1
|
Chen K, Wang J, Hu T, Zhao Y, Wu Y, Wang X, Li W, Yang G, Zhang L, Wang J, Zhu Y. Salmonella enterica serovar typhimurium effectors spiA and spiC promote replication by modulating iron metabolism and oxidative stress. Vet Microbiol 2025; 300:110328. [PMID: 39674031 DOI: 10.1016/j.vetmic.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a major threat to the health and safety of animal-derived foods worldwide. Recently, we have reported that S. Typhimurium uses iron to promote its own proliferation, leading to iron metabolism disorders. However, the mechanism by which S. Typhimurium induces iron metabolism disturbances remains unclear. In this study, we found that the S. Typhimurium effectors spiA and spiC promote the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1 (TfR1) and divalent metal transporter protein 1 (DMT1) and inhibit the expression of ferroportin after transfection with the recombinant plasmids pEGFP-C1-spiA and pEGFP-C1-spiC, which in turn contributes to the accumulation of iron and oxidative stress. Furthermore, we aimed to verify the role of these two effector proteins in S. Typhimurium-induced disorders of iron metabolism. We constructed spiA or spiC mutant strains and their corresponding complementation strains. Our data showed that when spiA or spiC was knocked out, the upregulation of iron metabolism proteins (IRP2, TfR1 and DMT1), the accumulation of iron and oxidative stress caused by the wild-type strain were clearly alleviated in vitro and in vivo, which plays a key role in reducing the intracellular replication of S. Typhimurium and attenuating pathological damage to the liver and ileum of mice. Our findings highlighted that S. Typhimurium induces the disruption of iron metabolism via the virulence factors spiA and spiC, thereby facilitating S. Typhimurium proliferation and causing oxidative damage to the liver and ileum, which provides prospective insights into the search for effective antimicrobial targets for the defense against salmonellosis.
Collapse
Affiliation(s)
- Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Ting Hu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yiqing Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yi Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Wei Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
2
|
Liu X, Wang C, Gai W, Sun Z, Fang L, Hua Z. Critical role of msgA in invasive capacity and intracellular survivability of Salmonella. Appl Environ Microbiol 2024; 90:e0020124. [PMID: 39136487 PMCID: PMC11409701 DOI: 10.1128/aem.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Collapse
Affiliation(s)
- Xinqi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Wenhua Gai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhaotong Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc, Changzhou, China
| |
Collapse
|
3
|
Ghods S, Muszyński A, Yang H, Seelan RS, Mohammadi A, Hilson JS, Keiser G, Nichols FC, Azadi P, Ernst RK, Moradali F. The multifaceted role of c-di-AMP signaling in the regulation of Porphyromonas gingivalis lipopolysaccharide structure and function. Front Cell Infect Microbiol 2024; 14:1418651. [PMID: 38933693 PMCID: PMC11199400 DOI: 10.3389/fcimb.2024.1418651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Shirin Ghods
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Asal Mohammadi
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jacob S. Hilson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, CT, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Fata Moradali
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
4
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
6
|
Pradhan J, Pradhan D, Sahu JK, Mishra S, Mallick S, Das S, Negi VD. A novel rspA gene regulates biofilm formation and virulence of Salmonella Typhimurium. Microb Pathog 2023; 185:106432. [PMID: 37926364 DOI: 10.1016/j.micpath.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.
Collapse
Affiliation(s)
- Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Jugal Kishor Sahu
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Satyajit Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Surajit Das
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
8
|
Ganeshan S, Shakibaie MR, Rajagopal R. Insights from the molecular docking analysis of colistin with the PmrA protein model from Acinetobacter baumannii. Bioinformation 2022; 18:41-49. [PMID: 35815194 PMCID: PMC9200612 DOI: 10.6026/97320630018041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii (AB) is one of the most common causes of nosocomial infections. Therefore, it is of interest to design and develop drugs against Acinetobacter baumannii. A strain of AB showing MIC 32 µg/ml against colistin was isolated from a hospital environment in Iran. Hence, we document data to glean insights from the molecular docking analysis of colistin with the PmrA protein from this bacterium.
Collapse
Affiliation(s)
- Shalini Ganeshan
- Department of Biotechnology, Tips college of arts and science, Coimbatore, Tamil Nadu 641107, India
| | - Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
- Environmental Health Engineering Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Rajaguru Rajagopal
- Research Scholar Department of Pharmaceutics, Mother Theresa Post Graduate and Research Institute of Health Sciences, Pondicherry-605006, India
| |
Collapse
|
9
|
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 2021; 49:11614-11628. [PMID: 34751407 PMCID: PMC8599858 DOI: 10.1093/nar/gkab992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence. We now report that CspC—but not CspE—is necessary to activate the master virulence regulator PhoP when S. Typhimurium experiences mildly acidic pH, such as inside macrophages. This CspC-dependent PhoP activation is specific to mildly acidic pH because a cspC mutant behaves like wild-type S. Typhimurium under other PhoP-activating conditions. Moreover, it is mediated by ugtL, a virulence gene required for PhoP activation inside macrophages. Purified CspC promotes ugtL translation by disrupting a secondary structure in the ugtL mRNA that occludes ugtL’s ribosome binding site. Our findings demonstrate that proteins that are seemingly redundant actually confer distinct and critical functions to the lifestyle of an organism.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Cestero JJ, Castanheira S, Pucciarelli MG, García-Del Portillo F. A Novel Salmonella Periplasmic Protein Controlling Cell Wall Homeostasis and Virulence. Front Microbiol 2021; 12:633701. [PMID: 33679664 PMCID: PMC7933661 DOI: 10.3389/fmicb.2021.633701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer has shaped the evolution of Salmonella enterica as pathogen. Some functions acquired by this mechanism include enzymes involved in peptidoglycan (PG) synthesis and remodeling. Here, we report a novel serovar Typhimurium protein that is absent in non-pathogenic bacteria and bears a LprI functional domain, first reported in a Mycobacterium tuberculosis lipoprotein conferring lysozyme resistance. Based on the presence of such domain, we hypothesized a role of this S. Typhimurium protein in PG metabolism. This protein, which we named ScwA for Salmonellacell wall-related regulator-A, controls positively the levels of the murein lytic transglycosylase MltD. In addition, the levels of other enzymes that cleave bonds in the PG lattice were affected in a mutant lacking ScwA, including a soluble lytic tranglycosylase (Slt), the amidase AmiC, and a few endo- and carboxypeptidases (NlpC, PBP4, and AmpH). The scwA gene has lower G+C content than the genomic average (43.1 vs. 52.2%), supporting acquisition by horizontal transfer. ScwA is located in the periplasm, stabilized by two disulfide bridges, produced preferentially in stationary phase and down-regulated following entry of the pathogen into eukaryotic cells. ScwA deficiency, however, results in a hypervirulent phenotype in the murine typhoid model. Based on these findings, we conclude that ScwA may be exploited by S. Typhimurium to ensure cell envelope homeostasis along the infection and to prevent host overt damage. This role could be accomplished by controlling the production or stability of a reduced number of peptidoglycan hydrolases whose activities result in the release of PG fragments.
Collapse
Affiliation(s)
- Juan J Cestero
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.,Department of Molecular Biology, Autonomous University of Madrid, Madrid, Spain.,Center for Molecular Biology "Severo Ochoa" (CBMSO)-CSIC, Madrid, Spain
| | | |
Collapse
|
12
|
Jiang L, Wang P, Song X, Zhang H, Ma S, Wang J, Li W, Lv R, Liu X, Ma S, Yan J, Zhou H, Huang D, Cheng Z, Yang C, Feng L, Wang L. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat Commun 2021; 12:879. [PMID: 33563986 PMCID: PMC7873081 DOI: 10.1038/s41467-021-21186-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Salmonella Typhimurium establishes systemic infection by replicating in host macrophages. Here we show that macrophages infected with S. Typhimurium exhibit upregulated glycolysis and decreased serine synthesis, leading to accumulation of glycolytic intermediates. The effects on serine synthesis are mediated by bacterial protein SopE2, a type III secretion system (T3SS) effector encoded in pathogenicity island SPI-1. The changes in host metabolism promote intracellular replication of S. Typhimurium via two mechanisms: decreased glucose levels lead to upregulated bacterial uptake of 2- and 3-phosphoglycerate and phosphoenolpyruvate (carbon sources), while increased pyruvate and lactate levels induce upregulation of another pathogenicity island, SPI-2, known to encode virulence factors. Pharmacological or genetic inhibition of host glycolysis, activation of host serine synthesis, or deletion of either the bacterial transport or signal sensor systems for those host glycolytic intermediates impairs S. Typhimurium replication or virulence. Salmonella Typhimurium establishes systemic infection by replicating in host macrophages. Here, Jiang et al. show that infected macrophages exhibit upregulated glycolysis and decreased serine synthesis, leading to accumulation of glycolytic intermediates that promote intracellular replication and virulence of S. Typhimurium.
Collapse
Affiliation(s)
- Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Peisheng Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaorui Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Huan Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jingting Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Runxia Lv
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jiaqi Yan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Haiyan Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China. .,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China. .,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China. .,The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Choi J, Groisman EA. Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res 2020; 48:10832-10847. [PMID: 33045730 PMCID: PMC7641745 DOI: 10.1093/nar/gkaa813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence. We establish that the horizontally acquired regulatory gene ssrB is necessary to activate the ancestral regulatory system PhoP/PhoQ of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mildly acidic pH, which S. Typhimurium experiences inside macrophages. SsrB promotes phoP transcription by binding upstream of the phoP promoter. SsrB also increases ugtL transcription by binding to the ugtL promoter region, where it overcomes gene silencing by the heat-stable nucleoid structuring protein H-NS, enhancing virulence. The largely non-pathogenic species S. bongori failed to activate PhoP/PhoQ in mildly acidic pH because it lacks both the ssrB gene and the SsrB binding site in the target promoter. Low Mg2+ activated PhoP/PhoQ in both S. bongori and ssrB-lacking S. Typhimurium, indicating that the SsrB requirement for PhoP/PhoQ activation is signal-dependent. By controlling the ancestral genome, horizontally acquired genes are responsible for more crucial abilities, including virulence, than currently thought.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
14
|
Jayeola V, McClelland M, Porwollik S, Chu W, Farber J, Kathariou S. Identification of Novel Genes Mediating Survival of Salmonella on Low-Moisture Foods via Transposon Sequencing Analysis. Front Microbiol 2020; 11:726. [PMID: 32499760 PMCID: PMC7242855 DOI: 10.3389/fmicb.2020.00726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica is the leading foodborne pathogen associated with outbreaks involving low-moisture foods (LMFs). However, the genes involved in Salmonella's long-term survival on LMFs remain poorly characterized. In this study, in-shell pistachios were inoculated with Tn5-based mutant libraries of S. Enteritidis P125109, S. Typhimurium 14028s, and S. Newport C4.2 at approximate 108 CFU/g and stored at 25°C. Transposon sequencing analysis (Tn-seq) was then employed to determine the relative abundance of each Tn5 insertion site immediately after inoculation (T0), after drying (T1), and at 120 days (T120). In S. Enteritidis, S. Typhimurium, and S. Newport mutant libraries, the relative abundance of 51, 80, and 101 Tn5 insertion sites, respectively, was significantly lower at T1 compared to T0, while in libraries of S. Enteritidis and S. Typhimurium the relative abundance of 42 and 68 Tn5 insertion sites, respectively, was significantly lower at T120 compared to T1. Tn5 insertion sites with reduced relative abundance in this competition assay were localized in DNA repair, lipopolysaccharide biosynthesis and stringent response genes. Twelve genes among those under strong negative selection in the competition assay were selected for further study. Whole gene deletion mutants in ten of these genes, sspA, barA, uvrB, damX, rfbD, uvrY, lrhA, yifE, rbsR, and ompR, were impaired for individual survival on pistachios. The findings highlight the value of combined mutagenesis and sequencing to identify novel genes important for the survival of Salmonella in low-moisture foods.
Collapse
Affiliation(s)
- Victor Jayeola
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Murret-Labarthe C, Kerhoas M, Dufresne K, Daigle F. New Roles for Two-Component System Response Regulators of Salmonella enterica Serovar Typhi during Host Cell Interactions. Microorganisms 2020; 8:microorganisms8050722. [PMID: 32413972 PMCID: PMC7285189 DOI: 10.3390/microorganisms8050722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
In order to survive external stresses, bacteria need to adapt quickly to changes in their environment. One adaptive mechanism is to coordinate and alter their gene expression by using two-component systems (TCS). TCS are composed of a sensor kinase that activates a transcriptional response regulator by phosphorylation. TCS are involved in motility, virulence, nutrient acquisition, and envelope stress in many bacteria. The pathogenic bacteria Salmonella enterica serovar Typhi (S. Typhi) possess 30 TCSs, is specific to humans, and causes typhoid fever. Here, we have individually deleted each of the 30 response regulators. We have determined their role during interaction with host cells (epithelial cells and macrophages). Deletion of most of the systems (24 out of 30) resulted in a significant change during infection. We have identified 32 new phenotypes associated with TCS of S. Typhi. Some previously known phenotypes associated with TCSs in Salmonella were also confirmed. We have also uncovered phenotypic divergence between Salmonella serovars, as distinct phenotypes between S. Typhi and S. Typhimurium were identified for cpxR. This finding highlights the importance of specifically studying S. Typhi to understand its pathogenesis mechanisms and to develop strategies to potentially reduce typhoid infections.
Collapse
|
16
|
Affiliation(s)
- Marie-Stéphanie Aschtgen
- From the, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental LifeSciences Engineering (SCELSE), Nanyang Technological University, Singapore City, Singapore
| | - Birgitta Henriques-Normark
- From the, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental LifeSciences Engineering (SCELSE), Nanyang Technological University, Singapore City, Singapore.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Normark
- From the, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental LifeSciences Engineering (SCELSE), Nanyang Technological University, Singapore City, Singapore.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Jiang L, Wang P, Li X, Lv R, Wang L, Yang B, Huang D, Feng L, Liu B. PagR mediates the precise regulation of
Salmonella
pathogenicity island 2 gene expression in response to magnesium and phosphate signals in
Salmonella
Typhimurium. Cell Microbiol 2019; 22:e13125. [DOI: 10.1111/cmi.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Lingyan Jiang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Xiaomin Li
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Lin Wang
- Inspection and Quarantine Technical CenterBeijing Entry‐Exit Inspection and Quarantine Bureau Beijing China
| | - Bin Yang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Di Huang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Lu Feng
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Bin Liu
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| |
Collapse
|
18
|
Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur. Appl Environ Microbiol 2019; 85:AEM.03026-18. [PMID: 30824449 DOI: 10.1128/aem.03026-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/23/2019] [Indexed: 02/07/2023] Open
Abstract
Iron is one of most abundant environmental metal ions but is highly limited in organisms. It is an important metal ion as it facilitates various biological processes, including catalysis of metabolic enzymes and DNA biogenesis. In bacteria, the ferric uptake regulator (Fur) protein controls iron uptake by regulating genes coding for iron transporters in response to iron concentration. This iron response is ascribed to Fur's intrinsic affinity for iron because its binding to iron dictates its regulatory function. However, we now report that the pathogen Salmonella achieves a proper response of Fur to changes in environmental iron concentrations via EIIANtr (a nitrogen metabolic phosphotransferase system component). We establish that EIIANtr increases expression of iron transporter-coding genes under low-iron conditions (i.e., nanomolar ranges) in a Fur-dependent manner, which promotes Salmonella growth under such conditions. EIIANtr directly hampers Fur binding to DNA, thereby inducing expression of those genes. This regulation allows Salmonella to express Fur-regulated genes under low-iron conditions. Our findings reveal a potentially widespread control mechanism of bacterial iron uptake systems operating in response to iron availability.IMPORTANCE Iron is a fundamental metal ion for living organisms as it facilitates various biological processes. The ferric uptake regulator (Fur) protein controls iron homeostasis in various bacterial species. It is believed that Fur's iron-dependent regulatory action is sufficient for it to function as an iron sensor. However, we now establish that the bacterial pathogen Salmonella enables Fur to properly reflect changes in surrounding iron availability by fine-tuning its responsiveness to iron. This process requires a protein that hampers Fur DNA binding at low iron concentrations. In this way, Salmonella broadens the range of iron concentrations that Fur responds to. Our findings reveal a potentially widespread control mechanism of bacterial iron homeostasis.
Collapse
|
19
|
Abstract
Signal transduction systems dictate various cellular behaviors in response to environmental changes. To operate cellular programs appropriately, organisms have sophisticated regulatory factors to optimize the signal response. The PhoP/PhoQ master virulence regulatory system of the intracellular pathogen Salmonella enterica is activated inside acidic macrophage phagosomes. Here we report that Salmonella delays the activation of this system inside macrophages using an inhibitory protein, EIIANtr (a component of the nitrogen-metabolic phosphotransferase system). We establish that EIIANtr directly restrains PhoP binding to its target promoter, thereby negatively controlling the expression of PhoP-activated genes. PhoP furthers its activation by promoting Lon-mediated degradation of EIIANtr at acidic pH. These results suggest that Salmonella ensures robust activation of its virulence system by suspending the activation of PhoP until a sufficient level of active PhoP is present to overcome the inhibitory effect of EIIANtr Our findings reveal how a pathogen precisely and efficiently operates its virulence program during infection.IMPORTANCE To accomplish successful infection, pathogens must operate their virulence programs in a precise, time-sensitive, and coordinated manner. A major question is how pathogens control the timing of virulence gene expression during infection. Here we report that the intracellular pathogen Salmonella controls the timing and level of virulence gene expression by using an inhibitory protein, EIIANtr A DNA binding master virulence regulator, PhoP, controls various virulence genes inside acidic phagosomes. Salmonella decreases EIIANtr amounts at acidic pH in a Lon- and PhoP-dependent manner. This, in turn, promotes expression of the PhoP-activated virulence program because EIIANtr hampers activation of PhoP-regulated genes by interfering with PhoP binding to DNA. EIIANtr enables Salmonella to impede the activation of PhoP-regulated gene expression inside macrophages. Our findings suggest that Salmonella achieves programmed delay of virulence gene activation by adjusting levels of an inhibitory factor.
Collapse
|
20
|
Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. EMBO J 2018; 37:embj.201796977. [PMID: 29858228 DOI: 10.15252/embj.201796977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action and contribution to pathogenesis of many virulence genes are understood. By contrast, little is known about anti-virulence genes, which contribute to the start, progression, and outcome of an infection. We now report how an anti-virulence factor in Salmonella enterica serovar Typhimurium dictates the onset of a genetic program that governs metabolic adaptations and pathogen survival in host tissues. Specifically, we establish that the anti-virulence protein CigR directly restrains the virulence protein MgtC, thereby hindering intramacrophage survival, inhibition of ATP synthesis, stabilization of cytoplasmic pH, and gene transcription by the master virulence regulator PhoP. We determine that, like MgtC, CigR localizes to the bacterial inner membrane and that its C-terminal domain is critical for inhibition of MgtC. As in many toxin/anti-toxin genes implicated in antibiotic tolerance, the mgtC and cigR genes are part of the same mRNA. However, cigR is also transcribed from a constitutive promoter, thereby creating a threshold of CigR protein that the inducible MgtC protein must overcome to initiate a virulence program critical for pathogen persistence in host tissues.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA .,Yale Microbial Sciences Institute, West Haven, CT, USA
| |
Collapse
|
21
|
Hong X, Chen HD, Groisman EA. Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane. Sci Signal 2018; 11:11/529/eaar7921. [PMID: 29739882 DOI: 10.1126/scisignal.aar7921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid A is the innermost component of the lipopolysaccharide (LPS) molecules that occupy the outer leaflet of the outer membrane in Gram-negative bacteria. Lipid A is recognized by the host immune system and targeted by cationic antimicrobial compounds. In Salmonella enterica serovar Typhimurium, the phosphates of lipid A are chemically modified by enzymes encoded by targets of the transcriptional regulator PmrA. These modifications increase resistance to the cationic peptide antibiotic polymyxin B by reducing the negative charge of the LPS. We report the mechanism by which Salmonella produces different lipid A profiles when PmrA is activated by low Mg2+ versus a mildly acidic pH. Low Mg2+ favored modification of the lipid A phosphates with 4-amino-4-deoxy-l-aminoarabinose (l-Ara4N) by activating the regulatory protein PhoP, which initially increased the LPS negative charge by promoting transcription of lpxT, encoding an enzyme that adds an additional phosphate group to lipid A. Later, PhoP activated PmrA posttranslationally, resulting in expression of PmrA-activated genes, including those encoding the LpxT inhibitor PmrR and enzymes responsible for the incorporation of l-Ara4N. By contrast, a mildly acidic pH favored modification of the lipid A phosphates with a mixture of l-Ara4N and phosphoethanolamine (pEtN) by simultaneously inducing the PhoP-activated lpxT and PmrA-activated pmrR genes. Although l-Ara4N reduces the LPS negative charge more than does pEtN, modification of lipid A phosphates solely with l-Ara4N required a prior transient increase in lipid A negative charge. Our findings demonstrate how bacteria tailor their cell surface to different stresses, such as those faced inside phagocytes.
Collapse
Affiliation(s)
- Xinyu Hong
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06536, USA
| | - H Deborah Chen
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
22
|
Jiang X, Li X, Sun S, Jiang L. The transcriptional regulator VarN contributes to Salmonella Typhimurium growth in macrophages and virulence in mice. Res Microbiol 2018; 169:214-221. [DOI: 10.1016/j.resmic.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
|
23
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
24
|
Pontes MH, Yeom J, Groisman EA. Reducing Ribosome Biosynthesis Promotes Translation during Low Mg 2+ Stress. Mol Cell 2016; 64:480-492. [PMID: 27746019 DOI: 10.1016/j.molcel.2016.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
The synthesis of ribosomes is regulated by both amino acid abundance and the availability of ATP, which regenerates guanosine triphosphate (GTP), powers ribosomes, and promotes transcription of rRNA genes. We now report that bacteria supersede both of these controls when experiencing low cytosolic magnesium (Mg2+), a divalent cation essential for ribosome stabilization and for neutralization of ATP's negative charge. We uncover a regulatory circuit that responds to low cytosolic Mg2+ by promoting expression of proteins that import Mg2+ and lower ATP amounts. This response reduces the levels of ATP and ribosomes, making Mg2+ ions available for translation. Mutants defective in Mg2+ uptake and unable to reduce ATP levels accumulate non-functional ribosomal components and undergo translational arrest. Our findings establish a paradigm whereby cells reduce the amounts of translating ribosomes to carry out protein synthesis.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA
| | - Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
25
|
Choi J, Groisman EA. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol Microbiol 2016; 101:1024-38. [PMID: 27282333 PMCID: PMC5015592 DOI: 10.1111/mmi.13439] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Yale Microbial Sciences Institute, West Haven, CT, 06516, USA.
| |
Collapse
|
26
|
Feldheim YS, Zusman T, Speiser Y, Segal G. The Legionella pneumophila CpxRA two-component regulatory system: new insights into CpxR's function as a dual regulator and its connection to the effectors regulatory network. Mol Microbiol 2016; 99:1059-79. [PMID: 26713766 DOI: 10.1111/mmi.13290] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
Abstract
Legionella pneumophila utilizes the Icm/Dot type-IV secretion system to translocate approximately 300 effector proteins into host cells, and the CpxRA two-component system (TCS) was previously shown to regulate the expression of several of these effectors. In this study, we expanded the pool of L. pneumophila CpxR-regulated genes to 38, including 27 effector-encoding genes. Our study demonstrates for the first time that the CpxR dual regulator has different requirements for activation and repression of target genes. These differences include the positioning of the CpxR regulatory element relative to the promoter element, and the effect of CpxR phosphate donors on the expression of CpxR target genes. In addition, unlike most response regulators, a mutant form of the L. pneumophila CpxR which cannot be phosphorylated was found to self-interact, and to repress gene expression similarly to wild-type CpxR, even though its ability to activate gene expression was reduced. Moreover, the CpxRA TCS was found to activate the expression of LetE which was found to function as a connector protein between the CpxRA TCS and the LetAS-RsmYZ-CsrA regulatory cascade. Our results show that CpxR plays a major role in L. pneumophila pathogenesis gene expression and functions as part of a regulatory network.
Collapse
Affiliation(s)
- Yaron S Feldheim
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Yariv Speiser
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
27
|
Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 2016; 529:496-501. [PMID: 26789254 DOI: 10.1038/nature16547] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
Bacteria express many small RNAs for which the regulatory roles in pathogenesis have remained poorly understood due to a paucity of robust phenotypes in standard virulence assays. Here we use a generic 'dual RNA-seq' approach to profile RNA expression simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the molecular impact of bacterial riboregulators. We identify a PhoP-activated small RNA, PinT, which upon bacterial internalization temporally controls the expression of both invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity causes pervasive changes in coding and noncoding transcripts of the host. Interspecies correlation analysis links PinT to host cell JAK-STAT signalling, and we identify infection-specific alterations in multiple long noncoding RNAs. Our study provides a paradigm for a sensitive RNA-based analysis of intracellular bacterial pathogens and their hosts without physical separation, as well as a new discovery route for hidden functions of pathogen genes.
Collapse
Affiliation(s)
- Alexander J Westermann
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.,University of Würzburg, Core Unit Systems Medicine, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany
| | - Fabian Amman
- University of Leipzig, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107 Leipzig, Germany.,University of Vienna, Theoretical Biochemistry Group, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria
| | - Lars Barquist
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany
| | - Yanjie Chao
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany
| | - Leon N Schulte
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany
| | - Lydia Müller
- University of Leipzig, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Peter F Stadler
- University of Leipzig, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107 Leipzig, Germany.,University of Vienna, Theoretical Biochemistry Group, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.,Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, New Mexico 87501, USA
| | - Jörg Vogel
- University of Würzburg, RNA Biology Group, Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.,Research Centre for Infectious Diseases (ZINF), University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
28
|
Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci U S A 2015; 112:5183-8. [PMID: 25848006 DOI: 10.1073/pnas.1500989112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission.
Collapse
|
29
|
The iron-sensing fur regulator controls expression timing and levels of salmonella pathogenicity island 2 genes in the course of environmental acidification. Infect Immun 2014; 82:2203-10. [PMID: 24643535 DOI: 10.1128/iai.01625-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to survive inside macrophages, Salmonella produces a series of proteins encoded by genes within Salmonella pathogenicity island 2 (SPI-2). In the present study, we report that Fur, a central regulator of iron utilization, negatively controls the expression of SPI-2 genes. Time course analysis of SPI-2 expression after the entry of Salmonella into macrophages revealed that SPI-2 genes are induced earlier and at higher levels in the absence of the Fur regulator. It was hypothesized that Fur repressed the SPI-2 expression that was activated during acidification of the phagosome. Indeed, as pH was lowered from pH 7.0 to pH 5.5, the lack of Fur enabled SPI-2 gene expression to be induced at higher pH and to be expressed at higher levels. Fur controlled SPI-2 genes via repression of the SsrB response regulator, a primary activator of SPI-2 expression. Fur repressed ssrB expression both inside macrophages and under acidic conditions, which we ascribe to the direct binding of Fur to the ssrB promoter. Our study suggests that Salmonella could employ iron inside the phagosome to precisely control the timing and levels of SPI-2 expression inside macrophages.
Collapse
|
30
|
Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR, Hsu STD, Chou SH, Wu SH, Chen C. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res 2013; 42:4080-93. [PMID: 24371275 PMCID: PMC3973317 DOI: 10.1093/nar/gkt1345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphorylation of the response regulator enhances DNA recognition remains elusive. To gain insights, we determined the nuclear magnetic resonance solution structure of PmrAC and characterized the interactions between PmrAC or BeF3(-)-activated full-length PmrA (PmrAF) and two DNA sequences from the pbgP promoter of K. pneumoniae. We showed that PmrAC binds to the PmrA box, which was verified to contain two half-sites, 5'-CTTAAT-3' and 5'-CCTAAG-3', in a head-to-tail fashion with much stronger affinity to the first than the second site without cooperativity. The structural basis for the PmrAC-DNA complex was investigated using HADDOCK docking and confirmed by paramagnetic relaxation enhancement. Unlike PmrAC, PmrAF recognizes the two sites simultaneously and specifically. In the PmrAF-DNA complex, PmrAN may maintain an activated homodimeric conformation analogous to that in the free form and the interactions between two PmrAC molecules aid in bending and binding of the DNA duplex for transcription activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Institute of Biological Chemistry, Academia Sinica, Taipei 115, Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|