1
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
2
|
Pinto VB, Vidigal PMP, Dal-Bianco M, Almeida-Silva F, Venancio TM, Viana JMS. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var. everta). Sci Rep 2023; 13:19400. [PMID: 37938583 PMCID: PMC10632369 DOI: 10.1038/s41598-023-46810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-000, Brazil.
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | | | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas/BIOAGRO. UFV, Viçosa, MG, 36570-000, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | |
Collapse
|
3
|
Ortega R, Fortuna MA. avidaR: an R library to perform complex queries on an ontology-based database of digital organisms. PeerJ Comput Sci 2023; 9:e1568. [PMID: 37810343 PMCID: PMC10557521 DOI: 10.7717/peerj-cs.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023]
Abstract
Digital evolution is a branch of artificial life in which self-replicating computer programs-digital organisms-mutate and evolve within a user-defined computational environment. In spite of its value in biology, we still lack an up-to-date and comprehensive database on digital organisms resulting from evolution experiments. Therefore, we have developed an ontology-based semantic database-avidaDB-and an R package-avidaR-that provides users of the R programming language with an easy-to-use tool for performing complex queries without specific knowledge of SPARQL or RDF. avidaR can be used to do research on robustness, evolvability, complexity, phenotypic plasticity, gene regulatory networks, and genomic architecture by retrieving the genomes, phenotypes, and transcriptomes of more than a million digital organisms available on avidaDB. avidaR is already accepted on CRAN (i.e., a comprehensive collection of R packages contributed by the R community) and will make biologists better equipped to embrace the field of digital evolution.
Collapse
Affiliation(s)
- Raúl Ortega
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Miguel Angel Fortuna
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
4
|
Ortega R, Wulff E, Fortuna MA. Ontology for the Avida digital evolution platform. Sci Data 2023; 10:608. [PMID: 37689762 PMCID: PMC10492814 DOI: 10.1038/s41597-023-02514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
The Ontology for Avida (OntoAvida) aims to develop an integrated vocabulary for the description of Avida, the most widely used computational approach for performing experimental evolution using digital organisms-self-replicating computer programs that evolve within a user-defined computational environment. The lack of a clearly defined vocabulary makes some biologists feel reluctant to embrace the field of digital evolution. This integrated framework empowers biologists by equipping them with the necessary tools to explore and analyze the field of digital evolution more effectively. By leveraging the vocabulary of Avida, researchers can gain deeper insights into the evolutionary processes and dynamics of digital organisms. In addition, OntoAvida allows researchers to make inference based on certain rules and constraints, facilitate the reproducibility of in silico evolution experiments and trace the provenance of the data stored in avidaDB-an RDF database containing the genomes, transcriptomes, and phenotypes of more than a million digital organisms. OntoAvida is part of the Open Biological and Biomedical Ontologies (OBO Foundry) and is available at http://www.obofoundry.org/ontology/ontoavida.html .
Collapse
Affiliation(s)
- Raúl Ortega
- Computational Biology Lab, Estación Biológica de Doñana (EBD), Spanish National Research Council (CSIC), Seville, Spain
| | - Enrique Wulff
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Spanish National Research Council (CSIC), Puerto Real, Cádiz, Spain
| | - Miguel A Fortuna
- Computational Biology Lab, Estación Biológica de Doñana (EBD), Spanish National Research Council (CSIC), Seville, Spain.
| |
Collapse
|
5
|
Servajean R, Bitbol AF. Impact of population size on early adaptation in rugged fitness landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220045. [PMID: 37004726 PMCID: PMC10067268 DOI: 10.1098/rstb.2022.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 04/04/2023] Open
Abstract
Owing to stochastic fluctuations arising from finite population size, known as genetic drift, the ability of a population to explore a rugged fitness landscape depends on its size. In the weak mutation regime, while the mean steady-state fitness increases with population size, we find that the height of the first fitness peak encountered when starting from a random genotype displays various behaviours versus population size, even among small and simple rugged landscapes. We show that the accessibility of the different fitness peaks is key to determining whether this height overall increases or decreases with population size. Furthermore, there is often a finite population size that maximizes the height of the first fitness peak encountered when starting from a random genotype. This holds across various classes of model rugged landscapes with sparse peaks, and in some experimental and experimentally inspired ones. Thus, early adaptation in rugged fitness landscapes can be more efficient and predictable for relatively small population sizes than in the large-size limit. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Richard Servajean
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Fortuna MA, Beslon G, Ofria C. Editorial: Digital evolution: Insights for biologists. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1037040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Somovilla P, Rodríguez-Moreno A, Arribas M, Manrubia S, Lázaro E. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ. Int J Mol Sci 2022; 23:ijms23168876. [PMID: 36012143 PMCID: PMC9408265 DOI: 10.3390/ijms23168876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/15/2023] Open
Abstract
A critical issue to understanding how populations adapt to new selective pressures is the relative contribution of the initial standing genetic diversity versus that generated de novo. RNA viruses are an excellent model to study this question, as they form highly heterogeneous populations whose genetic diversity can be modulated by factors such as the number of generations, the size of population bottlenecks, or exposure to new environment conditions. In this work, we propagated at nonoptimal temperature (43 °C) two bacteriophage Qβ populations differing in their degree of heterogeneity. Deep sequencing analysis showed that, prior to the temperature change, the most heterogeneous population contained some low-frequency mutations that had previously been detected in the consensus sequences of other Qβ populations adapted to 43 °C. Evolved populations with origin in this ancestor reached similar growth rates, but the adaptive pathways depended on the frequency of these standing mutations and the transmission bottleneck size. In contrast, the growth rate achieved by populations with origin in the less heterogeneous ancestor did depend on the transmission bottleneck size. The conclusion is that viral diversification in a particular environment may lead to the emergence of mutants capable of accelerating adaptation when the environment changes.
Collapse
Affiliation(s)
- Pilar Somovilla
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alicia Rodríguez-Moreno
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - María Arribas
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Susanna Manrubia
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nat Ecol Evol 2022; 6:763-773. [PMID: 35484218 DOI: 10.1038/s41559-022-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.
Collapse
|
10
|
The relative fitness of the de novo variants in general Lithuanian population vs. in individuals with intellectual disability. Eur J Hum Genet 2022; 30:332-338. [PMID: 34363065 PMCID: PMC8904440 DOI: 10.1038/s41431-021-00915-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
The effect of a variant on an organism is always multifaceted and can be considered from multiple perspectives-biochemical, medical, or evolutionary. However, the relationship between the effects of amino acid substitution on protein activity, human health, and an individual's evolutionary fitness is not trivial. We uncover that the general Lithuanian population is characterized by a "mirror reflection" of the de novo variant fitness effect, confirming the theory of neutrality. Meanwhile, in the group of individuals with intellectual disability, compared with the reference exome de novo variants significantly changed the composition of the amino acid. Therefore, it predicts that, both in terms of the number of amino acids and changes in their relative fitness, the structure of the proteins encoded by the studied amino acids undergo significant changes following the de novo variant, leading to possible changes in protein function associated with phenotypic traits. These results suggest that the analysis of relative fitness of exome sequences with de novo variants can predict the future phenotype. Therefore even in those cases, then only a few of all functional prediction analysis tools predict a variant as damaging, the negative relative fitness or even adaptability of the genome variant should be carefully evaluated considering both its direct function and the global background of the possible disease-associated mechanism regardless of the phenotype being studied.
Collapse
|
11
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
12
|
Phillips KN, Cooper TF. The cost of evolved constitutive lac gene expression is usually, but not always, maintained during evolution of generalist populations. Ecol Evol 2021; 11:12497-12507. [PMID: 34594515 PMCID: PMC8462147 DOI: 10.1002/ece3.7994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Beneficial mutations can become costly following an environmental change. Compensatory mutations can relieve these costs, while not affecting the selected function, so that the benefits are retained if the environment shifts back to be similar to the one in which the beneficial mutation was originally selected. Compensatory mutations have been extensively studied in the context of antibiotic resistance, responses to specific genetic perturbations, and in the determination of interacting gene network components. Few studies have focused on the role of compensatory mutations during more general adaptation, especially as the result of selection in fluctuating environments where adaptations to different environment components may often involve trade-offs. We examine whether costs of a mutation in lacI, which deregulated the expression of the lac operon in evolving populations of Escherichia coli bacteria, were compensated. This mutation occurred in multiple replicate populations selected in environments that fluctuated between growth on lactose, where the mutation was beneficial, and on glucose, where it was deleterious. We found that compensation for the cost of the lacI mutation was rare, but, when it did occur, it did not negatively affect the selected benefit. Compensation was not more likely to occur in a particular evolution environment. Compensation has the potential to remove pleiotropic costs of adaptation, but its rarity indicates that the circumstances to bring about the phenomenon may be peculiar to each individual or impeded by other selected mutations.
Collapse
Affiliation(s)
- Kelly N. Phillips
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Tim F. Cooper
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| |
Collapse
|
13
|
Lalejini A, Ferguson AJ, Grant NA, Ofria C. Adaptive Phenotypic Plasticity Stabilizes Evolution in Fluctuating Environments. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.
Collapse
|
14
|
Klim J, Zielenkiewicz U, Skoneczny M, Skoneczna A, Kurlandzka A, Kaczanowski S. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast. BMC Ecol Evol 2021; 21:99. [PMID: 34039270 PMCID: PMC8157726 DOI: 10.1186/s12862-021-01830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. Results Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. Conclusions Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01830-9.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
15
|
Helsen J, Voordeckers K, Vanderwaeren L, Santermans T, Tsontaki M, Verstrepen KJ, Jelier R. Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 2021; 37:2989-3002. [PMID: 32658971 PMCID: PMC7530610 DOI: 10.1093/molbev/msaa172] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of gene function is common throughout evolution, even though it often leads to reduced fitness. In this study, we systematically evaluated how an organism adapts after deleting genes that are important for growth under oxidative stress. By evolving, sequencing, and phenotyping over 200 yeast lineages, we found that gene loss can enhance an organism’s capacity to evolve and adapt. Although gene loss often led to an immediate decrease in fitness, many mutants rapidly acquired suppressor mutations that restored fitness. Depending on the strain’s genotype, some ultimately even attained higher fitness levels than similarly adapted wild-type cells. Further, cells with deletions in different modules of the genetic network followed distinct and predictable mutational trajectories. Finally, losing highly connected genes increased evolvability by facilitating the emergence of a more diverse array of phenotypes after adaptation. Together, our findings show that loss of specific parts of a genetic network can facilitate adaptation by opening alternative evolutionary paths.
Collapse
Affiliation(s)
- Jana Helsen
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium.,Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Laura Vanderwaeren
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium.,Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Toon Santermans
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium
| | - Maria Tsontaki
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Rob Jelier
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:3831-3842. [PMID: 32847816 PMCID: PMC7534429 DOI: 10.1534/g3.120.401593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations shape genetic architecture and thus influence the evolvability, adaptation and diversification of populations. Mutations may have different and even opposite effects on separate fitness components, and their rate of origin, distribution of effects and variance-covariance structure may depend on environmental quality. We performed an approximately 1,500-generation mutation-accumulation (MA) study in diploids of the yeast Saccharomyces cerevisiae in stressful (high-salt) and normal environments (50 lines each) to investigate the rate of input of mutational variation (Vm) as well as the mutation rate and distribution of effects on diploid and haploid fitness components, assayed in the normal environment. All four fitness components in both MA treatments exhibited statistically significant mutational variance and mutational heritability. Compared to normal-MA, salt stress increased the mutational variance in growth rate by more than sevenfold in haploids derived from the MA lines. This increase was not detected in diploid growth rate, suggesting masking of mutations in the heterozygous state. The genetic architecture arising from mutation (M-matrix) differed between normal and salt conditions. Salt stress also increased environmental variance in three fitness components, consistent with a reduction in canalization. Maximum-likelihood analysis indicated that stress increased the genomic mutation rate by approximately twofold for maximal growth rate and sporulation rate in diploids and for viability in haploids, and by tenfold for maximal growth rate in haploids, but large confidence intervals precluded distinguishing these values between MA environments. We discuss correlations between fitness components in diploids and haploids and compare the correlations between the two MA environmental treatments.
Collapse
|
17
|
Dolson E, Lalejini A, Jorgensen S, Ofria C. Interpreting the Tape of Life: Ancestry-Based Analyses Provide Insights and Intuition about Evolutionary Dynamics. ARTIFICIAL LIFE 2020; 26:58-79. [PMID: 32027535 DOI: 10.1162/artl_a_00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: phylogenetic richness, phylogenetic divergence, phylogenetic regularity, and depth of the most-recent common ancestor. In addition to quantitative metrics, we also discuss several existing data visualizations that are useful for understanding lineages and phylogenies: state sequence visualizations, fitness landscape overlays, phylogenetic trees, and Muller plots. We examine the behavior of these metrics (with the aid of data visualizations) in two well-studied computational contexts: (1) a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, and (2) a set of qualitatively different environments in the Avida digital evolution platform. These results confirm our intuition about how these metrics respond to various evolutionary conditions and indicate their broad value.
Collapse
Affiliation(s)
- Emily Dolson
- Michigan State University, BEACON Center for the Study of Evolution in Action, Department of Computer Science and Engineering, Ecology, Evolutionary Biology, and Behavior Program.
| | - Alexander Lalejini
- Michigan State University, BEACON Center for the Study of Evolution in Action, Department of Computer Science and Engineering, Ecology, Evolutionary Biology, and Behavior Program
| | - Steven Jorgensen
- Michigan State University, BEACON Center for the Study of Evolution in Action, Department of Computer Science and Engineering
| | - Charles Ofria
- Michigan State University, BEACON Center for the Study of Evolution in Action, Department of Computer Science and Engineering, Ecology, Evolutionary Biology, and Behavior Program
| |
Collapse
|
18
|
Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Bentley PJ, Bernard S, Beslon G, Bryson DM, Cheney N, Chrabaszcz P, Cully A, Doncieux S, Dyer FC, Ellefsen KO, Feldt R, Fischer S, Forrest S, Fŕenoy A, Gagńe C, Le Goff L, Grabowski LM, Hodjat B, Hutter F, Keller L, Knibbe C, Krcah P, Lenski RE, Lipson H, MacCurdy R, Maestre C, Miikkulainen R, Mitri S, Moriarty DE, Mouret JB, Nguyen A, Ofria C, Parizeau M, Parsons D, Pennock RT, Punch WF, Ray TS, Schoenauer M, Schulte E, Sims K, Stanley KO, Taddei F, Tarapore D, Thibault S, Watson R, Weimer W, Yosinski J. The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities. ARTIFICIAL LIFE 2020; 26:274-306. [PMID: 32271631 DOI: 10.1162/artl_a_00319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.
Collapse
Affiliation(s)
| | | | - Dusan Misevic
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity.
| | | | | | | | | | | | | | | | | | | | | | - Stephane Doncieux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR)
| | | | | | | | | | | | | | | | - Leni Le Goff
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR)
| | | | | | | | - Laurent Keller
- Department of Fundamental Microbiology, University of Lausanne
| | | | | | | | | | | | - Carlos Maestre
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR)
| | | | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - François Taddei
- Center for Research and Interdisciplinarity, INSERM U1284, Université de Paris
| | | | | | | | | | | |
Collapse
|
19
|
Belinky F, Sela I, Rogozin IB, Koonin EV. Crossing fitness valleys via double substitutions within codons. BMC Biol 2019; 17:105. [PMID: 31842858 PMCID: PMC6916188 DOI: 10.1186/s12915-019-0727-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases potentially could alleviate the deleterious effect of single substitutions, making them subject to positive selection. To elucidate the effects of selection on double substitutions in all codons, it is critical to differentiate selection from mutational biases. RESULTS We addressed the evolutionary regimes of within-codon double substitutions in 37 groups of closely related prokaryotic genomes from diverse phyla by comparing the fractions of double substitutions within codons to those of the equivalent double S substitutions in adjacent codons. Under the assumption that substitutions occur one at a time, all within-codon double substitutions can be represented as "ancestral-intermediate-final" sequences (where "intermediate" refers to the first single substitution and "final" refers to the second substitution) and can be partitioned into four classes: (1) SS, S intermediate-S final; (2) SN, S intermediate-N final; (3) NS, N intermediate-S final; and (4) NN, N intermediate-N final. We found that the selective pressure on the second substitution markedly differs among these classes of double substitutions. Analogous to single S (synonymous) substitutions, SS double substitutions evolve neutrally, whereas analogous to single N (non-synonymous) substitutions, SN double substitutions are subject to purifying selection. In contrast, NS show positive selection on the second step because the original amino acid is recovered. The NN double substitutions are heterogeneous and can be subject to either purifying or positive selection, or evolve neutrally, depending on the amino acid similarity between the final or intermediate and the ancestral states. CONCLUSIONS The results of the present, comprehensive analysis of the evolutionary landscape of within-codon double substitutions reaffirm the largely conservative regime of protein evolution. However, the second step of a double substitution can be subject to positive selection when the first step is deleterious. Such positive selection can result in frequent crossing of valleys on the fitness landscape.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Itamar Sela
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
How Often Do Protein Genes Navigate Valleys of Low Fitness? Genes (Basel) 2019; 10:genes10040283. [PMID: 30965625 PMCID: PMC6523826 DOI: 10.3390/genes10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
To escape from local fitness peaks, a population must navigate across valleys of low fitness. How these transitions occur, and what role they play in adaptation, have been subjects of active interest in evolutionary genetics for almost a century. However, to our knowledge, this problem has never been addressed directly by considering the evolution of a gene, or group of genes, as a whole, including the complex effects of fitness interactions among multiple loci. Here, we use a precise model of protein fitness to compute the probability P ( s , Δ t ) that an allele, randomly sampled from a population at time t, has crossed a fitness valley of depth s during an interval t - Δ t , t in the immediate past. We study populations of model genes evolving under equilibrium conditions consistent with those in mammalian mitochondria. From this data, we estimate that genes encoding small protein motifs navigate fitness valleys of depth 2 N s ≳ 30 with probability P ≳ 0 . 1 on a time scale of human evolution, where N is the (mitochondrial) effective population size. The results are consistent with recent findings for Watson⁻Crick switching in mammalian mitochondrial tRNA molecules.
Collapse
|
21
|
Abstract
The regulatory processes in cells are typically organized into complex genetic networks. However, it is still unclear how this network structure modulates the evolution of cellular regulation. One would expect that mutations in central and highly connected modules of a network (so-called hubs) would often result in a breakdown and therefore be an evolutionary dead end. However, a new study by Koubkova-Yu and colleagues finds that in some circumstances, altering a hub can offer a quick evolutionary advantage. Specifically, changes in a hub can induce significant phenotypic changes that allow organisms to move away from a local fitness peak, whereas the fitness defects caused by the perturbed hub can be mitigated by mutations in its interaction partners. Together, the results demonstrate how network architecture shapes and facilitates evolutionary adaptation. Genes are organized into complex interaction networks, but it is unclear how network architecture affects evolution. This Primer explores a new study which uses experimental evolution to show how alterations in a gene central to a network affect evolutionary processes.
Collapse
Affiliation(s)
- Jana Helsen
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
| | - Jens Frickel
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- * E-mail:
| |
Collapse
|
22
|
Deleterious Mutation Burden and Its Association with Complex Traits in Sorghum ( Sorghum bicolor). Genetics 2019; 211:1075-1087. [PMID: 30622134 PMCID: PMC6404259 DOI: 10.1534/genetics.118.301742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/22/2018] [Indexed: 11/18/2022] Open
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a major staple food cereal for millions of people worldwide. Valluru et al. identify putative deleterious mutations among ∼5.5M segregating variants of 229 diverse sorghum... Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favorable loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact phenotypes, we identified putative deleterious mutations among ∼5.5 M segregating variants of 229 diverse biomass sorghum lines. We provide the whole-genome estimate of the deleterious burden in sorghum, showing that ∼33% of nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However, there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage. Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional breeding that focuses on the selection of progeny with fewer deleterious alleles.
Collapse
|
23
|
Franklin J, LaBar T, Adami C. Mapping the Peaks: Fitness Landscapes of the Fittest and the Flattest. ARTIFICIAL LIFE 2019; 25:250-262. [PMID: 31397601 DOI: 10.1162/artl_a_00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Populations exposed to a high mutation rate harbor abundant deleterious genetic variation, leading to depressed mean fitness. This reduction in mean fitness presents an opportunity for selection to restore fitness through the evolution of mutational robustness. In extreme cases, selection for mutational robustness can lead to flat genotypes (with low fitness but high robustness) outcompeting fit genotypes (with high fitness but low robustness)-a phenomenon known as survival of the flattest. While this effect was previously explored using the digital evolution system Avida, a complete analysis of the local fitness landscapes of fit and flat genotypes has been lacking, leading to uncertainty about the genetic basis of the survival-of-the-flattest effect. Here, we repeated the survival-of-the-flattest study and analyzed the mutational neighborhoods of fit and flat genotypes. We found that the flat genotypes, compared to the fit genotypes, had a reduced likelihood of deleterious mutations as well as an increased likelihood of neutral and, surprisingly, of lethal mutations. This trend holds for mutants one to four substitutions away from the wild-type sequence. We also found that flat genotypes have, on average, no epistasis between mutations, while fit genotypes have, on average, positive epistasis. Our results demonstrate that the genetic causes of mutational robustness on complex fitness landscapes are multifaceted. While the traditional idea of the survival of the flattest emphasized the evolution of increased neutrality, others have argued for increased mutational sensitivity in response to strong mutational loads. Our results show that both increased neutrality and increased lethality can lead to the evolution of mutational robustness. Furthermore, strong negative epistasis is not required for mutational sensitivity to lead to mutational robustness. Overall, these results suggest that mutational robustness is achieved by minimizing heritable deleterious variation.
Collapse
Affiliation(s)
- Joshua Franklin
- Michigan State University, Department of Microbiology and Molecular Genetics
| | - Thomas LaBar
- Harvard University, Department of Molecular and Cellular Biology.
- Michigan State University, BEACON Center for the Study of Evolution in Action
| | - Christoph Adami
- Michigan State University, Department of Microbiology and Molecular Genetics; Department of Ecology, Evolutionary Biology, and Behavior; BEACON Center for the Study of Evolution in Action
- Arizona State University, Department of Physics and Astronomy
| |
Collapse
|
24
|
Koubkova-Yu TCT, Chao JC, Leu JY. Heterologous Hsp90 promotes phenotypic diversity through network evolution. PLoS Biol 2018; 16:e2006450. [PMID: 30439936 PMCID: PMC6264905 DOI: 10.1371/journal.pbio.2006450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/29/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Biological processes in living cells are often carried out by gene networks in which signals and reactions are integrated through network hubs. Despite their functional importance, it remains unclear to what extent network hubs are evolvable and how alterations impact long-term evolution. We investigated these issues using heat shock protein 90 (Hsp90), a central hub of proteostasis networks. When native Hsp90 in Saccharomyces cerevisiae cells was replaced by the ortholog from hypersaline-tolerant Yarrowia lipolytica that diverged from S. cerevisiae about 270 million years ago, the cells exhibited improved growth in hypersaline environments but compromised growth in others, indicating functional divergence in Hsp90 between the two yeasts. Laboratory evolution shows that evolved Y. lipolytica-HSP90–carrying S. cerevisiae cells exhibit a wider range of phenotypic variation than cells carrying native Hsp90. Identified beneficial mutations are involved in multiple pathways and are often pleiotropic. Our results show that cells adapt to a heterologous Hsp90 by modifying different subnetworks, facilitating the evolution of phenotypic diversity inaccessible to wild-type cells. Biological processes in living cells are often carried out by gene networks. Hubs are highly connected network components important for integrating signal inputs and generating responsive functional outputs. Heat shock protein 90 (Hsp90), a versatile hub in the protein homeostasis network, is a molecular chaperone essential for cell viability in all tested eukaryotic cells. In yeast, about a quarter of the expressed proteins are profoundly influenced when Hsp90 activity is reduced. Despite its pivotal role, we found that the function of Hsp90 has diverged between two yeast species, Yarrowia lipolytica and Saccharomyces cerevisiae, which split about 270 million years ago. To understand the impacts and adaptive strategies in cells with an altered network hub, we conducted laboratory evolution experiments using a S. cerevisiae strain in which native Hsp90 is replaced by its counterpart in Y. lipolytica. We observed different fitness gain or loss under various stress conditions in individual evolved clones, suggesting that cells adapted via different evolutionary paths. Genome sequencing and mutation reconstitution experiments show that beneficial mutations occurred in multiple Hsp90-related pathways that interact with each other. Our results show that a perturbed network allows cells to evolve a broader range of phenotypic diversity unavailable to wild-type cells.
Collapse
Affiliation(s)
- Tracy Chih-Ting Koubkova-Yu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Ko EK, Chorich LP, Sullivan ME, Cameron RS, Layman LC. JAK/STAT signaling pathway gene expression is reduced following Nelf knockdown in GnRH neurons. Mol Cell Endocrinol 2018; 470:151-159. [PMID: 29050862 DOI: 10.1016/j.mce.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/27/2022]
Abstract
Hypothalamic gonadotropin releasing hormone (GnRH) is crucial for the proper function of the hypothalamic-pituitary-gonadal (HPG) axis, subsequent puberty, and reproduction. When GnRH neuron migration or GnRH regulation is impaired, hypogonadotropic hypogonadism results. Mutations in the gene for nasal embryonic luteinizing hormone-releasing factor (NELF) have been identified in GnRH-deficient humans. NELF is a predominantly nuclear protein that may participate in gene transcription, but the genes NELF regulates are unknown. To address this question, RNA was extracted from NLT GnRH neuronal cells following either stable Nelf knockdown or scrambled control and subjected to cDNA arrays. Transcription factors and cell migration gene expression was altered most commonly. Members of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, including Stat1, Stat2, Stat5a, Jak2, Irf7 and Irf9, were significantly down regulated as assessed by RT-qPCR. Protein levels of STAT1, phospho-STAT1, and JAK2 were reduced, but the protein level of phospho-JAK2 was not. These findings suggest a role for NELF in the regulation of the JAK/STAT signaling pathway, which have important functions in GnRH neurons.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Megan E Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Richard S Cameron
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
26
|
Abstract
Stochastic phenotype switching has been suggested to play a beneficial role in microbial populations by leading to the division of labour among cells, or ensuring that at least some of the population survives an unexpected change in environmental conditions. Here we use a computational model to investigate an alternative possible function of stochastic phenotype switching: as a way to adapt more quickly even in a static environment. We show that when a genetic mutation causes a population to become less fit, switching to an alternative phenotype with higher fitness (growth rate) may give the population enough time to develop compensatory mutations that increase the fitness again. The possibility of switching phenotypes can reduce the time to adaptation by orders of magnitude if the “fitness valley” caused by the deleterious mutation is deep enough. Our work has important implications for the emergence of antibiotic-resistant bacteria. In line with recent experimental findings, we hypothesise that switching to a slower growing — but less sensitive — phenotype helps bacteria to develop resistance by providing alternative, faster evolutionary routes to resistance.
Collapse
|
27
|
C G N, LaBar T, Hintze A, Adami C. Origin of life in a digital microcosm. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0350. [PMID: 29133448 PMCID: PMC5686406 DOI: 10.1098/rsta.2016.0350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 05/09/2023]
Abstract
While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Nitash C G
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas LaBar
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Arend Hintze
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Christoph Adami
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
LaBar T, Adami C. Evolution of drift robustness in small populations. Nat Commun 2017; 8:1012. [PMID: 29044114 PMCID: PMC5647343 DOI: 10.1038/s41467-017-01003-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Most mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines. Here, using mathematical modeling and digital experimental evolution, we show that small populations do evolve a reduced vulnerability to drift, or ‘drift robustness’. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not adaptive, but instead arises because small populations can only maintain fitness on drift-robust fitness peaks. These results have implications for genome evolution in organisms with small effective population sizes. Genetic drift can reduce fitness in small populations by counteracting selection against deleterious mutations. Here, LaBar and Adami demonstrate through a mathematical model and simulations that small populations tend to evolve to drift-robust fitness peaks, which have a low likelihood of slightly-deleterious mutations.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Adami
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Accumulation of Deleterious Mutations During Bacterial Range Expansions. Genetics 2017; 207:669-684. [PMID: 28821588 PMCID: PMC5629331 DOI: 10.1534/genetics.117.300144] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Recent theory predicts that the fitness of pioneer populations can decline when species expand their range, due to high rates of genetic drift on wave fronts making selection less efficient at purging deleterious variants. To test these predictions, we studied the fate of mutator bacteria expanding their range for 1650 generations on agar plates. In agreement with theory, we find that growth abilities of strains with a high mutation rate (HMR lines) decreased significantly over time, unlike strains with a lower mutation rate (LMR lines) that present three to four times fewer mutations. Estimation of the distribution of fitness effect under a spatially explicit model reveals a mean negative effect for new mutations (-0.38%), but it suggests that both advantageous and deleterious mutations have accumulated during the experiment. Furthermore, the fitness of HMR lines measured in different environments has decreased relative to the ancestor strain, whereas that of LMR lines remained unchanged. Contrastingly, strains with a HMR evolving in a well-mixed environment accumulated less mutations than agar-evolved strains and showed an increased fitness relative to the ancestor. Our results suggest that spatially expanding species are affected by deleterious mutations, leading to a drastic impairment of their evolutionary potential.
Collapse
|
30
|
de Vladar HP, Santos M, Szathmáry E. Grand Views of Evolution. Trends Ecol Evol 2017; 32:324-334. [DOI: 10.1016/j.tree.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/25/2023]
|
31
|
Kumar A, Natarajan C, Moriyama H, Witt CC, Weber RE, Fago A, Storz JF. Stability-Mediated Epistasis Restricts Accessible Mutational Pathways in the Functional Evolution of Avian Hemoglobin. Mol Biol Evol 2017; 34:1240-1251. [PMID: 28201714 PMCID: PMC5400398 DOI: 10.1093/molbev/msx085] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
If the fitness effects of amino acid mutations are conditional on genetic background, then mutations can have different effects depending on the sequential order in which they occur during evolutionary transitions in protein function. A key question concerns the fraction of possible mutational pathways connecting alternative functional states that involve transient reductions in fitness. Here we examine the functional effects of multiple amino acid substitutions that contributed to an evolutionary transition in the oxygenation properties of avian hemoglobin (Hb). The set of causative changes included mutations at intradimer interfaces of the Hb tetramer. Replacements at such sites may be especially likely to have epistatic effects on Hb function since residues at intersubunit interfaces are enmeshed in networks of salt bridges and hydrogen bonds between like and unlike subunits; mutational reconfigurations of these atomic contacts can affect allosteric transitions in quaternary structure and the propensity for tetramer-dimer dissociation. We used ancestral protein resurrection in conjunction with a combinatorial protein engineering approach to synthesize genotypes representing the complete set of mutational intermediates in all possible forward pathways that connect functionally distinct ancestral and descendent genotypes. The experiments revealed that 1/2 of all possible forward pathways included mutational intermediates with aberrant functional properties because particular combinations of mutations promoted tetramer-dimer dissociation. The subset of mutational pathways with unstable intermediates may be selectively inaccessible, representing evolutionary roads not taken. The experimental results also demonstrate how epistasis for particular functional properties of proteins may be mediated indirectly by mutational effects on quaternary structural stability.
Collapse
Affiliation(s)
- Amit Kumar
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Christopher C. Witt
- Department of Biology, University of New Mexico, Albuquerque, NM
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM
| | - Roy E. Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| |
Collapse
|
32
|
Abstract
Suitably designed experiments offer the possibility of quantifying evolutionary convergence because the fraction of replicate populations that converge is known. Here I review an experiment with Escherichia coli, in which 12 populations were founded from the same ancestral strain and have evolved for almost 30 years and more than 65,000 generations under the same conditions. The tension between divergence and convergence has been a major focus of this experiment. I summarize analyses of competitive fitness, correlated responses to different environments, cell morphology, the capacity to use a previously untapped resource, mutation rates, genomic changes, and within-population polymorphisms. These analyses reveal convergence, divergence, and often a complicated mix thereof. Complications include concordance in the direction of evolutionary change with sustained quantitative variation among populations, and the potential for a given trait to exhibit divergence on one timescale and convergence on another. Despite these complications, which also occur in nature, experiments provide a powerful way to study evolutionary convergence based on analyzing replicate lineages that experience the same environment.
Collapse
|
33
|
Claessens A, Affara M, Assefa SA, Kwiatkowski DP, Conway DJ. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants. Sci Rep 2017; 7:41303. [PMID: 28117431 PMCID: PMC5259787 DOI: 10.1038/srep41303] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
Collapse
Affiliation(s)
- Antoine Claessens
- London School of Hygiene and Tropical Medicine, London, UK
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Muna Affara
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia
| | | | | | | |
Collapse
|
34
|
LaBar T, Hintze A, Adami C. Evolvability Tradeoffs in Emergent Digital Replicators. ARTIFICIAL LIFE 2016; 22:483-498. [PMID: 27824499 DOI: 10.1162/artl_a_00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of historical contingency in the origin of life is one of the great unknowns in modern science. Only one example of life exists-one that proceeded from a single self-replicating organism (or a set of replicating hypercycles) to the vast complexity we see today in Earth's biosphere. We know that emergent life has the potential to evolve great increases in complexity, but it is unknown if evolvability is automatic given any self-replicating organism. At the same time, it is difficult to test such questions in biochemical systems. Laboratory studies with RNA replicators have had some success with exploring the capacities of simple self-replicators, but these experiments are still limited in both capabilities and scope. Here, we use the digital evolution system Avida to explore the interplay between emergent replicators (rare randomly assembled self-replicators) and evolvability. We find that we can classify fixed-length emergent replicators in Avida into two classes based on functional analysis. One class is more evolvable in the sense of optimizing the replicators' replication abilities. However, the other class is more evolvable in the sense of acquiring evolutionary innovations. We tie this tradeoff in evolvability to the structure of the respective classes' replication machinery, and speculate on the relevance of these results to biochemical replicators.
Collapse
|
35
|
Burmeister AR, Lenski RE, Meyer JR. Host coevolution alters the adaptive landscape of a virus. Proc Biol Sci 2016; 283:rspb.2016.1528. [PMID: 27683370 PMCID: PMC5046904 DOI: 10.1098/rspb.2016.1528] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023] Open
Abstract
The origin of new and complex structures and functions is fundamental for shaping the diversity of life. Such key innovations are rare because they require multiple interacting changes. We sought to understand how the adaptive landscape led to an innovation whereby bacteriophage λ evolved the new ability to exploit a receptor, OmpF, on Escherichia coli cells. Previous work showed that this ability evolved repeatedly, despite requiring four mutations in one virus gene. Here, we examine how this innovation evolved by studying six intermediate genotypes of λ isolated during independent transitions to exploit OmpF and comparing them to their ancestor. All six intermediates showed large increases in their adsorption rates on the ancestral host. Improvements in adsorption were offset, in large part, by the evolution of host resistance, which occurred by reduced expression of LamB, the usual receptor for λ. As a consequence of host coevolution, the adaptive landscape of the virus changed such that selection favouring four of the six virus intermediates became stronger after the host evolved resistance, thereby accelerating virus populations along the path to using the new OmpF receptor. This dependency of viral fitness on host genotype thus shows an important role for coevolution in the origin of the new viral function.
Collapse
Affiliation(s)
- Alita R Burmeister
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Blount ZD. A case study in evolutionary contingency. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 58:82-92. [PMID: 26787098 DOI: 10.1016/j.shpsc.2015.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution.
Collapse
Affiliation(s)
- Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
37
|
MacPherson B, Gras R. Individual-based ecological models: Adjunctive tools or experimental systems? Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, Sanders M, Blackburn G, Dujardin JC, Rijal S, Khanal B, Illingworth CJR, Coombs GH, Carter KC. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 2016; 99:1134-48. [PMID: 26713880 PMCID: PMC4832254 DOI: 10.1111/mmi.13291] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb-S; and antimony resistant Sb-R). MIL-R was easily induced in both strains using the promastigote-stage, but a significant increase in MIL-R in the intracellular amastigote compared to the corresponding wild-type did not occur until promastigotes had adapted to 12.2 μM MIL. A variety of common and strain-specific genetic changes were discovered in MIL-adapted parasites, including deletions at the LdMT transporter gene, single-base mutations and changes in somy. The most obvious lipid changes in MIL-R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL-R parasites, with more genetic changes occurring in Sb-R compared with Sb-S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb-R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite's biochemical pathways and how they are genetically regulated to be verified fully.
Collapse
Affiliation(s)
- C D Shaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - J Lonchamp
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - T Downing
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- College of Science, NUI Galway, Galway, Ireland
| | - H Imamura
- Department of Biomedical Sciences, Instituut voor Tropische Geneeskunde Nationalestraat, Antwerpen, Belgium
| | - T M Freeman
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - J A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - M Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - G Blackburn
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerpen, Belgium
- Glasgow Polyomics, University of Glasgow, Glasgow
| | - J C Dujardin
- Department of Biomedical Sciences, Instituut voor Tropische Geneeskunde Nationalestraat, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerpen, Belgium
| | - S Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - B Khanal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - G H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - K C Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
39
|
Weigel EG, Testa ND, Peer A, Garnett SC. Context matters: sexual signaling loss in digital organisms. Ecol Evol 2015; 5:3725-36. [PMID: 26380700 PMCID: PMC4567875 DOI: 10.1002/ece3.1631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 11/11/2022] Open
Abstract
Sexual signals are important in attracting and choosing mates; however, these signals and their associated preferences are often costly and frequently lost. Despite the prevalence of signaling system loss in many taxa, the factors leading to signal loss remain poorly understood. Here, we test the hypothesis that complexity in signal loss scenarios is due to the context-dependent nature of the many factors affecting signal loss itself. Using the Avida digital life platform, we evolved 50 replicates of ∼250 lineages, each with a unique combination of parameters, including whether signaling is obligate or facultative; genetic linkage between signaling and receiving genes; population size; and strength of preference for signals. Each of these factors ostensibly plays a crucial role in signal loss, but was found to do so only under specific conditions. Under obligate signaling, genetic linkage, but not population size, influenced signal loss; under facultative signaling, genetic linkage does not have significant influence. Somewhat surprisingly, only a total loss of preference in the obligate signaling populations led to total signal loss, indicating that even a modest amount of preference is enough to maintain signaling systems. Strength of preference proved to be the strongest single force preventing signal loss, as it consistently overcame the potential effects of drift within our study. Our findings suggest that signaling loss is often dependent on not just preference for signals, population size, and genetic linkage, but also whether signals are required to initiate mating. These data provide an understanding of the factors (and their interactions) that may facilitate the maintenance of sexual signals.
Collapse
Affiliation(s)
- Emily G Weigel
- Department of Integrative Biology, Michigan State University 288 Farm Lane Road RM 203, East Lansing, Michigan, 48824 ; BEACON Center for the Study of Evolution in Action, Michigan State University East Lansing, Michigan, 48824
| | - Nicholas D Testa
- Department of Integrative Biology, Michigan State University 288 Farm Lane Road RM 203, East Lansing, Michigan, 48824 ; BEACON Center for the Study of Evolution in Action, Michigan State University East Lansing, Michigan, 48824
| | - Alex Peer
- Department of Computer Sciences, University of Wisconsin-Madison Madison, Wisconsin, 53706
| | - Sara C Garnett
- Department of Integrative Biology, Michigan State University 288 Farm Lane Road RM 203, East Lansing, Michigan, 48824 ; BEACON Center for the Study of Evolution in Action, Michigan State University East Lansing, Michigan, 48824
| |
Collapse
|
40
|
Expected Effect of Deleterious Mutations on Within-Host Adaptation of Pathogens. J Virol 2015; 89:9242-51. [PMID: 26109724 DOI: 10.1128/jvi.00832-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/20/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adaptation is a common theme in both pathogen emergence, for example, in zoonotic cross-species transmission, and pathogen control, where adaptation might limit the effect of the immune response and antiviral treatment. When such evolution requires deleterious intermediate mutations, fitness ridges and valleys arise in the pathogen's fitness landscape. The effect of deleterious intermediate mutations on within-host pathogen adaptation is examined with deterministic calculations, appropriate for pathogens replicating in large populations with high error rates. The effect of deleterious intermediate mutations on pathogen adaptation is smaller than their name might suggest: when two mutations are required and each individual single mutation is fully deleterious, the pathogen can jump across the fitness valley by obtaining two mutations at once, leading to a proportion of adapted mutants that is 20-fold lower than that in the situation where the fitness of all mutants is neutral. The negative effects of deleterious intermediates are typically substantially smaller and outweighed by the fitness advantages of the adapted mutant. Moreover, requiring a specific mutation order has a substantially smaller effect on pathogen adaptation than the effect of all intermediates being deleterious. These results can be rationalized when the number of routes of mutation available to the pathogen is calculated, providing a simple approach to estimate the effect of deleterious mutations. The calculations discussed here are applicable when the effect of deleterious mutations on the within-host adaptation of pathogens is assessed, for example, in the context of zoonotic emergence, antigenic escape, and drug resistance. IMPORTANCE Adaptation is critical for pathogens after zoonotic transmission into a new host species or to achieve antigenic immune escape and drug resistance. Using a deterministic approach, the effects of deleterious intermediate mutations on pathogen adaptation were calculated while avoiding commonly made simplifications that do not apply to large pathogen populations replicating with high mutation rates. Perhaps unexpectedly, pathogen adaptation does not halt when the intermediate mutations are fully deleterious. The negative effects of deleterious mutations are substantially outweighed by the fitness gains of adaptation. To gain an understanding of the effect of deleterious mutations on pathogen adaptation, a simple approach that counts the number of routes available to the pathogen with and without deleterious intermediate mutations is introduced. This methodology enables a straightforward calculation of the proportion of the pathogen population that will cross a fitness valley or traverse a fitness ridge, without reverting to more complicated mathematical models.
Collapse
|
41
|
Ostrowski EA, Ofria C, Lenski RE. Genetically integrated traits and rugged adaptive landscapes in digital organisms. BMC Evol Biol 2015; 15:83. [PMID: 25963618 PMCID: PMC4428022 DOI: 10.1186/s12862-015-0361-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND When overlapping sets of genes encode multiple traits, those traits may not be able to evolve independently, resulting in constraints on adaptation. We examined the evolution of genetically integrated traits in digital organisms-self-replicating computer programs that mutate, compete, adapt, and evolve in a virtual world. We assessed whether overlap in the encoding of two traits - here, the ability to perform different logic functions - constrained adaptation. We also examined whether strong opposing selection could separate otherwise entangled traits, allowing them to be independently optimized. RESULTS Correlated responses were often asymmetric. That is, selection to increase one function produced a correlated response in the other function, while selection to increase the second function caused a complete loss of the ability to perform the first function. Nevertheless, most pairs of genetically integrated traits could be successfully disentangled when opposing selection was applied to break them apart. In an interesting exception to this pattern, the logic function AND evolved counter to its optimum in some populations owing to selection on the EQU function. Moreover, the EQU function showed the strongest response to selection only after it was disentangled from AND, such that the ability to perform AND was lost. Subsequent analyses indicated that selection against AND had altered the local adaptive landscape such that populations could cross what would otherwise have been an adaptive valley and thereby reach a higher fitness peak. CONCLUSIONS Correlated responses to selection can sometimes constrain adaptation. However, in our study, even strongly overlapping genes were usually insufficient to impose long-lasting constraints, given the input of new mutations that fueled selective responses. We also showed that detailed information about the adaptive landscape was useful for predicting the outcome of selection on correlated traits. Finally, our results illustrate the richness of evolutionary dynamics in digital systems and highlight their utility for studying processes thought to be important in biological systems, but which are difficult to investigate in those systems.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| | - Charles Ofria
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.
| | - Richard E Lenski
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
42
|
Ascolani G, Occhipinti A, Liò P. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer. PLoS Comput Biol 2015; 11:e1004199. [PMID: 25978366 PMCID: PMC4433130 DOI: 10.1371/journal.pcbi.1004199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/16/2015] [Indexed: 12/16/2022] Open
Abstract
Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.
Collapse
Affiliation(s)
- Gianluca Ascolani
- University of Cambridge, Computer Laboratory, Cambridge, United Kingdom
| | | | - Pietro Liò
- University of Cambridge, Computer Laboratory, Cambridge, United Kingdom
| |
Collapse
|
43
|
Topological features of rugged fitness landscapes in sequence space. Trends Genet 2015; 31:24-33. [DOI: 10.1016/j.tig.2014.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
|
44
|
Getting to Know Viral Evolutionary Strategies: Towards the Next Generation of Quasispecies Models. Curr Top Microbiol Immunol 2015; 392:201-17. [PMID: 26271604 DOI: 10.1007/82_2015_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral populations are formed by complex ensembles of genomes with broad phenotypic diversity. The adaptive strategies deployed by these ensembles are multiple and often cannot be predicted a priori. Our understanding of viral dynamics is mostly based on two kinds of empirical approaches: one directed towards characterizing molecular changes underlying fitness changes and another focused on population-level responses. Simultaneously, theoretical efforts are directed towards developing a formal picture of viral evolution by means of more realistic fitness landscapes and reliable population dynamics models. New technologies, chiefly the use of next-generation sequencing and related tools, are opening avenues connecting the molecular and the population levels. In the near future, we hope to be witnesses of an integration of these still decoupled approaches, leading into more accurate and realistic quasispecies models able to capture robust generalities and endowed with a satisfactory predictive power.
Collapse
|
45
|
Usmanova DR, Ferretti L, Povolotskaya IS, Vlasov PK, Kondrashov FA. A model of substitution trajectories in sequence space and long-term protein evolution. Mol Biol Evol 2014; 32:542-54. [PMID: 25415964 DOI: 10.1093/molbev/msu318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nature of factors governing the tempo and mode of protein evolution is a fundamental issue in evolutionary biology. Specifically, whether or not interactions between different sites, or epistasis, are important in directing the course of evolution became one of the central questions. Several recent reports have scrutinized patterns of long-term protein evolution claiming them to be compatible only with an epistatic fitness landscape. However, these claims have not yet been substantiated with a formal model of protein evolution. Here, we formulate a simple covarion-like model of protein evolution focusing on the rate at which the fitness impact of amino acids at a site changes with time. We then apply the model to the data on convergent and divergent protein evolution to test whether or not the incorporation of epistatic interactions is necessary to explain the data. We find that convergent evolution cannot be explained without the incorporation of epistasis and the rate at which an amino acid state switches from being acceptable at a site to being deleterious is faster than the rate of amino acid substitution. Specifically, for proteins that have persisted in modern prokaryotic organisms since the last universal common ancestor for one amino acid substitution approximately ten amino acid states switch from being accessible to being deleterious, or vice versa. Thus, molecular evolution can only be perceived in the context of rapid turnover of which amino acids are available for evolution.
Collapse
Affiliation(s)
- Dinara R Usmanova
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, g.Dolgoprudny, Russia Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luca Ferretti
- Systématique, Adaptation et Evolution (UMR 7138), UPMC University Paris 06, CNRS, MNHN, IRD, Paris, France CIRB, Collège de France, Paris, France
| | - Inna S Povolotskaya
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Peter K Vlasov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
46
|
Trotter MV, Weissman DB, Peterson GI, Peck KM, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution 2014; 68:3357-67. [PMID: 25178652 DOI: 10.1111/evo.12517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.
Collapse
Affiliation(s)
- Meredith V Trotter
- Department of Biology, Stanford University, Stanford, California, 95306; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | | | | | | | | |
Collapse
|
47
|
Carter CW. Urzymology: experimental access to a key transition in the appearance of enzymes. J Biol Chem 2014; 289:30213-30220. [PMID: 25210034 DOI: 10.1074/jbc.r114.567495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Urzymes are catalysts derived from invariant cores of protein superfamilies. Urzymes from both aminoacyl-tRNA synthetase classes possess sophisticated catalytic mechanisms: pre-steady state bursts, significant transition-state stabilization of both amino acid activation, and tRNA acylation. However, they have insufficient specificity to ensure a fully developed genetic code, suggesting that they participated in synthesizing statistical proteins. They represent a robust experimental platform from which to articulate and test hypotheses both about their own ancestors and about how they, in turn, evolved into modern enzymes. They help reshape numerous paradigms from the RNA World hypothesis to protein structure databases and allostery.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
48
|
Abstract
Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of sequence evolution. Here, we analyze the interactions between beneficial "driver" mutations and linked deleterious "passengers" during the course of adaptation. We derive analytical expressions for the substitution rate of a deleterious mutation as a function of its fitness cost, as well as the reduction in the beneficial substitution rate due to the genetic load of the passengers. We find that the fate of each deleterious mutation varies dramatically with the rate and spectrum of beneficial mutations and the deleterious substitution rate depends nonmonotonically on the population size and the rate of adaptation. By quantifying this dependence, our results allow us to estimate which deleterious mutations will be likely to fix and how many of these mutations must arise before the progress of adaptation is significantly reduced.
Collapse
|
49
|
Szamecz B, Boross G, Kalapis D, Kovács K, Fekete G, Farkas Z, Lázár V, Hrtyan M, Kemmeren P, Groot Koerkamp MJA, Rutkai E, Holstege FCP, Papp B, Pál C. The genomic landscape of compensatory evolution. PLoS Biol 2014; 12:e1001935. [PMID: 25157590 PMCID: PMC4144845 DOI: 10.1371/journal.pbio.1001935] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/18/2014] [Indexed: 12/29/2022] Open
Abstract
The Genomic Landscape of Compensatory Evolution Laboratory selection experiment explains how organisms compensate for the loss of genes during evolution, and reveals the deleterious side-effects of this process when adapting to novel environments. Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes. While core cellular processes are generally conserved during evolution, the constituent genes differ somewhat between related species with similar lifestyles. Why should this be so? In this work, we propose that gene loss may initially be deleterious, but organisms can recover fitness by the accumulation of compensatory mutations elsewhere in the genome. To investigate this process in the laboratory, we investigated 180 haploid yeast strains, each of which initially displayed slow growth owing to the deletion of a single gene. Laboratory evolutionary experiments revealed that defects in a broad range of molecular processes can readily be compensated during evolution. Genomic analyses and functional assays demonstrated that compensatory evolution generates hidden genetic and physiological variation across parallel evolving lines, which can be revealed when the environment changes. Strikingly, despite nearly full recovery of fitness, the wild-type genomic expression pattern is generally not restored. Based on these results, we argue that genomes undergo major changes not simply to adapt to external conditions but also to compensate for previously accumulated deleterious mutations.
Collapse
Affiliation(s)
- Béla Szamecz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Dorottya Kalapis
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Mónika Hrtyan
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Edit Rutkai
- Institute for Biotechnology, Bay Zoltán Non-Profit Ltd., Szeged, Hungary
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- * E-mail: (CP); (BP)
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- * E-mail: (CP); (BP)
| |
Collapse
|
50
|
Tang L, Liu WQ, Fang X, Sun Q, Zhu SL, Wang CX, Wang XY, Li YG, Zhu DL, Sanderson KE, Johnston RN, Liu GR, Liu SL. CTAG-containing cleavage site profiling to delineate Salmonella into natural clusters. PLoS One 2014; 9:e103388. [PMID: 25137186 PMCID: PMC4138082 DOI: 10.1371/journal.pone.0103388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background The bacterial genus Salmonella contains thousands of serotypes that infect humans or other hosts, causing mild gastroenteritis to potentially fatal systemic infections in humans. Pathogenically distinct Salmonella serotypes have been classified as individual species or as serological variants of merely one or two species, causing considerable confusion in both research and clinical settings. This situation reflects a long unanswered question regarding whether the Salmonella serotypes exist as discrete genetic clusters (natural species) of organisms or as phenotypic (e.g. pathogenic) variants of a single (or two) natural species with a continuous spectrum of genetic divergence among them. Our recent work, based on genomic sequence divergence analysis, has demonstrated that genetic boundaries exist among Salmonella serotypes, circumscribing them into clear-cut genetic clusters of bacteria. Methodologies/Principal Findings To further test the genetic boundary concept for delineating Salmonella into clearly defined natural lineages (e.g., species), we sampled a small subset of conserved genomic DNA sequences, i.e., the endonuclease cleavage sites that contain the highly conserved CTAG sequence such as TCTAGA for XbaI. We found that the CTAG-containing cleavage sequence profiles could be used to resolve the genetic boundaries as reliably and efficiently as whole genome sequence comparisons but with enormously reduced requirements for time and resources. Conclusions Profiling of CTAG sequence subsets reflects genetic boundaries among Salmonella lineages and can delineate these bacteria into discrete natural clusters.
Collapse
Affiliation(s)
- Le Tang
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Wei-Qiao Liu
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Xin Fang
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Qiang Sun
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Song-Ling Zhu
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Chun-Xiao Wang
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xiao-Yu Wang
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yong-Guo Li
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Infectious Diseases of First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Da-Ling Zhu
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing, China
| | - Kenneth E. Sanderson
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Randal N. Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gui-Rong Liu
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- * E-mail: grliu.natsumi@gmailcom (GRL); (SLL)
| | - Shu-Lin Liu
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China
- HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Infectious Diseases of First Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail: grliu.natsumi@gmailcom (GRL); (SLL)
| |
Collapse
|