1
|
Arya R, Kumar S, Vinetz JM, Kim JJ, Chaurasia R. Unlocking the potential of miRNAs in detecting pulmonary tuberculosis: prospects and pitfalls. Expert Rev Mol Med 2024; 26:e32. [PMID: 39639643 PMCID: PMC11629464 DOI: 10.1017/erm.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 07/12/2024] [Indexed: 12/07/2024]
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases globally, ranking as 13th leading cause of mortality and morbidity. According to the Global Tuberculosis Report 2022, TB claimed the lives of 1.6 million people worldwide in 2021. Among the casualties, 1 870 000 individuals with HIV co-infections contributed to 6.7% of the total fatalities, accounting TB as the second most lethal infectious disease following COVID-19. In the quest to identify biomarkers for disease progression and anti-TB therapy, microRNAs (miRNAs) have gained attention due to their precise regulatory role in gene expression in disease stages and their ability to distinguish latent and active TB, enabling the development of early TB prognostic signatures. miRNAs are stable in biological fluids and therefore will be useful for non-invasive and broad sample collection. However, their inherent lack of specificity and experimental variations may lead to false-positive outcomes. These limitations can be overcome by integrating standard protocols with machine learning, presenting a novel tool for TB diagnostics and therapeutics. This review summarizes, discusses and highlights the potential of miRNAs as a biomarker, particularly their differential expression at disease stages. The review assesses the advantages and obstacles associated with miRNA-based diagnostic biomarkers in pulmonary TB and facilitates rapid, point-of-care testing.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph M. Vinetz
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Pan W, Niu H, Luo S, Chen L, Wu ZS. Intelligent Reconfiguration-Promoted Cellular Internalization of Core-Shell DNA Nanoprobe Equipped with Successive Dual Stimuli-Responsive Protective Satellites for Amplification Fluorescence Imaging of Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311388. [PMID: 38282377 DOI: 10.1002/smll.202311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Although DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non-biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES-NC (Na+-dependent DNAzyme (E)-based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual-stimuli-responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites-based protective (DTP) shell, parallelly aligned target-responsive sensing (PTS) interlayer, and hydrophobic cholesterol-packed innermost layer (HCI core). Tetrahedral axial rotation-activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol-mediated cellular internalization without auxiliary elements. Within cells, over-expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target-stimulated signal transduction/amplification process (second stimuli). Target miRNA-21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent-mediated counterpart, ES-NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES-NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.
Collapse
Affiliation(s)
- Wenhao Pan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Almanza G, Searles S, Zanetti M. Delivery of miR-214 via extracellular vesicles downregulates Xbp1 expression and pro-inflammatory cytokine genes in macrophages. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:249-258. [PMID: 39118980 PMCID: PMC11308798 DOI: 10.20517/evcna.2023.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aim Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
AboulFotouh K, Almanza G, Yu YS, Joyce R, Davenport GJ, Cano C, Williams Iii RO, Zanetti M, Cui Z. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. Int J Pharm 2024; 651:123757. [PMID: 38160992 DOI: 10.1016/j.ijpharm.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Yu-Sheng Yu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Robert Joyce
- FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Gregory J Davenport
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Chris Cano
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
6
|
Luo H, Xie B, Xu J, Zhu Y, Sun J, Shen Y, Song X. Differential Expression of Serum Exosomal Hsa-miR-487b-3p in Progressive Vitiligo Before and After Systemic Corticosteroid Treatment. Clin Cosmet Investig Dermatol 2022; 15:1377-1386. [PMID: 35880009 PMCID: PMC9307869 DOI: 10.2147/ccid.s372112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
Background Vitiligo is an acquired skin depigmentation disease. It can be misdiagnosed at an early stage and tend to relapse. Serum markers are essential to monitoring the progression of vitiligo. Exosomal miRNAs act as the communication mediator between melanocytes and immune cells. Our study aimed to use serum exosomal miRNAs as a reference for evaluating vitiligo progression. Methods The miRNAs were extracted from the serum exosomes of ten progressive vitiligo patients (before and after treatment) and ten healthy individuals. We profiled miRNAs expression by RNA sequencing and screened out potential miRNAs and plotted their receiver operating characteristic (ROC) curves to explore their sensitivity and specificity as prognostic biomarkers in vitiligo progression. We examined the correlation between miRNA expression and the lesion area. Different databases were used to predict gene targets of miRNAs, which were analyzed by gene ontology and Kyoto encyclopedia of genes and genomes (KEGG). Results Our results showed that 141 miRNAs were differentially expressed in serum exosomes of progressive vitiligo patients, and 365 miRNAs were differentially expressed in these patients after treatment compared to healthy individuals. The expression of hsa-miR-487b-3p was significantly lower in these patients compared to healthy individuals. Still, there was no difference in its levels in patients after corticosteroid treatment compared to healthy controls. ROC curve analysis (area under curve = 0.840) indicated that hsa-miR-487b-3p could serve as a biomarker for the prognosis of vitiligo progression. Its expression positively correlated with the lesion area. A total of 41 target genes of hsa-miR-487b-3p were predicted via different databases. KEGG pathways were enriched in phenylalanine metabolism, glycan degradation, and protein export. Conclusion Serum exosomal hsa-miR-487b-3p can be a biomarker to detect vitiligo progression. The predicted target genes of hsa-miR-487b-3p were enriched in catabolism. Thus, its in progressive vitiligo may accelerate catabolism in melanocytes and cause its impairment.
Collapse
Affiliation(s)
- Haixin Luo
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital; Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People’s Hospital; Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiayi Sun
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital; Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Wang W, Yue C, Gao S, Li S, Zhou J, Chen J, Fu J, Sun W, Hua C. Promising Roles of Exosomal microRNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:757096. [PMID: 34966383 PMCID: PMC8710456 DOI: 10.3389/fimmu.2021.757096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianan Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Chen
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiahong Fu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
miR-335-laden B Cell-Derived Extracellular Vesicles Promote SOX4-Dependent Apoptosis in Human Multiple Myeloma Cells. J Pers Med 2021; 11:jpm11121240. [PMID: 34945712 PMCID: PMC8707697 DOI: 10.3390/jpm11121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells in the bone marrow. Despite novel therapies, MM still remains an incurable cancer and new strategies are needed. Increased expression of the transcription factor Sex-determining region Y-related high-mobility-group box transcription factor 4 (SOX4) has been correlated with tumor development and progression through a variety of distinct processes, including inhibition of apoptosis, increased cell invasion and metastasis, and induction and maintenance of cancer-initiating cells. The role of SOX4 in MM is largely unknown. Since SOX4 is a known target of miR-335, we used miR-335 to assess whether SOX4 modulation could promote apoptosis in MM cells. Using an MM cell model we show that miR-335 acts both on SOX4-related genes (AKT, PI3K) and hypoxia-inducible factor 1-alpha (Hif1-α). In addition, we show miR-335-laden extracellular vesicles induced in B cells (iEVs) are also effective in targeting SOX4, causing apoptosis. Collectively, we propose that miR-335-laden iEVs could be developed as a novel form of gene therapy in MM.
Collapse
|
9
|
Xu Y, He Y, Hu H, Xu R, Liao Y, Dong X, Song H, Chen X, Chen J. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease. Int Immunopharmacol 2021; 100:108124. [PMID: 34600394 DOI: 10.1016/j.intimp.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The microRNA (miRNA) expression of the tonsil tissues in patients with immunoglobulin A (IgA) nephropathy (IgAN) has not been reported in the literature. METHODS In this study, the expression of nine miRNAs was measured in the tonsil tissues of patients with IgAN, including miRNA-21-5p, miRNA-29a-3p, miRNA-34a-5p, miRNA-146a-5p, miRNA-146b-5p, miRNA-148b-3p, miRNA-150-5p, miRNA-155-5p, and miRNA-181a-5p. Forty patients with proved primary IgA nephropathy were enrolled in our study, 20 IgAN patients with gross hematuria, which induced by tonsillitis (GH-IgAN group) and 20 IgAN patients without gross hematuria in the history (non-GH-IgAN group). Another 20 patients recruited as the control group (CT group) were chronic tonsillitis without kidney disease. RESULTS Compared to the CT group, the expression level of miRNA-150-5p in the tonsils was significantly upregulated in the GH-IgAN group, but not in the non-GH-IgAN group (P = 0.031 and P = 0.122, respectively). A correlation analysis was performed between the expression of miRNAs in the tonsils and the clinical data of IgAN patients. The results showed that in the GH-IgAN group, the miRNA-150 expression was positively correlated with systolic blood pressure (β = 2.36, 95% CI 1.11-3.61, P = 0.0016), diastolic blood pressure (β = 1.02, 95% CI 0.22-1.82, P = 0.0224), uric acid (β = 7.43, 95% CI 1.81-13.04, P = 0.0184), leukocyte count (β = 0.22, 95% CI 0.09-0.35, P = 0039), neutrophil count (β = 0.19, 95% CI 0.06-0.32, P = 0.0096), cholesterol (β = 0.09, 95% CI 0.02-0.16, P = 0.0207) and triglyceride level (β = 0.16, 95% CI 0.10-0.22, P < 0.000). Besides, it was negatively correlated with the estimated glomerular filtration rate (eGFR) (β = -2.06, 95% CI: -3.90 - -0.21, P = 0.0421) in the GH-IgAN group; however, no significant correlation was found in the non-GH-IgAN group. CONCLUSION The present findings suggest that miRNA-150-5p may be important in the pathogenesis of IgAN, especially in mucosal immunity against the disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ricong Xu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ying Liao
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xu Dong
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Haiying Song
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaojie Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Jia Chen
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
10
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang X, Yao X, Xie T, Chang Z, Guo Y, Ni H. Exosome-derived uterine miR-218 isolated from cows with endometritis regulates the release of cytokines and chemokines. Microb Biotechnol 2020; 13:1103-1117. [PMID: 32227590 PMCID: PMC7264886 DOI: 10.1111/1751-7915.13565] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
As an inflammation of the endometrium, endometritis can affect fertility and lead to serious economic losses in the dairy industry. Widely found in various tissues and body fluids, exosomes and exosome micro (mi)RNAs have been shown to play an important regulatory role in the immune responses. As one of differentially expressed exosome miRNAs, miR-218 is involved in the pathogenesis of bovine endometritis. The mechanisms of miR-218 in regulating the release of cytokines and chemokines in endometritis, however, are poorly understood. Exosomes were isolated from bovine uterine cavity fluid and verified by transmission electron microscopy. An in vitro lipopolysaccharide-treated cell model for bovine endometritis was then established to evaluate the correlation between exosome-derived miR-218 and the immune responses. We demonstrated that exosomes could be used to deliver miR-218 from endometrial epithelial cells (EECs) into the uterine microenvironment and adjacent recipient cells to modulate local immune responses. miR-218 packaged in the exosomes secreted from EECs acts as an inhibitor by blocking immune factors such as interleukin (IL)-6, IL-1β, tumour necrosis factor-α, the chemokines macrophage inflammatory genes (MIP)-1α and MIP-1β to maintain the immune balance in the uterus. However, uterine inflammation altered the immunoregulatory mechanism of exosome miR-218. MiR-218 is a potential biomarker for the detection of endometritis. Our findings also revealed a new mechanism for the development of endometritis in cows.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| | - Xinxin Yao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| | - Tongtong Xie
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| | - Zhenyu Chang
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| | - Yong Guo
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| | - Hemin Ni
- Animal Science and Technology CollegeBeijing University of AgricultureBeijing102206China
| |
Collapse
|
12
|
MiR-4435 is an UQCRB-related circulating miRNA in human colorectal cancer. Sci Rep 2020; 10:2833. [PMID: 32071343 PMCID: PMC7029028 DOI: 10.1038/s41598-020-59610-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/31/2020] [Indexed: 11/08/2022] Open
Abstract
Ubiquinol-cytochrome c reductase (UQCRB), a subunit of the mitochondrial complex III, is highly expressed in tissues from colorectal cancer patients. Since UQCRB is highly expressed in colorectal cancer, we investigated miRNAs from mutant UQCRB-expressing cell lines to identify new miRNA biomarkers. After sequencing miRNAs in the mutant UQCRB-expressing cell lines, miR-4435 was selected as a potential biomarker candidate from the six up-regulated miRNAs. The expression level of miR-4435 in the mutant UQCRB-expressing cell lines and colon cancer was increased. Notably, the expression level of miR-4435 was increased in exosomes isolated from cell culture medium, suggesting that miR-4435 is closely related to colon cancer and that large amounts of miR-4435 may be secreted outside of the cells through exosomes. Additionally, exosomes extracted from the serum samples of colorectal cancer patients showed increased miR-4435 levels depending on the cancer progression stage. Moreover, analyses of a miRNA database and mRNA-sequencing data of the mutant UQCRB-expressing cell lines revealed that TIMP3, a tumor suppressor, could be a target of miR-4435. Additionally, the expression of miR-4435 was suppressed by UQCRB inhibitor treatment whereas TIMP3 was up-regulated. Upregulation of TIMP3 decreased proliferation of the mutant UQCRB-expressing cell lines and a colorectal cancer cell line. TIMP3 was also upregulated in response to miR-4435 inhibitor and UQCRB inhibitor treatments. Furthermore, these findings suggest that miR-4435 is related to an oncogenic function in UQCRB related disease, CRC, and that effects migration and invasion on mutant UQCRB-expressing cell lines and colorectal cancer cell. In conclusion, our results identified miR-4435 as a potential circulating miRNA biomarker of colorectal cancer associated with UQCRB.
Collapse
|
13
|
Almanza G, Rodvold JJ, Tsui B, Jepsen K, Carter H, Zanetti M. Extracellular vesicles produced in B cells deliver tumor suppressor miR-335 to breast cancer cells disrupting oncogenic programming in vitro and in vivo. Sci Rep 2018; 8:17581. [PMID: 30514916 PMCID: PMC6279829 DOI: 10.1038/s41598-018-35968-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
The successful implementation of miRNA (miR) therapies in humans will ultimately rely on the use of vehicles with improved cellular delivery capability. Here we tested a new system that leverages extracellular vesicles (EVs) laden with a tumor suppressor miRNA (miR-335) produced in B cells by plasmid DNA induction (iEVs). We demonstrate that iEVs-335 efficiently and durably restored the endogenous miR-335 pool in human triple negative breast cancer cells, downregulated the expression of the miR-335 target gene SOX4 transcription factor, and markedly inhibited tumor growth in vivo. Remarkably, iEVs-335 mediated transcriptional effects that persisted in tumors after 60 days post orthotopic implantation. Genome-wide RNASeq analysis of cancer cells treated in vitro with iEVs-335 showed the regulation of a discrete number of genes only, without broad transcriptome perturbations. This new technology may be ideally suited for therapies aimed to restore tumor suppressor miRNAs in cancer cells, disrupting the oncogenic program established after escape from miRNA control.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0815, USA
| | - Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0815, USA
| | - Brian Tsui
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kristen Jepsen
- IGM Genomics Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0815, USA.
| |
Collapse
|
14
|
Yang Q, Cao W, Wang Z, Zhang B, Liu J. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins. Cancer Lett 2018; 431:73-84. [PMID: 29800685 DOI: 10.1016/j.canlet.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; School of Medical Laboratory, Shao Yang University, Hunan Province, 422000, China
| | - Wenjie Cao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
15
|
Sabir N, Hussain T, Shah SZA, Peramo A, Zhao D, Zhou X. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Front Microbiol 2018; 9:602. [PMID: 29651283 PMCID: PMC5885483 DOI: 10.3389/fmicb.2018.00602] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is one of the most fatal infectious diseases and a leading cause of mortality, with 95% of these deaths occurring in developing countries. The causative agent, Mycobacterium tuberculosis (Mtb), has a well-established ability to circumvent the host's immune system for its intracellular survival. microRNAs (miRNAs) are small, non-coding RNAs having an important function at the post-transcriptional level and are involved in shaping immunity by regulating the repertoire of genes expressed in immune cells. It has been established in recent studies that the innate immune response against TB is significantly regulated by miRNAs. Moreover, differential expression of miRNA in Mtb infection can reflect the disease progression and may help distinguish between active and latent TB infection (LTBI). These findings encouraged the application of miRNAs as potential biomarkers. Similarly, active participation of miRNAs in modulation of autophagy and apoptosis responses against Mtb opens an exciting avenue for the exploitation of miRNAs as host directed therapy (HDT) against TB. Nanoparticles mediated delivery of miRNAs to treat various diseases has been reported and this technology has a great potential to be used in TB. In reality, this exploitation of miRNAs as biomarkers and in HDT is still in its infancy stage, and more studies using animal models mimicking human TB are advocated to assess the role of miRNAs as biomarkers and therapeutic targets. In this review, we attempt to summarize the recent advancements in the role of miRNAs in TB as immune modulator, miRNAs' capability to distinguish between active and latent TB and, finally, usage of miRNAs as therapeutic targets against TB.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
17
|
Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016; 49:357-365. [PMID: 27259064 DOI: 10.1080/08916934.2016.1191477] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, P.R. China,
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ying Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Duo Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| |
Collapse
|
18
|
Almanza G, Zanetti M. High-efficiency Generation of Multiple Short Noncoding RNA in B-cells and B-cell-derived Extracellular Vesicles. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e271. [PMID: 26670278 PMCID: PMC5014536 DOI: 10.1038/mtna.2015.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022]
Abstract
Short noncoding (snc)RNAs are important new players in the landscape of biologics with therapeutic potential. Recently, we reported on a new method for the synthesis and delivery of snc RNA in B-cells transfected with plasmid DNA. Here using the same approach, we demonstrate that B-cells can be programmed for the enforced biogenesis and synchronous release of multiple sncRNAs. Our data show that this goal is feasible and that multiple sncRNA are released in the extracellular compartment in amounts comparable to those from B-cells programmed to express and secrete one scnRNA only. Furthermore, we found that the cargo of extracellular vescicles (EVs) isolated from programmed B-cells is remarkably enriched for multiple sncRNA. On average, we found that the content of multiple sncRNAs in EVs is 3.6 copynumber/EV. Collectively, we demonstrate that B-cells can be easily programmed toward the synthesis and release of multiple sncRNAs, including sncRNA-laden EVs, efficiently and specifically.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, California, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, California, USA
| |
Collapse
|
19
|
Huang XL, Zhang L, Li JP, Wang YJ, Duan Y, Wang J. MicroRNA-150: A potential regulator in pathogens infection and autoimmune diseases. Autoimmunity 2015; 48:503-10. [DOI: 10.3109/08916934.2015.1072518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
van Balkom BWM, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles 2015; 4:26760. [PMID: 26027894 PMCID: PMC4450249 DOI: 10.3402/jev.v4.26760] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/25/2015] [Accepted: 05/03/2015] [Indexed: 01/08/2023] Open
Abstract
Exosomes are small vesicles that mediate cell-cell communication. They contain proteins, lipids and RNA, and evidence is accumulating that these molecules are specifically sorted for release via exosomes. We recently showed that endothelial-cell-produced exosomes promote angiogenesis in vivo in a small RNA-dependent manner. Recent deep sequencing studies in exosomes from lymphocytic origin revealed a broad spectrum of small RNAs. However, selective depletion or incorporation of small RNA species into endothelial exosomes has not been studied extensively. With next generation sequencing, we identified all known non-coding RNA classes, including microRNAs (miRNAs), small nucleolar RNAs, yRNAs, vault RNAs, 5p and 3p fragments of miRNAs and miRNA-like fragments. In addition, we mapped many fragments of messenger RNAs (mRNAs) and mitochondrial RNAs (mtRNAs). The distribution of small RNAs in exosomes revealed a considerable overlap with the distribution in the producing cells. However, we identified a remarkable enrichment of yRNA fragments and mRNA degradation products in exosomes consistent with yRNAs having a role in degradation of structured and misfolded RNAs in close proximity to endosomes. We propose that endothelial endosomes selectively sequester cytoplasmic RNA-degrading machineries taking part in gene regulation. The release of these regulatory RNAs via exosomes may have implications for endothelial cell-cell communication.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands;
| | - Almut S Eisele
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Exosomes Research Group, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| |
Collapse
|
21
|
Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 2015; 107:61-77. [PMID: 25564937 DOI: 10.1111/boc.201400081] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022]
Abstract
The immune system is composed of different cell types localised throughout the organism to sense and respond to pathological situations while maintaining homeostasis under physiological conditions. Intercellular communication between immune cells is essential to coordinate an effective immune response and involves both cell contact dependent and independent processes that ensure the transfer of information between bystander and distant cells. There is a rapidly growing body of evidence on the pivotal role of extracellular vesicles (EVs) in cell communication and these structures are emerging as important mediators for immune modulation upon delivery of their molecular cargo. In the last decade, EVs have been shown to be efficient carriers of genetic information, including microRNAs (miRNAs), that can be transferred between cells and regulate gene expression and function on the recipient cell. Here, we review the current knowledge of intercellular functional transfer of EV-delivered miRNAs and their putative role in immune regulation.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Madrid, Spain; Department of Vascular Biology and Inflammation, National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn's disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies.
Collapse
Affiliation(s)
| | - Joel Pekow
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, 900 East 57th Street, MB # 9, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Palagani A, Op de Beeck K, Naulaerts S, Diddens J, Sekhar Chirumamilla C, Van Camp G, Laukens K, Heyninck K, Gerlo S, Mestdagh P, Vandesompele J, Berghe WV. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS One 2014; 9:e113842. [PMID: 25474406 PMCID: PMC4256227 DOI: 10.1371/journal.pone.0113842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC-inducible mir-150-5p adds another level of regulation to GC specific therapeutic responses in multiple myeloma.
Collapse
Affiliation(s)
- Ajay Palagani
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Department of Medical Protein Research, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Joke Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
24
|
Iannaccone M, Dorhoi A, Kaufmann SHE. Host-directed therapy of tuberculosis: what is in it for microRNA? Expert Opin Ther Targets 2014; 18:491-4. [PMID: 24641181 DOI: 10.1517/14728222.2014.897696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tuberculosis (TB) is a major health threat and current intervention measures are far from satisfactory. MicroRNAs (miRs) have become major targets of investigations for different diseases due to their propensity to regulate gene expression in various biological processes. More recently, miRs have been found to play key roles in the control of infectious diseases. Consequently, the potential of miRs for diagnosis and therapy of TB is being considered. In this editorial, we discuss most recent lines of evidence for regulation of the immune response in TB by miRs that could form the basis for diagnosis and host-directed therapy in adjunct to canonical intervention measures in TB.
Collapse
Affiliation(s)
- Marco Iannaccone
- Max Planck Institute for Infection Biology, Department of Immunology , Charitéplatz 1, D-10117, Berlin , Germany +49 30 28460 500 ; +49 30 28460 501 ;
| | | | | |
Collapse
|
25
|
Danger R, Braza F, Giral M, Soulillou JP, Brouard S. MicroRNAs, Major Players in B Cells Homeostasis and Function. Front Immunol 2014; 5:98. [PMID: 24653724 PMCID: PMC3949129 DOI: 10.3389/fimmu.2014.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 01/04/2023] Open
Abstract
As a main actor in humoral immunity, B cells participate in various antibody-related disorders. However, a deeper understanding of B-cell differentiation and function is needed in order to decipher their immune-modulatory roles, notably with the recent highlighting of regulatory B cells. microRNAs (miRNAs), key factors in various biological and pathological processes, have been shown to be essential for B-cell homeostasis, and therefore understanding their participation in B-cell biology could help identify biomarkers and contribute toward curing B-cell-related immune disorders. This review aims to report studies casting light on the roles played by miRNAs in B-cell lineage and function and B-cell-related immune pathologies.
Collapse
Affiliation(s)
- Richard Danger
- Institute of Liver Studies, Medical Research Council Centre for Transplantation, King's College Hospital, King's College London , London , UK ; Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France
| | - Faouzi Braza
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France
| | - Magali Giral
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| | - Jean-Paul Soulillou
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| |
Collapse
|