1
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Chen S, Podolec R, Arongaus AB, Fuchs C, Loubéry S, Demarsy E, Ulm R. Functional divergence of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 in repression of flowering. PLANT PHYSIOLOGY 2024; 194:1563-1576. [PMID: 37956407 PMCID: PMC10904346 DOI: 10.1093/plphys/kiad606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.
Collapse
Affiliation(s)
- Song Chen
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Adriana B Arongaus
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Christelle Fuchs
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Sylvain Loubéry
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
3
|
Liu X, Xie Z, Xin J, Yuan S, Liu S, Sun Y, Zhang Y, Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:498. [PMID: 38502046 PMCID: PMC10893026 DOI: 10.3390/plants13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.
Collapse
Affiliation(s)
- Xueqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyang Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiajun Xin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiqing Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
5
|
Zhang Q, Lin L, Fang F, Cui B, Zhu C, Luo S, Yin R. Dissecting the functions of COP1 in the UVR8 pathway with a COP1 variant in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:478-492. [PMID: 36495441 DOI: 10.1111/tpj.16059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
COP1 is a critical repressor of plant photomorphogenesis in darkness. However, COP1 plays distinct roles in the photoreceptor UVR8 pathway in Arabidopsis thaliana. COP1 interacts with ultraviolet B (UV-B)-activated UVR8 monomers and promotes their retention and accumulation in the nucleus. Moreover, COP1 has a function in UV-B signaling, which involves the binding of its WD40 domain to UVR8 and HY5 via conserved Val-Pro (VP) motifs of these proteins. UV-B-activated UVR8 interacts with COP1 via both the core domain and the VP motif, leading to the displacement of HY5 from COP1 and HY5 stabilization. However, it remains unclear whether the function of COP1 in UV-B signaling is solely dependent on its VP motif binding capacity and whether UV-B regulates the subcellular localization of COP1. Based on published structures of the COP1 WD40 domain, we generated a COP1 variant with a single amino acid substitution, COP1C509S , which cannot bind to VP motifs but retains the ability to interact with the UVR8 core domain. UV-B only marginally increased nuclear YFP-COP1 levels and significantly promoted YFP-COP1 accumulation in the cytosol, but did not exert the same effects on YFP-COP1C509S . Thus, the full UVR8-COP1 interaction is important for COP1 accumulation in the cytosol. Notably, UV-B signaling including activation of HY5 transcription was obviously inhibited in the Arabidopsis lines expressing YFP-COP1C509S , which cannot bind VP motifs. We conclude that the full binding of UVR8 to COP1 leads to the predominant accumulation of COP1 in the cytosol and that COP1 has an additional function in UV-B signaling besides VP binding-mediated protein destabilization.
Collapse
Affiliation(s)
- Qianwen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, 200240, China
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Fang Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, 200240, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cheng Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shukun Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
6
|
Wang L, Wang Y, Chang H, Ren H, Wu X, Wen J, Guan Z, Ma L, Qiu L, Yan J, Zhang D, Huang X, Yin P. RUP2 facilitates UVR8 redimerization via two interfaces. PLANT COMMUNICATIONS 2023; 4:100428. [PMID: 36065466 PMCID: PMC9860181 DOI: 10.1016/j.xplc.2022.100428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.
Collapse
Affiliation(s)
- Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinquan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
8
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Fang F, Lin L, Zhang Q, Lu M, Skvortsova MY, Podolec R, Zhang Q, Pi J, Zhang C, Ulm R, Yin R. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics. THE NEW PHYTOLOGIST 2022; 236:1824-1837. [PMID: 36089828 PMCID: PMC9825989 DOI: 10.1111/nph.18468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.
Collapse
Affiliation(s)
- Fang Fang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Li Lin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Qianwen Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Mariya Y. Skvortsova
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Qinyun Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Jiahao Pi
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Chunli Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Ruohe Yin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
10
|
Muthusamy M, Kim JA, Lee SI. Phylogenomics-Based Reconstruction and Molecular Evolutionary Histories of Brassica Photoreceptor Gene Families. Int J Mol Sci 2022; 23:ijms23158695. [PMID: 35955826 PMCID: PMC9369451 DOI: 10.3390/ijms23158695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Photosensory proteins known as photoreceptors (PHRs) are crucial for delineating light environments in synchronization with other environmental cues and regulating their physiological variables in plants. However, this has not been well studied in the Brassica genus, which includes several important agricultural and horticultural crops. Herein, we identified five major PHR gene families—phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT), F-box containing flavin binding proteins (ZTL/FKF1/LKP2), and UV RESISTANCE LOCUS 8 (UVR8)—genomic scales and classified them into subfamilies based on their phylogenetic clustering with Arabidopsis homologues. The molecular evolution characteristics of Brassica PHR members indicated indirect expansion and lost one to six gene copies at subfamily levels. The segmental duplication was possibly the driving force of the evolution and amplification of Brassica PHRs. Gene replication retention and gene loss events of CRY, PHY, and PHOT members found in diploid progenitors were highly conserved in their tetraploid hybrids. However, hybridization events were attributed to quantitative changes in UVR8 and ZTL/FKF1/LKP2 members. All PHR members underwent purifying selection. In addition, the transcript expression profiles of PHR genes in different tissue and in response to exogenous ABA, and abiotic stress conditions suggested their multiple biological significance. This study is helpful in understanding the molecular evolution characteristics of Brassica PHRs and lays the foundation for their functional characterization.
Collapse
|
11
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Liao X, Jenkins GI. Cysteines have a role in conformation of the UVR8 photoreceptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:583-594. [PMID: 35608127 PMCID: PMC9546227 DOI: 10.1111/tpj.15841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates plant responses to Ultraviolet-B (UV-B) wavelengths. The UVR8 dimer dissociates into monomers following UV-B photoreception, a process accompanied by conformational changes that facilitate interaction of UVR8 with proteins that initiate responses. However, the importance of particular amino acids in maintaining UVR8 conformation and modulating protein interactions is poorly understood. Here we examine the roles of cysteine amino acids C231 and C335 in UVR8 structure and function. UVR8C231S,C335S mutant protein forms dimers and monomerizes similarly to wild-type UVR8. UVR8C231S,C335S interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) in plants to initiate photomorphogenic responses to UV-B, although the interaction is weaker when examined in yeast two-hybrid assays. Similarly, the interaction of UVR8C231S,C335S with REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins is weaker in both plants and yeast compared with wild-type UVR8. Re-dimerization of UVR8 in plants, which is mediated by RUP proteins, occurs with reduced efficiency in UVR8C231S,C335S . Fluorescence resonance energy transfer analysis indicates that UVR8C231S,C335S has an altered conformation in plants, in that the N- and C-termini appear closer together, which may explain the altered protein interactions.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | - Gareth I. Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
13
|
Wang Y, Wang L, Guan Z, Chang H, Ma L, Shen C, Qiu L, Yan J, Zhang D, Li J, Deng XW, Yin P. Structural insight into UV-B-activated UVR8 bound to COP1. SCIENCE ADVANCES 2022; 8:eabn3337. [PMID: 35442727 PMCID: PMC9020657 DOI: 10.1126/sciadv.abn3337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive. Here, we reproduced the regulation pathway of COP1-SPA in ultraviolet-B (UV-B) signaling in vitro and determined the cryo-electron microscopy structure of UV-B receptor UVR8 in complex with COP1. The complex formation is mediated by two-interface interactions between UV-B-activated UVR8 and COP1. Both interfaces are essential for the competitive binding of UVR8 against the signaling hub component HY5 to the COP1-SPA complex. We also show that RUP2 dissociates UVR8 from the COP1-SPA41-464-UVR8 complex and facilitates its redimerization. Our results support a UV-B signaling model that the COP1-SPA activity is repressed by UV-B-activated UVR8 and derepressed by RUP2, owing to competitive binding, and provide a framework for studying the regulatory roles of distinct photoreceptors on photomorphogenesis.
Collapse
Affiliation(s)
- Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Zhang Z, Zheng Y, Zhang J, Wang N, Wang Y, Liu W, Bai S, Xie W. High-Altitude Genetic Selection and Genome-Wide Association Analysis of Yield-Related Traits in Elymus sibiricus L. Using SLAF Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:874409. [PMID: 35800604 PMCID: PMC9253694 DOI: 10.3389/fpls.2022.874409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 05/04/2023]
Abstract
The genetic adaptations to harsh climatic conditions in high altitudes and genetic basis of important agronomic traits are poorly understood in Elymus sibiricus L. In this study, an association population of 210 genotypes was used for population structure, selective sweep analysis, and genome-wide association study (GWAS) based on 88,506 single nucleotide polymorphisms (SNPs). We found 965 alleles under the natural selection of high altitude, which included 7 hub genes involved in the response to UV, and flavonoid and anthocyanin biosynthetic process based on the protein-protein interaction (PPI) analysis. Using a mixed linear model (MLM), the GWAS test identified a total of 1,825 significant loci associated with 12 agronomic traits. Based on the gene expression data of two wheat cultivars and the PPI analysis, we finally identified 12 hub genes. Especially, in plant height traits, the top hub gene (TOPLESS protein) encoding auxins and jasmonic acid signaling pathway, shoot apical meristem specification, and xylem and phloem pattern formation was highly overexpressed. These genes might play essential roles in controlling the growth and development of E. sibiricus. Therefore, this study provides fundamental insights relevant to hub genes and will benefit molecular breeding and improvement in E. sibiricus and other Elymus species.
Collapse
Affiliation(s)
- Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuying Zheng
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junchao Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Wengang Xie,
| |
Collapse
|
15
|
Karimi SM, Freund M, Wager BM, Knoblauch M, Fromm J, M Mueller H, Ache P, Krischke M, Mueller MJ, Müller T, Dittrich M, Geilfus CM, Alfarhan AH, Hedrich R, Deeken R. Under salt stress guard cells rewire ion transport and abscisic acid signaling. THE NEW PHYTOLOGIST 2021; 231:1040-1055. [PMID: 33774818 DOI: 10.1111/nph.17376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.
Collapse
Affiliation(s)
- Sohail M Karimi
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Matthias Freund
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Brittney M Wager
- School of Biological Science, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Michael Knoblauch
- School of Biological Science, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Jörg Fromm
- Department of Biology, Institute of Wood Science, University of Hamburg, Leuschnerstraße 91d, Hamburg, 21031, Germany
| | - Heike M Mueller
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, Würzburg, 97074, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, Würzburg, 97074, Germany
| | - Christoph-Martin Geilfus
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Controlled Environment Horticulture, Humboldt University of Berlin, Albrecht-Thaer-Weg 3, Berlin, 14195, Germany
| | - Ahmed H Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| | - Rosalia Deeken
- Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs-Platz 2, Wuerzburg, 97082, Germany
| |
Collapse
|
16
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
17
|
Lin N, Liu X, Zhu W, Cheng X, Wang X, Wan X, Liu L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3401-3414. [PMID: 33719437 DOI: 10.1021/acs.jafc.0c07009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea leaves contain an extraordinarily high level of flavonoids that contribute to tea health benefits and flavor characteristics, but the regulatory mechanism of ambient ultraviolet B (UV-B) on tea flavonoid enrichment remains unclear. Here, we report that ambient UV-B modulates tea quality by inducing a metabolic flux in flavonoid biosynthesis. UV-B absence decreased bitter- and astringent-tasting flavonol glycosides (kaempferol-7-O-glucoside, myricetin-3-O-glucoside, and quercetin-7-O-glucoside) but increased non-galloylated catechins. Conversely, supplementary UV-B increased flavonols and decreased catechins in tea leaves. These responses were achieved via CsHY5, which mediates the UV-B-induced MYB12 activation and binds to the promoters of flavonoid biosynthetic genes (CsFLS, CsLARa, and CsDFRa), leading to flavonoid changes. Transcriptomic data indicated that UV-B-induced tea flavonoid regulation is responsive to multiple biotic and abiotic environmental stresses. These findings improve our understanding of light-regulated tea astringency and bitterness underlying shading effects and seasonal light changes and provide novel insights into tea cultivation management and processing.
Collapse
Affiliation(s)
- Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
18
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
19
|
A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis. Proc Natl Acad Sci U S A 2021; 118:2017284118. [PMID: 33542100 PMCID: PMC8017708 DOI: 10.1073/pnas.2017284118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Coping with UV-B is crucial for plant survival in sunlight. The UV-B photoreceptor UVR8 regulates gene expression associated with photomorphogenesis, acclimation, and UV-B stress tolerance. UV-B photon reception by UVR8 homodimers results in monomerization, followed by interaction with the key signaling protein COP1. We have discovered a UV-B hypersensitive UVR8 photoreceptor that confers strongly enhanced UV-B tolerance and generated a UVR8 variant based on the underlying mutation that shows extremely enhanced constitutive signaling activity. Our findings provide key mechanistic insight into how plants respond and acclimate to UV-B radiation. The plant ultraviolet-B (UV-B) photoreceptor UVR8 plays an important role in UV-B acclimation and survival. UV-B absorption by homodimeric UVR8 induces its monomerization and interaction with the E3 ubiquitin ligase COP1, leading ultimately to gene expression changes. UVR8 is inactivated through redimerization, facilitated by RUP1 and RUP2. Here, we describe a semidominant, hyperactive allele, namely uvr8-17D, that harbors a glycine-101 to serine mutation. UVR8G101S overexpression led to weak constitutive photomorphogenesis and extreme UV-B responsiveness. UVR8G101S was observed to be predominantly monomeric in vivo and, once activated by UV-B, was not efficiently inactivated. Analysis of a UVR8 crystal structure containing the G101S mutation revealed the distortion of a loop region normally involved in stabilization of the UVR8 homodimer. Plants expressing a UVR8 variant combining G101S with the previously described W285A mutation exhibited robust constitutive photomorphogenesis. This work provides further insight into UVR8 activation and inactivation mechanisms and describes a genetic tool for the manipulation of photomorphogenic responses.
Collapse
|
20
|
Dong H, Liu X, Zhang C, Guo H, Liu Y, Chen H, Yin R, Lin L. Expression of Tomato UVR8 in Arabidopsis reveals conserved photoreceptor function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110766. [PMID: 33487351 DOI: 10.1016/j.plantsci.2020.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) is a photoreceptor that regulates UV-B photomorphogenesis in plants. UV-B photon perception promotes UVR8 homodimer dissociation into monomer, which is reverted to homodimer post UV-B, forming a complete photocycle. UVR8 monomer interacts with CONSTITUTIVELY PHOTOMORPHOGENEIC 1 (COP1) to initiate UV-B signaling. The function and mechanism of Arabidopsis UVR8 (AtUVR8) are extensively investigated, however, little is known about UVR8 and its signaling mechanisms in other plant species. Tomato is a widely used model plant for horticulture research. In this report we tested whether an ortholog of AtUVR8 in Tomato (SIUVR8) can complement Arabidopsis uvr8 mutant and whether the above-mentioned key signaling mechanisms of UVR8 are conserved. Heterologous expressed SIUVR8 in an Arabidopsis uvr8 null mutant rescued the uvr8 mutant in the tested UV-B responses including hypocotyl elongation, UV-B target gene expression and anthocyanin accumulation, demonstrating that the SIUVR8 is a putative UV-B photoreceptor. Moreover, in response to UV-B, SIUVR8 forms a protein complex with Arabidopsis COP1 in plants, suggesting conserved signaling mechanism. SIUVR8 exhibits similar photocycle as AtUVR8 in plants, which highlights conserved photoreceptor activation and inactivation mechanisms.
Collapse
Affiliation(s)
- Huaxi Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Xiaorui Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Chunli Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Huicong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
21
|
Jiang J, Liu J, Sanders D, Qian S, Ren W, Song J, Liu F, Zhong X. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. NATURE PLANTS 2021; 7:184-197. [PMID: 33495557 PMCID: PMC7889724 DOI: 10.1038/s41477-020-00843-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/17/2020] [Indexed: 05/03/2023]
Abstract
DNA methylation is an important epigenetic gene regulatory mechanism conserved in eukaryotes. Emerging evidence shows DNA methylation alterations in response to environmental cues. However, the mechanism of how cells sense these signals and reprogramme the methylation landscape is poorly understood. Here, we uncovered a connection between ultraviolet B (UVB) signalling and DNA methylation involving UVB photoreceptor (UV RESISTANCE LOCUS 8 (UVR8)) and a de novo DNA methyltransferase (DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2)) in Arabidopsis. We demonstrated that UVB acts through UVR8 to inhibit DRM2-mediated DNA methylation and transcriptional de-repression. Interestingly, DNA transposons with high DNA methylation are more sensitive to UVB irradiation. Mechanistically, UVR8 interacts with and negatively regulates DRM2 by preventing its chromatin association and inhibiting the methyltransferase activity. Collectively, this study identifies UVB as a potent inhibitor of DNA methylation and provides mechanistic insights into how signalling transduction cascades intertwine with chromatin to guide genome functions.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jie Liu
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Dean Sanders
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuiming Qian
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China.
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Li X, Liu Z, Ren H, Kundu M, Wang L, Gao J, Zhong D. Dynamics and mechanism of light harvesting in UV photoreceptor UVR8. Chem Sci 2020; 11:12553-12569. [PMID: 34094455 PMCID: PMC8163212 DOI: 10.1039/d0sc04909c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photosynthetic pigments form light-harvesting networks to enable nearly perfect quantum efficiency in photosynthesis via excitation energy transfer. However, similar light-harvesting mechanisms have not been reported in light sensing processes in other classes of photoreceptors during light-mediated signaling. Here, based on our earlier report, we mapped out a striking energy-transfer network composed of 26 structural tryptophan residues in the plant UV-B photoreceptor UVR8. The spectra of the tryptophan chromophores are tuned by the protein environments, funneling all excitation energy to a cluster of four tryptophan residues, a pyramid center, where the excitation-induced monomerization is initiated for cell signaling. With extensive site-directed mutagenesis, various time-resolved fluorescence techniques, and combined QM/MM simulations, we determined the energy-transfer rates for all donor–acceptor pairs, revealing the time scales from tens of picoseconds to nanoseconds. The overall light harvesting quantum efficiency by the pyramid center is significantly increased to 73%, compared to a direct excitation probability of 35%. UVR8 is the only photoreceptor discovered so far using a natural amino-acid tryptophan without utilizing extrinsic chromophores to form a network to carry out both light harvesting and light perception for biological functions. The light-harvesting network from distal and peripheral to central tryptophans with transfer efficiencies determined from measured energy-transfer rates.![]()
Collapse
Affiliation(s)
- Xiankun Li
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University Columbus OH 43210 USA .,Center for Ultrafast Science and Technology, School of Physics and Astronomy, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zheyun Liu
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Haisheng Ren
- Department of Chemistry and Supercomputing Institute, University of Minnesota Minneapolis MN 55455 USA .,College of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Mainak Kundu
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota Minneapolis MN 55455 USA .,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University Columbus OH 43210 USA .,Center for Ultrafast Science and Technology, School of Physics and Astronomy, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
23
|
Lin L, Dong H, Yang G, Yin R. The C-terminal 17 amino acids of the photoreceptor UVR8 is involved in the fine-tuning of UV-B signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1327-1340. [PMID: 32492260 DOI: 10.1111/jipb.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/01/2020] [Indexed: 05/26/2023]
Abstract
Plant UV-B responses are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). In response to UV-B irradiation, UVR8 homodimers dissociate into monomers that bind to the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). The interaction of the C27 domain in the C-terminal tail of UVR8 with the WD40 domain of COP1 is critical for UV-B signaling. However, the function of the last 17 amino acids (C17) of the C-terminus of UVR8, which are adjacent to C27, is unknown, although they are largely conserved in land plants. In this study, we established that Arabidopsis thaliana UVR8 C17 binds to full-length UVR8, but not to COP1, and reduces COP1 binding to the remaining portion of UVR8, including C27. We hypothesized that overexpression of C17 in a wild-type background would have a dominant negative effect on UVR8 activity; however, C17 overexpression caused strong silencing of endogenous UVR8, precluding a detailed analysis. We therefore generated YFP-UVR8N423 transgenic lines, in which C17 was deleted, to examine C17 function indirectly. YFP-UVR8N423 was more active than YFP-UVR8, suggesting that C17 inhibits UV-B signaling by attenuating binding between C27 and COP1. Our study reveals an inhibitory role for UVR8 C17 in fine-tuning UVR8-COP1 interactions during UV-B signaling.
Collapse
Affiliation(s)
- Li Lin
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huaxi Dong
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqian Yang
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruohe Yin
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Li X, Ren H, Kundu M, Liu Z, Zhong FW, Wang L, Gao J, Zhong D. A leap in quantum efficiency through light harvesting in photoreceptor UVR8. Nat Commun 2020; 11:4316. [PMID: 32859932 PMCID: PMC7455749 DOI: 10.1038/s41467-020-17838-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans’ functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception. Photoreceptor UVR8 in plants senses environmental UV levels through 26 structural tryptophan residues, but the role of 18 of them was unknown. The authors show, by experiments and computations, how these form a light-harvesting network that funnels the excitation to the pyramid centers enhancing the light-perception efficiency.
Collapse
Affiliation(s)
- Xiankun Li
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.,Center for Ultrafast Science and Technology, School of Physics and Astronomy, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haisheng Ren
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mainak Kundu
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Zheyun Liu
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Frank W Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.,Cell and Molecular Biology Program, University of Chicago, Chicago, IL, 60637, USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA. .,Center for Ultrafast Science and Technology, School of Physics and Astronomy, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Richter AS, Tohge T, Fernie AR, Grimm B. The genomes uncoupled-dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190403. [PMID: 32362259 DOI: 10.1098/rstb.2019.0403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, it has become evident that plants perceive, integrate and communicate abiotic stress signals through chloroplasts. During the process of acclimation plastid-derived, retrograde signals control nuclear gene expression in response to developmental and environmental cues leading to complex genetic and metabolic reprogramming to preserve cellular homeostasis under challenging environmental conditions. Upon stress-induced dysfunction of chloroplasts, GENOMES UNCOUPLED (GUN) proteins participate in the repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES (PHANGs). Here, we show that the retrograde signal emitted by, or communicated through, GUN-proteins is also essential to induce the accumulation of photoprotective anthocyanin pigments when chloroplast development is attenuated. Comparative whole transcriptome sequencing and genetic analysis reveal GUN1 and GUN5-dependent signals as a source for the regulation of genes involved in anthocyanin biosynthesis. The signal transduction cascade includes well-known transcription factors for the control of anthocyanin biosynthesis, which are deregulated in gun mutants. We propose that regulation of PHANGs and genes contributing to anthocyanin biosynthesis are two, albeit oppositely, co-regulated processes during plastid biogenesis. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Andreas S Richter
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.,Physiology of Plant Cell Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| |
Collapse
|
26
|
Defoort J, Van de Peer Y, Carretero-Paulet L. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication. Genome Biol Evol 2020; 11:2292-2305. [PMID: 31364708 PMCID: PMC6735927 DOI: 10.1093/gbe/evz156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Gene duplicates, generated through either whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behavior that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum, and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time, and mechanism of origin.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Lorenzo Carretero-Paulet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| |
Collapse
|
27
|
Tavridou E, Pireyre M, Ulm R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:507-517. [PMID: 31571300 PMCID: PMC7027837 DOI: 10.1111/tpj.14556] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/03/2023]
Abstract
Inhibition of hypocotyl growth is a well-established UV-B-induced photomorphogenic response that is mediated by the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, the molecular mechanism by which UVR8 signaling triggers inhibition of hypocotyl growth is poorly understood. The bZIP protein ELONGATED HYPOCOTYL 5 (HY5) functions as the main positive regulatory transcription factor in the UVR8 signaling pathway, with HY5-HOMOLOG (HYH) playing a minor role. However, here we demonstrate that hy5 hyh double mutants maintain significant UVR8-dependent hypocotyl growth inhibition. We identify UVR8-dependent inhibition of the activities of bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 as part of the UVR8 signaling pathway, which results in inhibition of hypocotyl growth. The UVR8-mediated repression of several hypocotyl elongation-related genes is independent of HY5 and HYH but largely associated with UVR8-dependent degradation of PIF4 and PIF5, a process that consequently diminishes PIF4/5 target promoter occupancy. Taken together, our data indicate that UVR8-mediated inhibition of hypocotyl growth involves degradation of PIF4 and PIF5. These findings contribute to our mechanistic understanding of UVR8-induced photomorphogenesis and further support the function of PIFs as integrators of different photoreceptor signaling pathways.
Collapse
Affiliation(s)
- Eleni Tavridou
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Marie Pireyre
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Roman Ulm
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH-1211Geneva 4Switzerland
| |
Collapse
|
28
|
Liang D, Zhu T, Deng Q, Lin L, Tang Y, Wang J, Wang X, Luo X, Zhang H, Lv X, Xia H. PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111779. [PMID: 31927487 DOI: 10.1016/j.jphotobiol.2020.111779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/04/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Light is a key environmental factors affecting anthocyanin accumulation in plants. Ubiquitin E3 ligase COP1 has been proved to be a negative regulator involved in light-regulated plant development process, whereas the function and expression specificity of COP1 in anthocyanin biosynthesis in sweet cherry remains unclear. In the present study, we identified a COP1 in sweet cherry, named PacCOP1, it exhibited apparent different expression patterns in red-colored 'Hongdeng' and bi-colored 'Satonishiki', with increasing trend largely in 'Satonishiki', but decreasing trend in 'Hongdeng' after veraison, which was contrary to their variation tendency of anthocyanin content. While the expression abundance of anthocyanin biosynthesis related genes were largely increased after veraison, in accordance with anthocyanin content. Correlation analysis proved that the expression of PacCOP1 was negative correlated with the major genes on anthocyanin accumulation in 'Hongdeng' and 'Satonishiki' fruit, in especial PacDFR, PacANS, PacMYBA and PacbHLH33. Furthermore, over-expression of PacCOP1 in Arabidopsis displayed increased COP1 transcript level with negligible pigmentation and corresponding lower expression level of AtPAP1, AtDFR, AtLDOX, and AtUFGT. These results revealed the negative regular role of PacCOP1 in anthocyanin biosynthesis by repressing the PacMYBA transcription level, followed by down-regulating the structural genes expression abundance, eventually leading to attenuated anthocyanin accumulation in fruits.
Collapse
Affiliation(s)
- Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Riaz B, Chen H, Wang J, Du L, Wang K, Ye X. Overexpression of Maize ZmC1 and ZmR Transcription Factors in Wheat Regulates Anthocyanin Biosynthesis in a Tissue-Specific Manner. Int J Mol Sci 2019; 20:E5806. [PMID: 31752300 PMCID: PMC6887777 DOI: 10.3390/ijms20225806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| |
Collapse
|
30
|
Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J 2019; 38:e102140. [PMID: 31304983 PMCID: PMC6745501 DOI: 10.15252/embj.2019102140] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Plants sense different parts of the sun's light spectrum using distinct photoreceptors, which signal through the E3 ubiquitin ligase COP1. Here, we analyze why many COP1‐interacting transcription factors and photoreceptors harbor sequence‐divergent Val‐Pro (VP) motifs that bind COP1 with different binding affinities. Crystal structures of the VP motifs of the UV‐B photoreceptor UVR8 and the transcription factor HY5 in complex with COP1, quantitative binding assays, and reverse genetic experiments together suggest that UVR8 and HY5 compete for COP1. Photoactivation of UVR8 leads to high‐affinity cooperative binding of its VP motif and its photosensing core to COP1, preventing COP1 binding to its substrate HY5. UVR8–VP motif chimeras suggest that UV‐B signaling specificity resides in the UVR8 photoreceptor core. Different COP1–VP peptide motif complexes highlight sequence fingerprints required for COP1 targeting. The blue‐light photoreceptors CRY1 and CRY2 also compete with transcription factors for COP1 binding using similar VP motifs. Thus, our work reveals that different photoreceptors and their signaling components compete for COP1 via a conserved mechanism to control different light signaling cascades.
Collapse
Affiliation(s)
- Kelvin Lau
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Richard Chappuis
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Michael Hothorn
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Kondou Y, Miyagi Y, Morito T, Fujihira K, Miyauchi W, Moriyama A, Terasawa T, Ishida S, Iwabuchi K, Kubo H, Nishihama R, Ishizaki K, Kohchi T. Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. PLANTA 2019; 249:1349-1364. [PMID: 30840176 DOI: 10.1007/s00425-019-03090-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 05/08/2023]
Abstract
The physiological importance of MpUVR8 in UV-B resistance and translocation in a UV-B-dependent manner from the cytosol into the nucleus is characterized in Marchantia polymorpha. UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UV-B) light receptor functioning for UV-B sensing and tolerance in Arabidopsis thaliana and other species. It is unclear whether UVR8 physiologically functions in UV-B-induced defense responses in Marchantia polymorpha, which belongs to the earliest diverging group of embryophyte lineages. Here, we demonstrate that UVR8 has a physiological function in UV-B tolerance and that there is a UVR8-dependent pathway involved. In addition, a UVR8-independent pathway is revealed. We examine the tissue-specific expression pattern of M. polymorpha UVR8 (MpUVR8), showing that it is highly expressed in the apical notch in thalli and gametangiophores, as well as in antheridial and archegonial heads. Furthermore, Mpuvr8KO plant transformants, in which the MpUVR8 locus was disrupted, were produced and analyzed to understand the physiological and molecular function of MpUVR8. Analysis using these plants indicates the important roles of MpUVR8 and MpUVR8-regulated genes, and of MpUVR8-independent pathways in UV-B tolerance. Subcellular localization of Citrine-fused MpUVR8 in M. polymorpha cells was also investigated. It was found to translocate from the cytosol into the nucleus in response to UV-B irradiation. Our findings indicate strong conservation of the physiological function of UVR8 and the molecular mechanisms for UVR8-dependent signal transduction through regulation of gene expression in embryophytes.
Collapse
Affiliation(s)
- Youichi Kondou
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan.
| | - Yuta Miyagi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Morito
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Kenta Fujihira
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Wataru Miyauchi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Asami Moriyama
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takuya Terasawa
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kosei Iwabuchi
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan
| | - Hiroyoshi Kubo
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
32
|
Höll J, Lindner S, Walter H, Joshi D, Poschet G, Pfleger S, Ziegler T, Hell R, Bogs J, Rausch T. Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. PLANT, CELL & ENVIRONMENT 2019; 42:801-814. [PMID: 30049021 DOI: 10.1111/pce.13409] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 05/20/2023]
Abstract
Upon continuous stress exposure, plants display attenuated metabolic stress responses due to regulatory feedback loops. Here, we have tested the hypothesis that pulsed stress exposure with intervening recovery periods should affect these feedback loops, thereby causing increased accumulation of stress-induced metabolites. The response of Arabidopsis plantlets to continuous UV-B exposure (Cuv ) was compared with that of pulsed UV-B exposure (Puv ). The differential responses to Puv versus Cuv were monitored at the level of gene expression and metabolite accumulation, using wild type (WT) and different mutant lines. In comparison with Cuv , Puv increased sinapyl and flavonol (S + F) content, whereas adaptive growth attenuation was reduced. Furthermore, in a myb4 mutant (AtMYB4, repressor-type R2R3-MYB transcription factor), the S + F content was increased only for Cuv , but not beyond the level for Puv observed in WT. These observations and the ability of AtMYB4 to repress AtMYB12/AtMYB111-mediated activation of target gene promoters (pCHS and pFLS) indicate that the increase of S + F content after Puv observed in WT plants results from reduced feedback inhibition by AtMYB4. The results support the notion that stress-induced metabolic changes not necessarily cause a growth penalty. Furthermore, the observed Puv -induced increase in flavonol accumulation may stimulate reevaluation of commercial plant production practices.
Collapse
Affiliation(s)
- Janine Höll
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sonja Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hannah Walter
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Drishti Joshi
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Sina Pfleger
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt, Germany
- Fachhochschule Bingen, Bingen am Rhein, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Liao X, Zhang B, Blatt MR, Jenkins GI. A FRET method for investigating dimer/monomer status and conformation of the UVR8 photoreceptor. Photochem Photobiol Sci 2019; 18:367-374. [PMID: 30534791 PMCID: PMC6374739 DOI: 10.1039/c8pp00489g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022]
Abstract
The photoreceptor UVR8 has a pivotal role in mediating plant responses to UV-B wavelengths. Dimeric UVR8 dissociates into monomers following UV-B photoreception, and there is evidence that this process is accompanied by conformational changes that may facilitate interaction of UVR8 with other proteins to initiate signaling. Hence monitoring UVR8 dimer/monomer status and conformation is key to understanding UVR8 action. Here we have used Fluorescence Resonance Energy Transfer (FRET) to study these processes in both wild-type and mutant UVR8 proteins in vivo. UVR8 was fused to GFP and mCherry at the C- and N-termini, respectively and both the FRET efficiency and loss of GFP fluorescence after photobleaching were measured. In addition, measurements were made for UVR8 fused to either GFP or mCherry to eliminate intra-molecular FRET signals. The results indicate that dissociation of UVR8 dimer to monomer principally accounts for the loss of FRET signal for wild-type UVR8 and there is little evidence of a contribution from conformational change in vivo. Examination of plants expressing UVR8W285F and UVR8D96N,D107N are consistent with these mutant proteins being constitutively dimeric and monomeric, respectively. The methods employed here will be valuable for monitoring UVR8 dimer/monomer status in vivo in relation to signaling, and will facilitate characterization of dimer/monomer status and conformation of further UVR8 mutants.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Ben Zhang
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Michael R. Blatt
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Gareth I. Jenkins
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| |
Collapse
|
34
|
Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat Ecol Evol 2019; 3:274-285. [PMID: 30643246 DOI: 10.1038/s41559-018-0754-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
The environment imposes critical selective forces on all living organisms, and the sessile nature of plants makes them particularly useful for investigating the relationship between genetic variation and environmental adaptation. In the model plant Arabidopsis thaliana, extensive information on phenotypic and genotypic variation is available, but comparable information on environmental variation within the native range of the species is lacking. Here, we compile 204 geoclimatic variables to describe the local environments of Arabidopsis accessions with known collection sites encompassing a wide geo-environmental range, and fully sequenced genomes from the 1001 Genomes Project. We identify candidate adaptive genetic variation associated with these environmental variables, and validate this approach through comparison with previous experimental studies, and by targeted confirmation of a role of the heterotrimeric G-protein γ subunit, AGG3, in cold tolerance, as newly predicted from our environmental genome wide association study (GWAS). To facilitate identification of adaptive variation, we created Arabidopsis CLIMtools : interactive web-based databases of the environment × genome associations and correlations between the local environments and 131 phenotypes compiled from previous experimental GWASs. Our study presents an extensive analysis of the local environments, landscape genomics and phenotypic variation of Arabidopsis, and illustrates how 'in silico GWAS' approaches can inform and complement experimental phenomics studies.
Collapse
|
35
|
Native mass spectrometry reveals the conformational diversity of the UVR8 photoreceptor. Proc Natl Acad Sci U S A 2019; 116:1116-1125. [PMID: 30610174 PMCID: PMC6347689 DOI: 10.1073/pnas.1813254116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UVR8 is a plant photoreceptor protein that regulates photomorphogenic and protective responses to UV light. The inactive, homodimeric state absorbs UV-B light, resulting in dissociation into monomers, which are considered to be the active state and comprise a β-propeller core domain and intrinsically disordered N- and C-terminal tails. The C terminus is required for functional binding to signaling partner COP1. To date, however, structural studies have only been conducted with the core domain where the terminal tails have been truncated. Here, we report structural investigations of full-length UVR8 using native ion mobility mass spectrometry adapted for photoactivation. We show that, while truncated UVR8 photoconverts from a single conformation of dimers to a single monomer conformation, the full-length protein exists in numerous conformational families. The full-length dimer adopts both a compact state and an extended state where the C terminus is primed for activation. In the monomer the extended C terminus destabilizes the core domain to produce highly extended yet stable conformations, which we propose are the fully active states that bind COP1. Our results reveal the conformational diversity of full-length UVR8. We also demonstrate the potential power of native mass spectrometry to probe functionally important structural dynamics of photoreceptor proteins throughout nature.
Collapse
|
36
|
Tossi VE, Regalado JJ, Iannicelli J, Laino LE, Burrieza HP, Escandón AS, Pitta-Álvarez SI. Beyond Arabidopsis: Differential UV-B Response Mediated by UVR8 in Diverse Species. FRONTIERS IN PLANT SCIENCE 2019; 10:780. [PMID: 31275337 PMCID: PMC6591365 DOI: 10.3389/fpls.2019.00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/28/2019] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B radiation (UV-B, 280-315 nm) is an important environmental signal that regulates growth and development in plants. Two dose-dependent UV-B response pathways were described in plants: a specific one, mediated by UVR8 (the specific UV-B receptor) and an unspecific one, activated by the oxidative damage produced by radiation. The constitutively expressed receptor appears inactive as a dimer, with the two monomers dissociating upon UV-B irradiation. The monomer then interacts with COP1, an ubiquitin ligase, hindering its ability to poly-ubiquitinate transcriptional factor HY5, thus averting its degradation and activating the photomorphogenic response. HY5 induces the synthesis of proteins RUP1 and RUP2, which interact with UVR8, releasing COP1, and inducing the re-dimerization of UVR8. This mechanism has been thoroughly characterized in Arabidopsis, where studies have demonstrated that the UVR8 receptor is key in UV-B response. Although Arabidopsis importance as a model plant many mechanisms described in this specie differ in other plants. In this paper, we review the latest information regarding UV-B response mediated by UVR8 in different species, focusing on the differences reported compared to Arabidopsis. For instance, UVR8 is not only induced by UV-B but also by other agents that are expressed differentially in diverse tissues. Also, in some of the species analyzed, proteins with low homology to RUP1 and RUP2 were detected. We also discuss how UVR8 is involved in other developmental and stress processes unrelated to UV-B. We conclude that the receptor is highly versatile, showing differences among species.
Collapse
Affiliation(s)
- Vanesa Eleonora Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Leandro Ezequiel Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernan Pablo Burrieza
- Laboratorio de biología del desarrollo de las plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez ;
| |
Collapse
|
37
|
Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC PLANT BIOLOGY 2018; 18:233. [PMID: 30314466 PMCID: PMC6186127 DOI: 10.1186/s12870-018-1440-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/24/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea is the most popular nonalcoholic beverage worldwide for its pleasant characteristics and healthful properties. Catechins, theanine and caffeine are the major natural products in tea buds and leaves that determine tea qualities such as infusion colors, tastes and fragrances, as well as their health benefits. Shading is a traditional and effective practice to modify natural product accumulation and to enhance the tea quality in tea plantation. However, the mechanism underlying the shading effects is not fully understood. This study aims to explore the regulation of flavonoid biosynthesis in Camellia sinensis under shading by using both metabolomic and transcriptional analyses. RESULTS While shading enhanced chlorophyll accumulation, major catechins, including C, EC, GC and EGC, decreased significantly in tea buds throughout the whole shading period. The reduction of catechins and flavonols were consistent with the simultaneous down-regulation of biosynthetic genes and TFs associated with flavonoid biosynthesis. Of 16 genes involved in the flavonoid biosynthetic pathway, F3'H and FLS significantly decreased throughout shading while the others (PAL, CHSs, DFR, ANS, ANR and LAR, etc.) temporally decreased in early or late shading stages. Gene co-expression cluster analysis suggested that a number of photoreceptors and potential genes involved in UV-B signal transductions (UVR8_L, HY5, COP1 and RUP1/2) showed decreasing expression patterns consistent with structural genes (F3'H, FLS, ANS, ANR, LAR, DFR and CHSs) and potential TFs (MYB4, MYB12, MYB14 and MYB111) involved in flavonoid biosynthesis, when compared with genes in the UV-A/blue and red/far-red light signal transductions. The KEGG enrichment and matrix correlation analyses also attributed the regulation of catechin biosynthesis to the UVR8-mediated signal transduction pathway. Further UV-B treatment in the controlled environment confirmed UV-B induction on flavonols and EGCG accumulation in tea leaves. CONCLUSIONS We proposed that catechin biosynthesis in C. sinensis leaves is predominantly regulated by UV through the UVR8-mediated signal transduction pathway to MYB12/MYB4 downstream effectors, to modulate flavonoid accumulation. Our study provides new insights into our understanding of regulatory mechanisms for shading-enhanced tea quality.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647 New Zealand
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
38
|
Podolec R, Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:18-25. [PMID: 29775763 DOI: 10.1016/j.pbi.2018.04.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 05/19/2023]
Abstract
Plants have evolved specific photoreceptors that capture informational cues from sunlight. The phytochrome, cryptochrome, and UVR8 photoreceptors perceive red/far-red, blue/UV-A, and UV-B light, respectively, and control overlapping photomorphogenic responses important for plant growth and development. A major repressor of such photomorphogenic responses is the E3 ubiquitin ligase formed by CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) proteins, which acts by regulating the stability of photomorphogenesis-promoting transcription factors. The direct interaction of light-activated photoreceptors with the COP1/SPA complex represses its activity via nuclear exclusion of COP1, disruption of the COP1-SPA interaction, and/or SPA protein degradation. This process enables plants to integrate different light signals at the level of the COP1/SPA complex to enact appropriate photomorphogenic responses according to the light environment.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
39
|
Moriconi V, Binkert M, Costigliolo C, Sellaro R, Ulm R, Casal JJ. Perception of Sunflecks by the UV-B Photoreceptor UV RESISTANCE LOCUS8. PLANT PHYSIOLOGY 2018; 177:75-81. [PMID: 29530938 PMCID: PMC5933136 DOI: 10.1104/pp.18.00048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Sunflecks, transient patches of light that penetrate through gaps in the canopy and transiently interrupt shade, are eco-physiologically and agriculturally important sources of energy for carbon gain, but our molecular understanding of how plant organs perceive and respond to sunflecks through photoreceptors remains limited. The UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) is a recent addition to the list of plant photosensory receptors, and we have made considerable advances in our understanding of the physiology and molecular mechanisms of action of UVR8 and its signaling pathway. However, the function of UVR8 in the natural environment is poorly understood. Here, we show that the UVR8 dimer/monomer ratio responds quantitatively and reversibly to the intensity of sunflecks that interrupt shade in the field. Sunflecks reduced hypocotyl growth and increased CHALCONE SYNTHASE (CHS) and ELONGATED HYPOCOTYL5 gene expression and CHS protein abundance in wild-type Arabidopsis (Arabidopsis thaliana) seedlings, but the uvr8 mutant was impaired in these responses. UVR8 was also required for normal nuclear dynamics of CONSTITUTIVELY PHOTOMORPHOGENIC1. We propose that UVR8 plays an important role in the plant perception of and response to sunflecks.
Collapse
Affiliation(s)
- Victoria Moriconi
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, 1417 Buenos Aires, Argentina
| | - Melanie Binkert
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cecilia Costigliolo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1417 Buenos Aires, Argentina
| | - Romina Sellaro
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, 1417 Buenos Aires, Argentina
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jorge J Casal
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1417 Buenos Aires, Argentina
| |
Collapse
|
40
|
Jenkins GI. Photomorphogenic responses to ultraviolet-B light. PLANT, CELL & ENVIRONMENT 2017; 40:2544-2557. [PMID: 28183154 DOI: 10.1111/pce.12934] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/18/2023]
Abstract
Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
41
|
Bernula P, Crocco CD, Arongaus AB, Ulm R, Nagy F, Viczián A. Expression of the UVR8 photoreceptor in different tissues reveals tissue-autonomous features of UV-B signalling. PLANT, CELL & ENVIRONMENT 2017; 40:1104-1114. [PMID: 28058744 DOI: 10.1111/pce.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 05/04/2023]
Abstract
The Arabidopsis UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) orchestrates the expression of hundreds of genes, many of which can be associated with UV-B tolerance. UV-B does not efficiently penetrate into tissues, yet UV-B regulates complex growth and developmental responses. To unravel to what extent and how UVR8 located in different tissues contributes to UV-B-induced responses, we expressed UVR8 fused to the YELLOW FLUORESCENT PROTEIN (YFP) under the control of tissue-specific promoters in a uvr8 null mutant background. We show that (1) UVR8 localized in the epidermis plays a major role in regulating cotyledon expansion, and (2) expression of UVR8 in the mesophyll is important to protect adult plants from the damaging effects of UV-B. We found that UV-B induces transcription of selected genes, including the key transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5), only in tissues that express UVR8. Thus, we suggest that tissue-autonomous and simultaneous UVR8 signalling in different tissues mediates, at least partly, developmental and defence responses to UV-B.
Collapse
Affiliation(s)
- Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Carlos Daniel Crocco
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Adriana Beatriz Arongaus
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Sciences III, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
42
|
Yin R, Ulm R. How plants cope with UV-B: from perception to response. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:42-48. [PMID: 28411583 DOI: 10.1016/j.pbi.2017.03.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 05/19/2023]
Abstract
Ultraviolet-B radiation (UV-B) is an intrinsic part of the solar radiation that reaches the Earth's surface and affects the biosphere. Plants have evolved a specific UV-B signaling pathway mediated by the UVR8 photoreceptor that regulates growth, development, and acclimation. Major recent advances have contributed to our understanding of the UVR8 photocycle, UV-B-responsive protein-protein interactions, regulation of UVR8 subcellular localization, and UVR8-regulated physiological responses. Here, we review the latest progress in our understanding of UVR8 signaling and UV-B responses, which includes studies in the unicellular alga Chlamydomonas reinhardtii and the flowering plant Arabidopsis.
Collapse
Affiliation(s)
- Ruohe Yin
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
43
|
Kim S, Hwang G, Lee S, Zhu JY, Paik I, Nguyen TT, Kim J, Oh E. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. FRONTIERS IN PLANT SCIENCE 2017; 8:1787. [PMID: 29104579 PMCID: PMC5655971 DOI: 10.3389/fpls.2017.01787] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 05/03/2023]
Abstract
Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module.
Collapse
Affiliation(s)
- Sara Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Geonhee Hwang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Seulgi Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Inyup Paik
- Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, United States
| | - Thom Thi Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Eunkyoo Oh, ;
| |
Collapse
|
44
|
Hu W, Lagarias JC. A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B. PLANT PHYSIOLOGY 2017; 173:366-375. [PMID: 27881727 PMCID: PMC5210734 DOI: 10.1104/pp.16.01345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 06/01/2023]
Abstract
Selectable markers derived from plant genes circumvent the potential risk of antibiotic/herbicide-resistance gene transfer into neighboring plant species, endophytic bacteria, and mycorrhizal fungi. Toward this goal, we have engineered and validated signaling-active alleles of phytochrome B (eYHB) as plant-derived selection marker genes in the model plant Arabidopsis (Arabidopsis thaliana). By probing the relationship of construct size and induction conditions to optimal phenotypic selection, we show that eYHB-based alleles are robust substitutes for antibiotic/herbicide-dependent marker genes as well as surprisingly sensitive reporters of off-target transgene expression.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular Biology, University of California, Davis, California 95776
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95776
| |
Collapse
|
45
|
Qian C, Mao W, Liu Y, Ren H, Lau OS, Ouyang X, Huang X. Dual-Source Nuclear Monomers of UV-B Light Receptor Direct Photomorphogenesis in Arabidopsis. MOLECULAR PLANT 2016; 9:1671-1674. [PMID: 27756574 DOI: 10.1016/j.molp.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 05/04/2023]
Affiliation(s)
- Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Weiwei Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
46
|
Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2120-2133. [PMID: 27107393 PMCID: PMC5095807 DOI: 10.1111/pbi.12568] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/10/2016] [Indexed: 05/04/2023]
Abstract
Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.
Collapse
Affiliation(s)
- Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Hong Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jiashen Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China.
| |
Collapse
|
47
|
Bo K, Wang H, Pan Y, Behera TK, Pandey S, Wen C, Wang Y, Simon PW, Li Y, Chen J, Weng Y. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation. PLANT PHYSIOLOGY 2016; 172:1273-1292. [PMID: 27559036 PMCID: PMC5047076 DOI: 10.1104/pp.16.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/22/2016] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1 Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation.
Collapse
Affiliation(s)
- Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Hui Wang
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Tusar K Behera
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Sudhakar Pandey
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Changlong Wen
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Philipp W Simon
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yuhong Li
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Jinfeng Chen
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, Wisconsin 53706 (K.B., Y.P., Y.Wa., P.W.S., Y.We.); Horticulture College, Nanjing Agricultural University, Nanjing 210095, China (K.B., J.C.);Horticulture College, Northwest A&F University, Yangling 712100, China (H.W., Y.P., Y.L.);Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi 10012, India (T.K.B.);Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221305, India (S.P.);Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China (C.W.); andVegetable Crops Research Unit, United States Department of Agriculture Agricultural Research Service, Madison, Wisconsin 53706 (P.W.S., Y.We.)
| |
Collapse
|
48
|
Heilmann M, Velanis CN, Cloix C, Smith BO, Christie JM, Jenkins GI. Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:71-81. [PMID: 27385642 PMCID: PMC5091643 DOI: 10.1111/tpj.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 05/05/2023]
Abstract
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt-bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt-bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV-B responses in vivo with a similar dose-response relationship to wild-type. The UV-B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV-B photoreception, initiating signal transduction and responses in plants.
Collapse
Affiliation(s)
- Monika Heilmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Christos N Velanis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Catherine Cloix
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
49
|
Menon C, Sheerin DJ, Hiltbrunner A. SPA proteins: SPAnning the gap between visible light and gene expression. PLANTA 2016; 244:297-312. [PMID: 27100111 DOI: 10.1007/s00425-016-2509-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/26/2016] [Indexed: 05/23/2023]
Abstract
In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution. The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.
Collapse
Affiliation(s)
- Chiara Menon
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - David J Sheerin
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
50
|
COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci U S A 2016; 113:E4415-22. [PMID: 27407149 DOI: 10.1073/pnas.1607074113] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling.
Collapse
|