1
|
Almeida M, Inácio JM, Vital CM, Rodrigues MR, Araújo BC, Belo JA. Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair. Int J Mol Sci 2025; 26:3063. [PMID: 40243729 DOI: 10.3390/ijms26073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with myocardial infarction (MI) being a major contributor. The current therapeutic approaches are limited in effectively regenerating damaged cardiac tissue. Up-to-date strategies for heart regeneration/reconstitution aim at cardiac remodeling through repairing the damaged tissue with an external cell source or by stimulating the existing cells to proliferate and repopulate the compromised area. Cell reprogramming is addressed to this challenge as a promising solution, converting fibroblasts and other cell types into functional cardiomyocytes, either by reverting cells to a pluripotent state or by directly switching cell lineage. Several strategies such as gene editing and the application of miRNA and small molecules have been explored for their potential to enhance cardiac regeneration. Those strategies take advantage of cell plasticity by introducing reprogramming factors that regress cell maturity in vitro, allowing for their later differentiation and thus endorsing cell transplantation, or promote in situ cell proliferation, leveraged by scaffolds embedded with pro-regenerative factors promoting efficient heart restoration. Despite notable advancements, important challenges persist, including low reprogramming efficiency, cell maturation limitations, and safety concerns in clinical applications. Nonetheless, integrating these innovative approaches offers a promising alternative for restoring cardiac function and reducing the dependency on full heart transplants.
Collapse
Affiliation(s)
- Micael Almeida
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - José M Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Carlos M Vital
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Madalena R Rodrigues
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Beatriz C Araújo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - José A Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
2
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega‐Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2025; 24:e14371. [PMID: 39540462 PMCID: PMC11822649 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Roberta Noberini
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
| | - Rita S. Ferreira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of ChemistryUniversity of AveiroAveiroPortugal
- LAQV/REQUIMTEUniversity of AveiroAveiroPortugal
| | - José Teixeira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Tiziana Bonaldi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanoMilanItaly
| | - Paulo J. Oliveira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical School (MHH)HannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Sandrina Nóbrega‐Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
3
|
Bois A, Grandela C, Gallant J, Mummery C, Menasché P. Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction. NPJ Regen Med 2025; 10:6. [PMID: 39843488 PMCID: PMC11754855 DOI: 10.1038/s41536-025-00394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.
Collapse
Affiliation(s)
- Axelle Bois
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - James Gallant
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| |
Collapse
|
4
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
5
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
6
|
Yang J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024; 13:2002. [PMID: 39682750 PMCID: PMC11640292 DOI: 10.3390/cells13232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
7
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Cooke JP, Youker KA, Lai L. Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation. Methodist Debakey Cardiovasc J 2024; 20:31-41. [PMID: 39184159 PMCID: PMC11342844 DOI: 10.14797/mdcvj.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial recovery is characterized by a return toward normal structure and function of the heart after an injury. Mechanisms of myocardial recovery include restoration and/or adaptation of myocyte structure and function, mitochondrial activity and number, metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery that involves the generation of new myocardial tissue, a process which is limited in adult humans but may be therapeutically augmented. Understanding the mechanisms of myocardial recovery and myocardial regeneration will lead to novel therapies for heart failure.
Collapse
Affiliation(s)
- John P. Cooke
- Houston Methodist Academic Institute, Houston, Texas, US
| | | | - Li Lai
- Houston Methodist Academic Institute, Houston, Texas, US
| |
Collapse
|
9
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
10
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
11
|
Adachi T, Tahara Y, Yamamoto K, Yamamoto T, Kanamura N, Akiyoshi K, Mazda O. Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine. Gels 2024; 10:206. [PMID: 38534624 DOI: 10.3390/gels10030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyoto-fu, Kyotanabe-shi 610-0321, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Ahmad W, Saleh B, Qazi REM, Muneer R, Khan I, Khan M, Salim A. Direct differentiation of rat skin fibroblasts into cardiomyocytes. Exp Cell Res 2024; 435:113934. [PMID: 38237847 DOI: 10.1016/j.yexcr.2024.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/16/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Myocardial infarction (MI) is one of the major cardiovascular diseases caused by diminished supply of nutrients and oxygen to the heart due to obstruction of the coronary artery. Different treatment options are available for cardiac diseases, however, they do not completely repair the damage. Therefore, reprogramming terminally differentiated fibroblasts using transcription factors is a promising strategy to differentiate them into cardiac like cells in vitro and to increase functional cardiomyocytes and reduce fibrotic scar in vivo. In this study, skin fibroblasts were selected for reprogramming because they serve as a convenient source for the autologous cell therapy. Fibroblasts were isolated from skin of rat pups, propagated, and directly reprogrammed towards cardiac lineage. For reprogramming, two different approaches were adopted, i.e., cells were transfected with: (1) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5 (GMN), and (2) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5, and iPSC factors; Oct4, Klf4, Sox2 and cMyc (GMNO). After 72 h of transfection, cells were analyzed for the expression of cardiac markers at the mRNA and protein levels. For in vivo study, rat MI models were developed by ligating the left anterior descending coronary artery and the reprogrammed cells were transplanted in the infarcted heart. qPCR results showed that the reprogrammed cells exhibited significant upregulation of cardiac genes. Immunocytochemistry analysis further confirmed cardiomyogenic differentiation of the reprogrammed cells. For the assessment of cardiac function, animals were analyzed via echocardiography after 2 and 4 weeks of cell transplantation. Echocardiographic results showed that the hearts transplanted with the reprogrammed cells improved ejection fraction, fractional shortening, left ventricular internal systolic and diastolic dimensions, and end systolic and diastolic volumes. After 4 weeks of cell transplantation, heart tissues were harvested and processed for histology. The histological analysis showed that the reprogrammed cells improved wall thickness of left ventricle and reduced fibrosis significantly as compared to the control. It is concluded from the study that novel combination of cardiac transcription factors directly reprogrammed skin fibroblasts and differentiated them into cardiomyocytes. These differentiated cells showed cardiomyogenic characters in vitro, and reduced fibrosis and improved cardiac function in vivo. Furthermore, direct reprogramming of fibroblasts transfected with cardiac transcription factors showed better regeneration of the injured myocardium and improved cardiac function as compared to the indirect approach in which combination of cardiac and iPSC factors were used. The study after further optimization could be used as a better strategy for cell-based therapeutic approaches for cardiovascular diseases.
Collapse
Affiliation(s)
- Waqas Ahmad
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Bilal Saleh
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida-E-Maria Qazi
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rabbia Muneer
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohsin Khan
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Asmat Salim
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
13
|
Keshri R, Detraux D, Phal A, McCurdy C, Jhajharia S, Chan TC, Mathieu J, Ruohola-Baker H. Next-generation direct reprogramming. Front Cell Dev Biol 2024; 12:1343106. [PMID: 38371924 PMCID: PMC10869521 DOI: 10.3389/fcell.2024.1343106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Damien Detraux
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Clara McCurdy
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Samriddhi Jhajharia
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Tung Ching Chan
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Minakawa T, Yamashita JK. Versatile extracellular vesicle-mediated information transfer: intercellular synchronization of differentiation and of cellular phenotypes, and future perspectives. Inflamm Regen 2024; 44:4. [PMID: 38225584 PMCID: PMC10789073 DOI: 10.1186/s41232-024-00318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant attention as carriers in intercellular communication. The vast array of information contained within EVs is critical for various cellular activities, such as proliferation and differentiation of multiple cell types. Moreover, EVs are being employed in disease diagnostics, implicated in disease etiology, and have shown promise in tissue repair. Recently, a phenomenon has been discovered in which cellular phenotypes, including the progression of differentiation, are synchronized among cells via EVs. This synchronization could be prevalent in widespread different situations in embryogenesis and tissue organization and maintenance. Given the increasing research on multi-cellular tissues and organoids, the role of EV-mediated intercellular communication has become increasingly crucial. This review begins with fundamental knowledge of EVs and then discusses recent findings, various modes of information transfer via EVs, and synchronization of cellular phenotypes.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
15
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
16
|
Wang Q, Spurlock B, Liu J, Qian L. Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl Sci 2024; 9:145-160. [PMID: 38362341 PMCID: PMC10864899 DOI: 10.1016/j.jacbts.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 02/17/2024]
Abstract
Cardiovascular disease is one of the major causes of death worldwide. Limited proliferative capacity of adult mammalian cardiomyocytes has prompted researchers to exploit regenerative therapy after myocardial injury, such as myocardial infarction, to attenuate heart dysfunction caused by such injury. Direct cardiac reprogramming is a recently emerged promising approach to repair damaged myocardium by directly converting resident cardiac fibroblasts into cardiomyocyte-like cells. The achievement of in vivo direct reprogramming of fibroblasts has been shown, by multiple laboratories independently, to improve cardiac function and mitigate fibrosis post-myocardial infarction, which holds great potential for clinical application. There have been numerous pieces of valuable work in both basic and translational research to enhance our understanding and continued refinement of direct cardiac reprogramming in recent years. However, there remain many challenges to overcome before we can truly take advantage of this technique to treat patients with ischemic cardiac diseases. Here, we review recent progress of fibroblast reprogramming in cardiac repair, including the optimization of several reprogramming strategies, mechanistic exploration, and translational efforts, and we make recommendations for future research to further understand and translate direct cardiac reprogramming from bench to bedside. Challenges relating to these efforts will also be discussed.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Xie Y, Van Handel B, Qian L, Ardehali R. Recent advances and future prospects in direct cardiac reprogramming. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1148-1158. [PMID: 39196156 DOI: 10.1038/s44161-023-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 08/29/2024]
Abstract
Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell '-omics' research. Finally, we discuss obstacles to clinical application.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Van Handel
- Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reza Ardehali
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA.
- The Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
18
|
Bachamanda Somesh D, Klose K, Maring JA, Kunkel D, Jürchott K, Protze SI, Klein O, Nebrich G, Becker M, Krüger U, Nazari-Shafti TZ, Falk V, Kurtz A, Gossen M, Stamm C. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction. Stem Cell Res Ther 2023; 14:296. [PMID: 37840130 PMCID: PMC10577947 DOI: 10.1186/s13287-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. METHODS Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. RESULTS We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA-expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. CONCLUSIONS Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.
Collapse
Affiliation(s)
- Dipthi Bachamanda Somesh
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Kristin Klose
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Janita A Maring
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Désirée Kunkel
- Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Stephanie I Protze
- University Health Network, McEwen Stem Cell Institute, Toronto, ON, M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Oliver Klein
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Grit Nebrich
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Matthias Becker
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Ulrike Krüger
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Timo Z Nazari-Shafti
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
| | - Volkmar Falk
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Christof Stamm
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany.
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany.
| |
Collapse
|
19
|
Zhou H, Yang J, Srinath C, Zeng A, Wu I, Leon EC, Qureshi TN, Reid CA, Nettesheim ER, Xu E, Duclos Z, Mohamed TMA, Farshidfar F, Fejes A, Liu J, Jones S, Feathers C, Chung TW, Jing F, Prince WS, Lin J, Yu P, Srivastava D, Hoey T, Ivey KN, Lombardi LM. Improved Cardiac Function in Postischemic Rats Using an Optimized Cardiac Reprogramming Cocktail Delivered in a Single Novel Adeno-Associated Virus. Circulation 2023; 148:1099-1112. [PMID: 37602409 DOI: 10.1161/circulationaha.122.061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.
Collapse
Affiliation(s)
- Huanyu Zhou
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Jin Yang
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Chetan Srinath
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Aliya Zeng
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Iris Wu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Elena C Leon
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tawny Neal Qureshi
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Christopher A Reid
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Emily R Nettesheim
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Emma Xu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Zoe Duclos
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tamer M A Mohamed
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Farshad Farshidfar
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Anthony Fejes
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Jun Liu
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Samantha Jones
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Charles Feathers
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Tae Won Chung
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Frank Jing
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - William S Prince
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - JianMin Lin
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Pengzhi Yu
- Gladstone Institutes, San Francisco, CA (P.Y., D.S.)
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA (P.Y., D.S.)
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (D.S.)
- Division of Cardiology, Department of Pediatrics, School of Medicine (D.S.), University of California San Francisco
- Department of Biochemistry and Biophysics (D.S.), University of California San Francisco
| | - Timothy Hoey
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Kathryn N Ivey
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| | - Laura M Lombardi
- Tenaya Therapeutics, Inc, South San Francisco, CA (H.Z., J.Y., C.S., A.Z., I.W., E.C.L., T.N.Q., C.A.R., E.R.N., E.X., Z.D., T.M.A.M., F.F., A.F., J. Liu, S.J., C.F., T.W.C., F.J., W.S.P., J. Lin, T.H., K.N.I., L.M.L.)
| |
Collapse
|
20
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting CL, Burridge PW. A novel transcription factor combination for direct reprogramming to a spontaneously contracting human cardiomyocyte-like state. J Mol Cell Cardiol 2023; 182:30-43. [PMID: 37421991 PMCID: PMC10495191 DOI: 10.1016/j.yjmcc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD, SMAD6, and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2+ cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach.
Collapse
Affiliation(s)
- Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University and Ann & Robert H.Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Sadahiro T, Tani H, Ieda M. Response by Sadahiro et al to Letter Regarding Article, "Direct Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial Infarction". Circulation 2023; 148:172-173. [PMID: 37428829 DOI: 10.1161/circulationaha.123.065132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (T.S.)
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (H.T., M.I.)
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (H.T., M.I.)
| |
Collapse
|
22
|
Chi C, Song K. Cellular reprogramming of fibroblasts in heart regeneration. J Mol Cell Cardiol 2023; 180:84-93. [PMID: 36965699 PMCID: PMC10347886 DOI: 10.1016/j.yjmcc.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Myocardial infarction causes the loss of cardiomyocytes and the formation of cardiac fibrosis due to the activation of cardiac fibroblasts, leading to cardiac dysfunction and heart failure. Unfortunately, current therapeutic interventions can only slow the disease progression. Furthermore, they cannot fully restore cardiac function, likely because the adult human heart lacks sufficient capacity to regenerate cardiomyocytes. Therefore, intensive efforts have focused on developing therapeutics to regenerate the damaged heart. Several strategies have been intensively investigated, including stimulation of cardiomyocyte proliferation, transplantation of stem cell-derived cardiomyocytes, and conversion of fibroblasts into cardiac cells. Resident cardiac fibroblasts are critical in the maintenance of the structure and contractility of the heart. Fibroblast plasticity makes this type of cells be reprogrammed into many cell types, including but not limited to induced pluripotent stem cells, induced cardiac progenitor cells, and induced cardiomyocytes. Fibroblasts have become a therapeutic target due to their critical roles in cardiac pathogenesis. This review summarizes the reprogramming of fibroblasts into induced pluripotent stem cell-derived cardiomyocytes, induced cardiac progenitor cells, and induced cardiomyocytes to repair a damaged heart, outlines recent findings in utilizing fibroblast-derived cells for heart regeneration, and discusses the limitations and challenges.
Collapse
Affiliation(s)
- Congwu Chi
- Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
24
|
Romero-Tejeda M, Fonoudi H, Weddle CJ, DeKeyser JM, Lenny B, Fetterman KA, Magdy T, Sapkota Y, Epting C, Burridge PW. A Novel Transcription Factor Combination for Direct Reprogramming to a Spontaneously Contracting Human Cardiomyocyte-like State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532629. [PMID: 36993577 PMCID: PMC10055062 DOI: 10.1101/2023.03.14.532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED The reprogramming of somatic cells to a spontaneously contracting cardiomyocyte-like state using defined transcription factors has proven successful in mouse fibroblasts. However, this process has been less successful in human cells, thus limiting the potential clinical applicability of this technology in regenerative medicine. We hypothesized that this issue is due to a lack of cross-species concordance between the required transcription factor combinations for mouse and human cells. To address this issue, we identified novel transcription factor candidates to induce cell conversion between human fibroblasts and cardiomyocytes, using the network-based algorithm Mogrify. We developed an automated, high-throughput method for screening transcription factor, small molecule, and growth factor combinations, utilizing acoustic liquid handling and high-content kinetic imaging cytometry. Using this high-throughput platform, we screened the effect of 4,960 unique transcription factor combinations on direct conversion of 24 patient-specific primary human cardiac fibroblast samples to cardiomyocytes. Our screen revealed the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination, which consistently produced up to 40% TNNT2 + cells in just 25 days. Addition of FGF2 and XAV939 to the MST cocktail resulted in reprogrammed cells with spontaneous contraction and cardiomyocyte-like calcium transients. Gene expression profiling of the reprogrammed cells also revealed the expression of cardiomyocyte associated genes. Together, these findings indicate that cardiac direct reprogramming in human cells can be achieved at similar levels to those attained in mouse fibroblasts. This progress represents a step forward towards the clinical application of the cardiac direct reprogramming approach. HIGHLIGHTS Using network-based algorithm Mogrify, acoustic liquid handling, and high-content kinetic imaging cytometry we screened the effect of 4,960 unique transcription factor combinations. Using 24 patient-specific human fibroblast samples we identified the combination of MYOCD , SMAD6 , and TBX20 (MST) as the most successful direct reprogramming combination. MST cocktail results in reprogrammed cells with spontaneous contraction, cardiomyocyte-like calcium transients, and expression of cardiomyocyte associated genes.
Collapse
|
25
|
Yamada Y, Sadahiro T, Ieda M. Development of direct cardiac reprogramming for clinical applications. J Mol Cell Cardiol 2023; 178:1-8. [PMID: 36918145 DOI: 10.1016/j.yjmcc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The incidence of cardiovascular diseases is increasing worldwide, and cardiac regenerative therapy has great potential as a new treatment strategy, especially for ischemic heart disease. Direct cardiac reprogramming is a promising new cardiac regenerative therapy that uses defined factors to induce transdifferentiation of endogenous cardiac fibroblasts (CFs) into induced cardiomyocyte-like cells (iCMs). In vivo reprogramming is expected to restore lost cardiac function without necessitating cardiac transplantation by converting endogenous CFs that exist abundantly in cardiac tissues directly into iCMs. Indeed, we and other groups have demonstrated that in vivo cardiac reprogramming improves cardiac contractile function and reduces scar area after acute myocardial infarction (MI). Recently, we demonstrated that in vivo cardiac reprogramming is an innovative cardiac regenerative therapy that not only regenerates the myocardium, but also reverses fibrosis by inducing the quiescence of pro-fibrotic fibroblasts, thereby improving heart failure in chronic MI. In this review, we summarize the recent progresses in in vivo cardiac reprogramming, and discuss its prospects for future clinical applications and the challenges of direct human reprogramming, which has been a longstanding issue.
Collapse
Affiliation(s)
- Yu Yamada
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
26
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
27
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
28
|
Liu M, Liu J, Zhang T, Wang L. Direct cardiac reprogramming: Toward the era of multi-omics analysis. CELL INSIGHT 2022; 1:100058. [PMID: 37193352 PMCID: PMC10120284 DOI: 10.1016/j.cellin.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/18/2023]
Abstract
Limited regenerative capacity of adult cardiomyocytes precludes heart repair and regeneration after cardiac injury. Direct cardiac reprograming that converts scar-forming cardiac fibroblasts (CFs) into functional induced-cardiomyocytes (iCMs) offers promising potential to restore heart structure and heart function. Significant advances have been achieved in iCM reprogramming using genetic and epigenetic regulators, small molecules, and delivery strategies. Recent researches on the heterogeneity and reprogramming trajectories elucidated novel mechanisms of iCM reprogramming at single cell level. Here, we review recent progress in iCM reprogramming with a focus on multi-omics (transcriptomic, epigenomic and proteomic) researches to investigate the cellular and molecular machinery governing cell fate conversion. We also highlight the future potential using multi-omics approaches to dissect iCMs conversion for clinal applications.
Collapse
Affiliation(s)
- Mengxin Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jie Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Zhang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Wang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
29
|
Tang Y, Aryal S, Geng X, Zhou X, Fast VG, Zhang J, Lu R, Zhou Y. TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming. Circulation 2022; 146:1518-1536. [PMID: 36102189 PMCID: PMC9662826 DOI: 10.1161/circulationaha.122.059713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. METHODS To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. RESULTS We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail (MEF2C, GATA4, TBX5, and miR-133). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. CONCLUSIONS TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Sajesan Aryal
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xiaoxiao Geng
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xinyue Zhou
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Vladimir G. Fast
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Jianyi Zhang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Rui Lu
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Yang Zhou
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| |
Collapse
|
30
|
Ricketts SN, Qian L. The heart of cardiac reprogramming: The cardiac fibroblasts. J Mol Cell Cardiol 2022; 172:90-99. [PMID: 36007393 DOI: 10.1016/j.yjmcc.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
32
|
Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, Kim HW. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling. Biomaterials 2022; 289:121792. [PMID: 36116170 DOI: 10.1016/j.biomaterials.2022.121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, South Korea
| | - Ho-Shup Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
33
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
34
|
Takata T, Sakasai-Sakai A, Takeuchi M. Intracellular Toxic Advanced Glycation End-Products May Induce Cell Death and Suppress Cardiac Fibroblasts. Metabolites 2022; 12:metabo12070615. [PMID: 35888739 PMCID: PMC9321527 DOI: 10.3390/metabo12070615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) induced by the dysfunction and cell death of cardiomyocytes. Cardiac fibroblasts are activated and differentiate in response to specific signals, such as transforming growth factor-β released from injured cardiomyocytes, and are crucial for the protection of cardiomyocytes, cardiac tissue repair, and remodeling. In contrast, cardiac fibroblasts have been shown to induce injury or death of cardiomyocytes and are implicated in the pathogenesis of diseases such as cardiac hypertrophy. We designated glyceraldehyde-derived advanced glycation end-products (AGEs) as toxic AGEs (TAGE) due to their cytotoxicity and association with LSRD. Intracellular TAGE in cardiomyocytes decreased their beating rate and induced cell death in the absence of myocardial ischemia. The TAGE levels in blood were elevated in patients with CVD and were associated with myocardial ischemia along with increased risk of atherosclerosis in vascular endothelial cells in vitro. The relationships between the dysfunction or cell death of cardiac fibroblasts and intracellular and extracellular TAGE, which are secreted from certain organs, remain unclear. We examined the cytotoxicity of intracellular TAGE by a slot blot analysis, and TAGE-modified bovine serum albumin (TAGE-BSA), a model of extracellular TAGE, in normal human cardiac fibroblasts (HCF). Intracellular TAGE induced cell death in normal HCF, whereas TAGE-BSA did not, even at aberrantly high non-physiological levels. Therefore, only intracellular TAGE induced cell death in HCF under physiological conditions, possibly inhibiting the role of HCF.
Collapse
Affiliation(s)
- Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (A.S.-S.); (M.T.)
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-2211
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (A.S.-S.); (M.T.)
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (A.S.-S.); (M.T.)
| |
Collapse
|
35
|
Kuang J, Huang T, Pei D. The Art of Reprogramming for Regenerative Medicine. Front Cell Dev Biol 2022; 10:927555. [PMID: 35846373 PMCID: PMC9280648 DOI: 10.3389/fcell.2022.927555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional pharmaceuticals in the forms of small chemical compounds or macromolecules such as proteins or RNAs have provided lifesaving solutions to many acute and chronic conditions to date. However, there are still many unmet medical needs, especially those of degenerative nature. The advent of cell-based therapy holds the promise to meet these challenges. In this review, we highlight a relatively new paradigm for generating or regenerating functional cells for replacement therapy against conditions such as type I diabetes, myocardial infarction, neurodegenerative diseases and liver fibrosis. We focus on the latest progresses in cellular reprogramming for generating diverse functional cell types. We will also discuss the mechanisms involved and conclude with likely general principles underlying reprogramming.
Collapse
Affiliation(s)
- Junqi Kuang
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tao Huang
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Duanqing Pei
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- *Correspondence: Duanqing Pei,
| |
Collapse
|
36
|
Zhang X, Zhang Q, Chen L, Cai B, Zeng M, Ou S, Chen Y, Feng Z, Chen H, Cao S, Kang K. Appropriate Exogenous Expression Stoichiometry of GATA4 as an Important Factor for Cardiac Reprogramming of Human Dermal Fibroblasts. Cell Reprogram 2022; 24:283-293. [PMID: 35762944 DOI: 10.1089/cell.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Reprogramming of human dermal fibroblasts (HDFs) into induced cardiomyocyte-like cells (iCMs) represents a promising strategy for human cardiac regeneration. Different cocktails of cardiac transcription factors can convert HDFs into iCMs, although with low efficiency and immature phenotype. Here, GATA4, MEF2C, TBX5, MESP1, and MYOCD (GMTMeMy for short) were used to reprogram HDFs by retrovirus infection. We found that the exogenous expression stoichiometry of GATA4 (GATA4 stoichiometry) significantly affected reprogramming efficiency. When 1/8 dosage of GATA4 virus (GATA4 dosage) plus MTMeMy was used, the reprogramming efficiency was obviously improved compared with average pooled virus encoding each factor, which measured, by the expression level of cardiac genes, the percentage of cardiac troponin T and alpha-cardiac myosin heavy-chain immunopositive cells and the numbers of iCMs showing calcium oscillation or beating synchronously in co-culture with mouse CMs. In addition, we prepared conditioned maintenance medium (CMM) by CM differentiation of H9 human embryonic stem cell line. We found that compared with traditional maintenance medium (TMM), CMM made iCMs show well-organized sarcomere formation and characteristic calcium oscillation wave earlier. These findings demonstrated that appropriate GATA4 stoichiometry was essential for cardiac reprogramming and some components in CMM were important for maturation of iCMs.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijun Chen
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, China
| | - Baomei Cai
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Center for Cell Lineage and Atlas, Guangzhou, China
| | - Mengying Zeng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Center for Cell Lineage and Atlas, Guangzhou, China
| | - Sihua Ou
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yating Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyu Feng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Center for Cell Lineage and Atlas, Guangzhou, China
| | - Huan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Center for Cell Lineage and Atlas, Guangzhou, China
| | - Shangtao Cao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Center for Cell Lineage and Atlas, Guangzhou, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
37
|
Cao Y, Dong Z, Yang D, Ma X, Wang X. LSD1 regulates the expressions of core cardiogenic transcription factors and cardiac genes in oxygen and glucose deprivation injured mice fibroblasts in vitro. Exp Cell Res 2022; 418:113228. [PMID: 35688282 DOI: 10.1016/j.yexcr.2022.113228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Cardiac reprogramming has emerged as a novel therapeutic approach to regenerating the damaged heart by directly converting endogenous cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs). Cardiac reprogramming requires the activation of the cardiogenic transcriptional program in concert with the repression of the fibroblastic transcriptional program. Lysine-specific demethylase 1 (LSD1) plays an instrumental role in many physiological processes such as cell growth, differentiation and metabolism. The epigenetic modifications of histones are essential for the accurate expression of genes in cardiomyocytes and the normal functioning of the heart. However, the effect of LSD1 in regulating the cardiogenic transcriptional program under myocardial ischemia/reperfusion (I/R) injury remains unclear. Thus, mice I/R injury was induced by 4 and 24 h reperfusion after 1-h occlusion of the left anterior descending coronary artery. The primary CFs and CMs were exposed under oxygen and glucose deprivation (OGD) to mimic I/R injury. The expression of LSD1 significantly decreased in I/R injured heart tissue and OGD-injured primary CFs and CM, and methylated histone presented a notable increase in OGD-injured primary CFs. Overexpression of LSD1 inhibited the injury of primary CFs induced by OGD, but showed limited inhibition on injured primary CMs. Under the OGD condition, LSD1 overexpression significantly increased cell viability, decreased cell apoptosis and reactive oxygen species (ROS) production of primary CFs. The expression of core cardiogenic transcription factors and cardiac genes were significantly decreased in OGD injured primary CFs, whereas LSD1 overexpression reversed the decrease of transcription factors and cardiac genes under the OGD condition. In conclusion, the overexpression of LSD1 has a protective role in I/R injury by inhibiting the histone methylation of primary CFs and regulates the expressions of core cardiogenic transcription factors and cardiac genes, which can prove to be a potential approach for direct cardiac reprogramming.
Collapse
Affiliation(s)
- Yiqiu Cao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China; Department of Cardiac Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China; Department of Cardiovascular Surgery, People's Liberation Army General Hospital of Southern Theater Command, Guangzhou, 510170, People's Republic of China
| | - Zhu Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Dongpeng Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China; Department of Cardiovascular Surgery, Guangzhou Red Cross Hospital, Jinan University, 510235, People's Republic of China
| | - Ximiao Ma
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China; Department of Cardiothoracic Surgery, Haikou People's Hospital, Haikou, 570208, People's Republic of China
| | - Xiaowu Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China; Department of Cardiovascular Surgery, People's Liberation Army General Hospital of Southern Theater Command, Guangzhou, 510170, People's Republic of China.
| |
Collapse
|
38
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
39
|
Eguchi R, Hamano M, Iwata M, Nakamura T, Oki S, Yamanishi Y. TRANSDIRE: data-driven direct reprogramming by a pioneer factor-guided trans-omics approach. Bioinformatics 2022; 38:2839-2846. [PMID: 35561200 DOI: 10.1093/bioinformatics/btac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Direct reprogramming involves the direct conversion of fully differentiated mature cell types into various other cell types while bypassing an intermediate pluripotent state (e.g. induced pluripotent stem cells). Cell differentiation by direct reprogramming is determined by two types of transcription factors (TFs): pioneer factors (PFs) and cooperative TFs. PFs have the distinct ability to open chromatin aggregations, assemble a collective of cooperative TFs and activate gene expression. The experimental determination of two types of TFs is extremely difficult and costly. RESULTS In this study, we developed a novel computational method, TRANSDIRE (TRANS-omics-based approach for DIrect REprogramming), to predict the TFs that induce direct reprogramming in various human cell types using multiple omics data. In the algorithm, potential PFs were predicted based on low signal chromatin regions, and the cooperative TFs were predicted through a trans-omics analysis of genomic data (e.g. enhancers), transcriptome data (e.g. gene expression profiles in human cells), epigenome data (e.g. chromatin immunoprecipitation sequencing data) and interactome data. We applied the proposed methods to the reconstruction of TFs that induce direct reprogramming from fibroblasts to six other cell types: hepatocytes, cartilaginous cells, neurons, cardiomyocytes, pancreatic cells and Paneth cells. We demonstrated that the methods successfully predicted TFs for most cell conversions with high accuracy. Thus, the proposed methods are expected to be useful for various practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION The source code and data are available at the following website: http://figshare.com/s/b653781a5b9e6639972b. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ryohei Eguchi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Toru Nakamura
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| |
Collapse
|
40
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
41
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
42
|
Pascale E, Caiazza C, Paladino M, Parisi S, Passaro F, Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells 2022; 11:940. [PMID: 35326391 PMCID: PMC8946776 DOI: 10.3390/cells11060940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Martina Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
43
|
Zhang X, Chen L, Huang X, Chen H, Cai B, Qin Y, Chen Y, Ou S, Li X, Wu Z, Feng Z, Zeng M, Guo W, Li H, Zhou C, Yu S, Pan M, Liu J, Kang K, Cao S, Pei D. MYOCD is Required for Cardiomyocyte-like Cells Induction from Human Urine Cells and Fibroblasts Through Remodeling Chromatin. Stem Cell Rev Rep 2022; 18:2414-2430. [PMID: 35246800 DOI: 10.1007/s12015-022-10339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 01/14/2023]
Abstract
Despite direct reprogramming of human cardiac fibroblasts into induced cardiomyocytes (iCM) holds great potential for heart regeneration, the mechanisms are poorly understood. Whether other human somatic cells could be reprogrammed into cardiomyocytes is also unknown. Here, we report human urine cells (hUCs) could be converted into CM-like cells from different donors and the related chromatin accessibility dynamics (CAD) by assay for transposase accessible chromatin(ATAC)-seq. hUCs transduced by MEF2C, TBX5, MESP1 and MYOCD but without GATA4 expressed multiple cardiac specific genes, exhibited Ca2+ oscillation potential and sarcomeric structures, and contracted synchronously in coculture with mouse CM. Additionally, we found that MYOCD is required for both closing and opening critical loci, mainly by hindering the opening of loci enriched with motifs for the TEAD and AP1 family and promoting the closing of loci enriched with ETS motifs. These changes differ partially from CAD observed during iCM induction from human fibroblasts. Collectively, our study offers one practical platform for iCM generation and insights into mechanisms for iCM fate determination.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lijun Chen
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Huan Chen
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Baomei Cai
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yue Qin
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yating Chen
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Sihua Ou
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Xiaoxi Li
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Zichao Wu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Ziyu Feng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Mengying Zeng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Wenjing Guo
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Heying Li
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Chunhua Zhou
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Shengyong Yu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Mengjie Pan
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing Liu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Shangtao Cao
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
44
|
Nam YJ. Translational perspectives on cardiac reprogramming. Semin Cell Dev Biol 2022; 122:14-20. [PMID: 34210578 PMCID: PMC8712611 DOI: 10.1016/j.semcdb.2021.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 02/03/2023]
Abstract
Loss of cardiac muscle after cardiac injury is replaced by cardiac fibrosis, due to very limited regenerative capacity of the heart. Although initially beneficial, persistent cardiac fibrosis leads to pump failure and conduction abnormalities, common modes of death following cardiac injury. Thus, directly reprogramming cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) by forced expression of cardiogenic factors (referred to as cardiac reprogramming) is particularly attractive in that it targets cardiac fibroblasts, a major source of cardiac fibrosis, to induce new cardiac muscle. Over the last decade, remarkable progresses have been made on cardiac reprogramming, particularly focusing on how to enhance conversion of fibroblasts to iCMs in vitro. However, it still remains elusive whether this new regenerative approach can be translated into clinical practice. This review discusses progresses and challenges of cardiac reprogramming in the translational context.
Collapse
Affiliation(s)
- Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA,To whom correspondence may be addressed: Young-Jae Nam, M.D., Ph.D., Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville , Tennessee 37232, USA, Phone: 615-936-5436,
| |
Collapse
|
45
|
Xie Y, Liu J, Qian L. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Semin Cell Dev Biol 2022; 122:37-43. [PMID: 34304993 PMCID: PMC8782931 DOI: 10.1016/j.semcdb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
The adult human heart has limited regenerative capacity. As such, the massive cardiomyocyte loss due to myocardial infarction leads to scar formation and adverse cardiac remodeling, which ultimately results in chronic heart failure. Direct cardiac reprogramming that converts cardiac fibroblast into functional cardiomyocyte-like cells (also called iCMs) holds great promise for heart regeneration. Cardiac reprogramming has been achieved both in vitro and in vivo by using a variety of cocktails that comprise transcription factors, microRNAs, or small molecules. During the past several years, great progress has been made in improving reprogramming efficiency and understanding the underlying molecular mechanisms. Here, we summarize the direct cardiac reprogramming methods, review the current advances in understanding the molecular mechanisms of cardiac reprogramming, and highlight the novel insights gained from single-cell omics studies. Finally, we discuss the remaining challenges and future directions for the field.
Collapse
|
46
|
Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells 2022; 11:cells11030460. [PMID: 35159270 PMCID: PMC8833927 DOI: 10.3390/cells11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where “cause and effect” can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD). Intuitively, abnormal cardiac function or surgical intervention may stunt the developing brain, leading to neurodevelopmental disorders (NDD). However, recent work has uncovered several genetic variants within genes associated with the development of both the heart and brain that could also explain this co-occurrence. Given the scalability of hPSCs, straightforward genetic modification, and established differentiation strategies, it is now possible to investigate both CHD and NDD as independent events. We will first overview the potential for shared genetics in both heart and brain development. We will then summarize methods to differentiate both cardiac & neural cells and organoids from hPSCs that represent the developmental process of the heart and forebrain. Finally, we will highlight strategies to rapidly screen several genetic variants together to uncover potential phenotypes and how therapeutic advances could be achieved by hPSC-based models.
Collapse
|
47
|
López-Muneta L, Linares J, Casis O, Martínez-Ibáñez L, González Miqueo A, Bezunartea J, Sanchez de la Nava AM, Gallego M, Fernández-Santos ME, Rodriguez-Madoz JR, Aranguren XL, Fernández-Avilés F, Segovia JC, Prósper F, Carvajal-Vergara X. Generation of NKX2.5GFP Reporter Human iPSCs and Differentiation Into Functional Cardiac Fibroblasts. Front Cell Dev Biol 2022; 9:797927. [PMID: 35127713 PMCID: PMC8815860 DOI: 10.3389/fcell.2021.797927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.5GFP reporter cardiac fibroblasts. We first established a new NKX2.5GFP reporter human induced pluripotent stem cell (hiPSC) line using a CRISPR-Cas9-based knock-in approach in order to preserve function which could alter the biology of the cells. The reporter was found to faithfully track NKX2.5 expressing cells in differentiated NKX2.5GFP hiPSC and the potential of NKX2.5-GFP + cells to give rise to the expected cardiac lineages, including functional ventricular- and atrial-like cardiomyocytes, was demonstrated. Then NKX2.5GFP cardiac fibroblasts were obtained through directed differentiation, and these showed typical fibroblast-like morphology, a specific marker expression profile and, more importantly, functionality similar to patient-derived cardiac fibroblasts. The advantage of using this approach is that it offers an unlimited supply of cellular models for research in cardiac reprogramming, and since NKX2.5 is expressed not only in cardiomyocytes but also in cardiovascular precursors, the detection of both induced cell types would be possible. These reporter lines will be useful tools for human direct cardiac reprogramming research and progress in this field.
Collapse
Affiliation(s)
- Leyre López-Muneta
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Javier Linares
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Oscar Casis
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Martínez-Ibáñez
- Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Arantxa González Miqueo
- Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, University of Navarra Clinic, Pamplona, Spain
| | - Ana Maria Sanchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mónica Gallego
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José Carlos Segovia
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Felipe Prósper
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Department of Hematology and Cell Therapy, University of Navarra Clinic, Pamplona, Spain
| | - Xonia Carvajal-Vergara
- Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Xonia Carvajal-Vergara,
| |
Collapse
|
48
|
Generation of a transducible version of a bioactive recombinant human TBX5 transcription factor from E. Coli. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
49
|
Zhou Y, Zhang J. Remuscularization of Ventricular Infarcts Using the Existing Cardiac Cells. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:51-78. [DOI: 10.1007/978-3-030-86140-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Liu L, Guo Y, Li Z, Wang Z. Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine. Cells 2021; 10:cells10123297. [PMID: 34943805 PMCID: PMC8699771 DOI: 10.3390/cells10123297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Direct reprogramming of fibroblasts into CM-like cells has emerged as an attractive strategy to generate induced CMs (iCMs) in heart regeneration. However, low conversion rate, poor purity, and the lack of precise conversion of iCMs are still present as significant challenges. In this review, we summarize the recent development in understanding the molecular mechanisms of cardiac reprogramming with various strategies to achieve more efficient iCMs. reprogramming. Specifically, we focus on the identified critical roles of transcriptional regulation, epigenetic modification, signaling pathways from the cellular microenvironment, and cell cycling regulation in cardiac reprogramming. We also discuss the progress in delivery system optimization and cardiac reprogramming in human cells related to preclinical applications. We anticipate that this will translate cardiac reprogramming-based heart therapy into clinical applications. In addition to optimizing the cardiogenesis related transcriptional regulation and signaling pathways, an important strategy is to modulate the pathological microenvironment associated with heart injury, including inflammation, pro-fibrotic signaling pathways, and the mechanical properties of the damaged myocardium. We are optimistic that cardiac reprogramming will provide a powerful therapy in heart regenerative medicine.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Correspondence:
| |
Collapse
|