 DOI: 10.1016/j.celrep.2016.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/28/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
We recently reported an autosomal dominant form of renal Fanconi syndrome caused by a missense mutation in the third codon of the peroxisomal protein EHHADH. The mutation mistargets EHHADH to mitochondria, thereby impairing mitochondrial energy production and, consequently, reabsorption of electrolytes and low-molecular-weight nutrients in the proximal tubule. Here, we further elucidate the molecular mechanism underlying this pathology. We find that mutated EHHADH is incorporated into mitochondrial trifunctional protein (MTP), thereby disturbing β-oxidation of long-chain fatty acids. The resulting MTP deficiency leads to a characteristic accumulation of hydroxyacyl- and acylcarnitines. Mutated EHHADH also limits respiratory complex I and corresponding supercomplex formation, leading to decreases in oxidative phosphorylation capacity, mitochondrial membrane potential maintenance, and ATP generation. Activity of the Na(+)/K(+)-ATPase is thereby diminished, ultimately decreasing the transport activity of the proximal tubule cells.
Collapse
Affiliation(s)
- Nadine Assmann
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Johann M B Simbuerger
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Carsten Broeker
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nadine Nuernberger
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Kathrin Renner
- Department of Hematology and Oncology, University Clinic Regensburg, 93053 Regensburg, Germany
| | - Holly Courtneidge
- Centre for Nephrology, University College London, London NW3 2PF, UK
| | | | - Axel Duerkop
- Institute of Analytical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Andrew Hall
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Robert Kleta
- Centre for Nephrology, University College London, London NW3 2PF, UK
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Joerg Reinders
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
50
|
Wada Y, Sun-Wada GH, Kawamura N, Yasukawa J. Membrane dynamics in mammalian embryogenesis: Implication in signal regulation. ACTA ACUST UNITED AC 2016; 108:33-44. [PMID: 26992153 DOI: 10.1002/bdrc.21124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 11/11/2022]
Abstract
Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra- and extracellular compartments. Post-translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals.
Collapse
Affiliation(s)
- Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Nobuyuki Kawamura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Jyunichiro Yasukawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|