1
|
Putker K, Schneider AF, Van De Vijver D, Hildyard J, Aartsma-Rus A, van Putten M. Identification of suitable qPCR reference genes for the normalization of gene expression in the BL10-mdx and D2-mdx mouse models of Duchenne muscular dystrophy. PLoS One 2025; 20:e0318944. [PMID: 39999085 PMCID: PMC11856590 DOI: 10.1371/journal.pone.0318944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder that is caused by mutations in the DMD gene, leading to progressive muscle wasting and weakness. There is currently no cure for DMD. The BL10-mdx mouse is the most commonly used model in preclinical DMD studies, but it exhibits a mild disease phenotype compared to DMD patients, limiting research translatability. The newer D2-mdx mouse has a more severe phenotype at an early age and may better recapitulate human disease. To compare these mouse models on a transcriptional level with quantitative RT-PCR, stable and reliable reference genes are indispensable. We aimed to evaluate the stability and reliability of a panel of nine candidate reference genes (Actb, Ap3d1, Gapdh, Hmbs, Htatsf1, Pak1ip1, Rpl13a, Sdha and Zfp91) in the gastrocnemius, diaphragm and heart of mice from both strains and their corresponding wild types aged 4 to 52 weeks. Data was analyzed using geNorm, BestKeeper, deltaCt and NormFinder. We found that Htatsf1, Pak1ip1 and Zfp91 are suitable reference genes for normalization of gene expression in dystrophic and healthy mice, regardless of the tissue type or age. In our hands, Actb, Gapdh and Rpl13a were not suitable as reference genes, exhibiting tissue-, age-, or disease specific changes in expression. This study highlights the importance of the selection of suitable reference genes, as their stability can differ between specific experimental setups.
Collapse
Affiliation(s)
- Kayleigh Putker
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Fleur Schneider
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Davy Van De Vijver
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - John Hildyard
- Department of Clinical Sciences and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, United Kingdom
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Williams JK, Ngo JM, Murugupandiyan A, Croall DE, Hartzell HC, Schekman R. Calpains Orchestrate Secretion of Annexin-containing Microvesicles during Membrane Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611512. [PMID: 39282443 PMCID: PMC11398502 DOI: 10.1101/2024.09.05.611512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Microvesicles (MVs) are membrane-enclosed, plasma membrane-derived particles released by cells from all branches of life. MVs have utility as disease biomarkers and may participate in intercellular communication; however, physiological processes that induce their secretion are not known. Here, we isolate and characterize annexin-containing MVs and show that these vesicles are secreted in response to the calcium influx caused by membrane damage. The annexins in these vesicles are cleaved by calpains. After plasma membrane injury, cytoplasmic calcium-bound annexins are rapidly recruited to the plasma membrane and form a scab-like structure at the lesion. In a second phase, recruited annexins are cleaved by calpains-1/2, disabling membrane scabbing. Cleavage promotes annexin secretion within MVs. Our data supports a new model of plasma membrane repair, where calpains relax annexin-membrane aggregates in the lesion repair scab, allowing secretion of damaged membrane and annexins as MVs. We anticipate that cells experiencing plasma membrane damage, including muscle and metastatic cancer cells, secrete these MVs at elevated levels.
Collapse
Affiliation(s)
- Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dorothy E. Croall
- Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono, United States
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
3
|
Fullenkamp DE, Willis AB, Curtin JL, Amaral AP, Dittloff KT, Harris SI, Chychula IA, Holgren CW, Burridge PW, Russell B, Demonbreun AR, McNally EM. Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050487. [PMID: 38050701 PMCID: PMC10820750 DOI: 10.1242/dmm.050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jodi L. Curtin
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ansel P. Amaral
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle T. Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sloane I. Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivana A. Chychula
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cory W. Holgren
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul W. Burridge
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Norris AM, Fierman KE, Campbell J, Pitale R, Shahraj M, Kopinke D. Studying intramuscular fat deposition and muscle regeneration: insights from a comparative analysis of mouse strains, injury models, and sex differences. Skelet Muscle 2024; 14:12. [PMID: 38812056 PMCID: PMC11134715 DOI: 10.1186/s13395-024-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMAT) infiltration, pathological adipose tissue that accumulates between muscle fibers, is a shared hallmark in a diverse set of diseases including muscular dystrophies and diabetes, spinal cord and rotator cuff injuries, as well as sarcopenia. While the mouse has been an invaluable preclinical model to study skeletal muscle diseases, they are also resistant to IMAT formation. To better understand this pathological feature, an adequate pre-clinical model that recapitulates human disease is necessary. To address this gap, we conducted a comprehensive in-depth comparison between three widely used mouse strains: C57BL/6J, 129S1/SvlmJ and CD1. We evaluated the impact of strain, sex and injury type on IMAT formation, myofiber regeneration and fibrosis. We confirm and extend previous findings that a Glycerol (GLY) injury causes significantly more IMAT and fibrosis compared to Cardiotoxin (CTX). Additionally, females form more IMAT than males after a GLY injury, independent of strain. Of all strains, C57BL/6J mice, both females and males, are the most resistant to IMAT formation. In regard to injury-induced fibrosis, we found that the 129S strain formed the least amount of scar tissue. Surprisingly, C57BL/6J of both sexes demonstrated complete myofiber regeneration, while both CD1 and 129S1/SvlmJ strains still displayed smaller myofibers 21 days post injury. In addition, our data indicate that myofiber regeneration is negatively correlated with IMAT and fibrosis. Combined, our results demonstrate that careful consideration and exploration are needed to determine which injury type, mouse model/strain and sex to utilize as preclinical model especially for modeling IMAT formation.
Collapse
Affiliation(s)
- Alessandra M Norris
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kiara E Fierman
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Jillian Campbell
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rhea Pitale
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Shahraj
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
6
|
Long AM, Kwon JM, Lee G, Reiser NL, Vaught LA, O'Brien JG, Page PGT, Hadhazy M, Reynolds JC, Crosbie RH, Demonbreun AR, McNally EM. The extracellular matrix differentially directs myoblast motility and differentiation in distinct forms of muscular dystrophy: Dystrophic matrices alter myoblast motility. Matrix Biol 2024; 129:44-58. [PMID: 38582404 PMCID: PMC11104166 DOI: 10.1016/j.matbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason M Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nina L Reiser
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph G O'Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Gerke V, Gavins FNE, Geisow M, Grewal T, Jaiswal JK, Nylandsted J, Rescher U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat Commun 2024; 15:1574. [PMID: 38383560 PMCID: PMC10882027 DOI: 10.1038/s41467-024-45954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Annexins are cytosolic proteins with conserved three-dimensional structures that bind acidic phospholipids in cellular membranes at elevated Ca2+ levels. Through this they act as Ca2+-regulated membrane binding modules that organize membrane lipids, facilitating cellular membrane transport but also displaying extracellular activities. Recent discoveries highlight annexins as sensors and regulators of cellular and organismal stress, controlling inflammatory reactions in mammals, environmental stress in plants, and cellular responses to plasma membrane rupture. Here, we describe the role of annexins as Ca2+-regulated membrane binding modules that sense and respond to cellular stress and share our view on future research directions in the field.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Michael Geisow
- The National Institute for Medical Research, Mill Hill, London, UK
- Delta Biotechnology Ltd, Nottingham, UK
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jesper Nylandsted
- Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21-25, Odense, Denmark
| | - Ursula Rescher
- Research Group Cellular Biochemistry, Institute of Molecular Virology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| |
Collapse
|
8
|
Štefl M, Takamiya M, Middel V, Tekpınar M, Nienhaus K, Beil T, Rastegar S, Strähle U, Nienhaus GU. Caveolae disassemble upon membrane lesioning and foster cell survival. iScience 2024; 27:108849. [PMID: 38303730 PMCID: PMC10831942 DOI: 10.1016/j.isci.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.
Collapse
Affiliation(s)
- Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Volker Middel
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Miyase Tekpınar
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
10
|
Gounou C, Rouyer L, Siegfried G, Harté E, Bouvet F, d'Agata L, Darbo E, Lefeuvre M, Derieppe MA, Bouton L, Mélane M, Chapeau D, Martineau J, Prouzet-Mauleon V, Tan S, Souleyreau W, Saltel F, Argoul F, Khatib AM, Brisson AR, Iggo R, Bouter A. Inhibition of the membrane repair protein annexin-A2 prevents tumor invasion and metastasis. Cell Mol Life Sci 2023; 81:7. [PMID: 38092984 PMCID: PMC10719157 DOI: 10.1007/s00018-023-05049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
Cancer cells are exposed to major compressive and shearing forces during invasion and metastasis, leading to extensive plasma membrane damage. To survive this mechanical stress, they need to repair membrane injury efficiently. Targeting the membrane repair machinery is thus potentially a new way to prevent invasion and metastasis. We show here that annexin-A2 (ANXA2) is required for membrane repair in invasive breast and pancreatic cancer cells. Mechanistically, we show by fluorescence and electron microscopy that cells fail to reseal shear-stress damaged membrane when ANXA2 is silenced or the protein is inhibited with neutralizing antibody. Silencing of ANXA2 has no effect on proliferation in vitro, and may even accelerate migration in wound healing assays, but reduces tumor cell dissemination in both mice and zebrafish. We expect that inhibiting membrane repair will be particularly effective in aggressive, poor prognosis tumors because they rely on the membrane repair machinery to survive membrane damage during tumor invasion and metastasis. This could be achieved either with anti-ANXA2 antibodies, which have been shown to inhibit metastasis of breast and pancreatic cancer cells, or with small molecule drugs.
Collapse
Affiliation(s)
- C Gounou
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L Rouyer
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - G Siegfried
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
| | - E Harté
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - F Bouvet
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L d'Agata
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - E Darbo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Lefeuvre
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - M A Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - L Bouton
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Mélane
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - D Chapeau
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - J Martineau
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - V Prouzet-Mauleon
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- CRISPRedit, TBMcore, UAR CNRS 3427, Inserm US 005, University of Bordeaux, Bordeaux, France
| | - S Tan
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - W Souleyreau
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Saltel
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Argoul
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - A M Khatib
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
- Bergonié Institute, Bordeaux, France
| | - A R Brisson
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - R Iggo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - A Bouter
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France.
| |
Collapse
|
11
|
Long AM, Lee G, Demonbreun AR, McNally EM. Extracellular matrix contribution to disease progression and dysfunction in myopathy. Am J Physiol Cell Physiol 2023; 325:C1244-C1251. [PMID: 37746696 PMCID: PMC10855263 DOI: 10.1152/ajpcell.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Myopathic processes affect skeletal muscle and heart. In the muscular dystrophies, which are a subset of myopathies, muscle cells are gradually replaced by fibrosis and fat, impairing muscle function as well as regeneration and repair. In addition to skeletal muscle, these genetic disorders often also affect the heart, where fibrofatty infiltration progressively accumulates in the myocardium, impairing heart function. Although considerable effort has focused on gene-corrective and gene-replacement approaches to stabilize myofibers and cardiomyocytes, the continual and ongoing deposition of extracellular matrix itself contributes to tissue and organ dysfunction. Transcriptomic and proteomic profiling, along with high-resolution imaging and biophysical measurements, have been applied to define extracellular matrix components and their role in contributing to cardiac and skeletal muscle weakness. More recently, decellularization methods have been adapted to an on-slide format to preserve the spatial geography of the extracellular matrix, allowing new insight into matrix remodeling and its direct role in suppressing regeneration in muscle. This review highlights recent literature with focus on the extracellular matrix and molecular mechanisms that contribute to muscle and heart fibrotic disorders. We will also compare how the myopathic matrix differs from healthy matrix, emphasizing how the pathological matrix contributes to disease.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
12
|
Yang J, Pei T, Su G, Duan P, Liu X. AnnexinA6: a potential therapeutic target gene for extracellular matrix mineralization. Front Cell Dev Biol 2023; 11:1201200. [PMID: 37727505 PMCID: PMC10506415 DOI: 10.3389/fcell.2023.1201200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wohlgemuth RP, Feitzinger RM, Henricson KE, Dinh DT, Brashear SE, Smith LR. The extracellular matrix of dystrophic mouse diaphragm accounts for the majority of its passive stiffness and is resistant to collagenase digestion. Matrix Biol Plus 2023; 18:100131. [PMID: 36970609 PMCID: PMC10036937 DOI: 10.1016/j.mbplus.2023.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The healthy skeletal muscle extracellular matrix (ECM) has several functions including providing structural integrity to myofibers, enabling lateral force transmission, and contributing to overall passive mechanical properties. In diseases such as Duchenne Muscular dystrophy, there is accumulation of ECM materials, primarily collagen, which results in fibrosis. Previous studies have shown that fibrotic muscle is often stiffer than healthy muscle, in part due to the increased number and altered architecture of collagen fibers within the ECM. This would imply that the fibrotic matrix is stiffer than the healthy matrix. However, while previous studies have attempted to quantify the extracellular contribution to passive stiffness in muscle, the outcomes are dependent on the type of method used. Thus, the goals of this study were to compare the stiffness of healthy and fibrotic muscle ECM and to demonstrate the efficacy of two methods for quantifying extracellular-based stiffness in muscle, namely decellularization and collagenase digestion. These methods have been demonstrated to remove the muscle fibers or ablate collagen fiber integrity, respectively, while maintaining the contents of the extracellular matrix. Using these methods in conjunction with mechanical testing on wildtype and D2.mdx mice, we found that a majority of passive stiffness in the diaphragm is dependent on the ECM, and the D2.mdx diaphragm ECM is resistant to digestion by bacterial collagenase. We propose that this resistance is due to the increased collagen cross-links and collagen packing density in the ECM of the D2.mdx diaphragm. Taken altogether, while we did not find increased stiffness of the fibrotic ECM, we did observe that the D2.mdx diaphragm conveyed resistance against collagenase digestion. These findings demonstrate how different methods for measuring ECM-based stiffness each have their own limitations and can produce different results.
Collapse
Affiliation(s)
- Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Ryan M. Feitzinger
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Kyle E. Henricson
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, USA
| | - Daryl T. Dinh
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
- Department of Physical Medicine and Rehabilitation, University of California Davis, USA
| |
Collapse
|
14
|
Waters EA, Haney CR, Vaught LA, McNally EM, Demonbreun AR. New semi-automated tool for the quantitation of MR imaging to estimate in vivo muscle disease severity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541310. [PMID: 37293050 PMCID: PMC10245844 DOI: 10.1101/2023.05.23.541310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. Magnetic resonance imaging (MRI) is a non-invasive method that can be used qualitatively or quantitatively to measure muscle disease progression in the clinic and in preclinical models. Although MR imaging is highly sensitive, image acquisition and analysis can be time intensive. The purpose of this study was to develop a semi-automated muscle segmentation and quantitation pipeline that can quickly and accurately estimate muscle disease severity in mice. Herein, we show that the newly developed segmentation tool accurately divides muscle. We show that measures of skew and interdecile range based on segmentation sufficiently estimate muscle disease severity in healthy wildtype and diseased mdx mice. Moreover, the semi-automated pipeline reduced analysis time by nearly 10-fold. Use of this rapid, non-invasive, semi-automated MR imaging and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.
Collapse
Affiliation(s)
- Emily A. Waters
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chad R. Haney
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren. A Vaught
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Schreyer L, Reilly J, McConkey H, Kerkhof J, Levy MA, Hu J, Hnaini M, Sadikovic B, Campbell C. The discovery of the DNA methylation episignature for Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:5-14. [PMID: 36572586 DOI: 10.1016/j.nmd.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterized by progressive muscle weakness due to loss of function mutations in the dystrophin gene. Variation in clinical presentation, the rate of disease progression, and treatment responsiveness have been observed amongst DMD patients, suggesting that factors beyond the loss of dystrophin may contribute to DMD pathophysiology. Epigenetic mechanisms are becoming recognized as important factors implicated in the etiology and progression of various diseases. A growing number of genetic syndromes have been associated with unique genomic DNA methylation patterns (called "episignatures") that can be used for diagnostic testing and as disease biomarkers. To further investigate DMD pathophysiology, we assessed the genome-wide DNA methylation profiles of peripheral blood from 36 patients with DMD using the combination of Illumina Infinium Methylation EPIC bead chip array and EpiSign technology. We identified a unique episignature for DMD that whose specificity was confirmed in relation other neurodevelopmental disorders with known episignatures. By modeling the DMD episignature, we developed a new DMD episignature biomarker and provided novel insights into the molecular pathogenesis of this disorder, which have the potential to advance more effective, personalized approaches to DMD care.
Collapse
Affiliation(s)
- Leighton Schreyer
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jonathan Hu
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mona Hnaini
- Department of Pediatrics, Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Craig Campbell
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
17
|
Donen G, Milad N, Bernatchez P. Humanization of the mdx Mouse Phenotype for Duchenne Muscular Dystrophy Modeling: A Metabolic Perspective. J Neuromuscul Dis 2023; 10:1003-1012. [PMID: 37574742 PMCID: PMC10657711 DOI: 10.3233/jnd-230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy (MD) that is characterized by early muscle wasting and lethal cardiorespiratory failure. While the mdx mouse is the most common model of DMD, it fails to replicate the severe loss of muscle mass and other complications observed in patients, in part due to the multiple rescue pathways found in mice. This led to several attempts at improving DMD animal models by interfering with these rescue pathways through double transgenic approaches, resulting in more severe phenotypes with mixed relevance to the human pathology. As a growing body of literature depicts DMD as a multi-system metabolic disease, improvements in mdx-based modeling of DMD may be achieved by modulating whole-body metabolism instead of muscle homeostasis. This review provides an overview of the established dual-transgenic approaches that exacerbate the mild mdx phenotype by primarily interfering with muscle homeostasis and highlights how advances in DMD modeling coincide with inducing whole-body metabolic changes. We focus on the DBA2/J strain-based D2.mdx mouse with heightened transforming growth factor (TGF)-β signaling and the dyslipidemic mdx/apolipoprotein E (mdx/ApoE) knock-out (KO) mouse, and summarize how these novel models emulate the metabolic changes observed in DMD.
Collapse
Affiliation(s)
| | | | - Pascal Bernatchez
- Correspondence to: Dr. Pascal Bernatchez, Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences mall, room 217, Vancouver BC, V6T 1Z3, Canada. Tel.: +1 604 806 8346 /Ext.66060; E-mail:
| |
Collapse
|
18
|
Saleh KK, Xi H, Switzler C, Skuratovsky E, Romero MA, Chien P, Gibbs D, Gane L, Hicks MR, Spencer MJ, Pyle AD. Single cell sequencing maps skeletal muscle cellular diversity as disease severity increases in dystrophic mouse models. iScience 2022; 25:105415. [PMID: 36388984 PMCID: PMC9646951 DOI: 10.1016/j.isci.2022.105415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations in the DMD gene resulting in the absence of a functional dystrophin protein, leading to a devastating and progressive lethal muscle-wasting disease. Little is known about cellular heterogeneity as disease severity increases. Advances in single-cell RNA sequencing (scRNA-seq) enabled us to explore skeletal muscle-resident cell populations in healthy, dystrophic, and severely dystrophic mouse models. We found increased frequencies of activated fibroblasts, fibro-adipogenic progenitor cells, and pro-inflammatory macrophages in dystrophic gastrocnemius muscles and an upregulation of extracellular matrix genes on endothelial cells in dystrophic and severely dystrophic muscles. We observed a pronounced risk of clotting, especially in the severely dystrophic mice with increased expression of plasminogen activator inhibitor-1 in endothelial cells, indicating endothelial cell impairment as disease severity increases. This work extends our understanding of the severe nature of DMD which should be considered when developing single or combinatorial approaches for DMD.
Collapse
Affiliation(s)
- Kholoud K. Saleh
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Switzler
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Skuratovsky
- CIRM Bridges Program, California State University, Northridge, CA 91330, USA
| | - Matthew A. Romero
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Gibbs
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Gane
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Melissa J. Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, University of California Los Angeles, CA 90095, USA
| | - April D. Pyle
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Demonbreun AR, Bogdanovic E, Vaught LA, Reiser NL, Fallon KS, Long AM, Oosterbaan CC, Hadhazy M, Page PG, Joseph PRB, Cowen G, Telenson AM, Khatri A, Sadleir KR, Vassar R, McNally EM. A conserved annexin A6-mediated membrane repair mechanism in muscle, heart, and nerve. JCI Insight 2022; 7:158107. [PMID: 35866481 PMCID: PMC9431694 DOI: 10.1172/jci.insight.158107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Collapse
Affiliation(s)
| | - Elena Bogdanovic
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren A Vaught
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nina L Reiser
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine S Fallon
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ashlee M Long
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Gabrielle Cowen
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Paleo BJ, McElhanon KE, Bulgart HR, Banford KK, Beck EX, Sattler KM, Goines BN, Ratcliff SL, Crowe KE, Weisleder N. Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells 2022; 11:1417. [PMID: 35563723 PMCID: PMC9100510 DOI: 10.3390/cells11091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.
Collapse
Affiliation(s)
- Brian J. Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kevin E. McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Eric X Beck
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kristina M. Sattler
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Briana N. Goines
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Shelby L. Ratcliff
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Kelly E. Crowe
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| |
Collapse
|
22
|
Ray S, Roth R, Keyel PA. Membrane repair triggered by cholesterol-dependent cytolysins is activated by mixed lineage kinases and MEK. SCIENCE ADVANCES 2022; 8:eabl6367. [PMID: 35294243 PMCID: PMC8926344 DOI: 10.1126/sciadv.abl6367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Sucharit Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Corresponding author.
| |
Collapse
|
23
|
Yim WWY, Yamamoto H, Mizushima N. Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 2022; 596:991-1003. [PMID: 35274304 DOI: 10.1002/1873-3468.14329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Damaged lysosomes can be repaired by calcium release-dependent recruitment of the ESCRT machinery. However, the involvement of annexins, another group of calcium-responding membrane repair proteins, has not been fully addressed. Here, we show that although all ubiquitously expressed annexins (ANXA1, A2, A4, A5, A6, A7, and A11) localize to damaged lysosomes, only ANXA1 and ANXA2 are important for repair. Their recruitment is calcium-dependent, ESCRT-independent, and selective towards lysosomes with large injuries. Lysosomal leakage was more severe when ANXA1 or ANXA2 was depleted compared to that of ESCRT components. These findings suggest that ANXA1 and ANXA2 constitute an additional repair mechanism that serves to minimize leakage from damaged lysosomes.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
24
|
Dubińska-Magiera M, Lewandowski D, Cysewski D, Pawlak S, Najbar B, Daczewska M. Lipid droplets in skeletal muscle during grass snake (Natrix natrix L.) development. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159086. [PMID: 34822977 DOI: 10.1016/j.bbalip.2021.159086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022]
Abstract
Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, IBB PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Pawlak
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Bartłomiej Najbar
- Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra 1, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
25
|
Foltz S, Wu F, Ghazal N, Kwong JQ, Hartzell HC, Choo HJ. Sex differences in the involvement of skeletal and cardiac muscles in myopathic Ano5-/- mice. Am J Physiol Cell Physiol 2022; 322:C283-C295. [PMID: 35020501 PMCID: PMC8836717 DOI: 10.1152/ajpcell.00350.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.
Collapse
Affiliation(s)
- Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Nasab Ghazal
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer Q Kwong
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Hyojung J Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
27
|
Ca 2+ roles in electroporation-induced changes of cancer cell physiology: From membrane repair to cell death. Bioelectrochemistry 2021; 142:107927. [PMID: 34425390 DOI: 10.1016/j.bioelechem.2021.107927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The combination of Ca2+ ions and electroporation has gained attention as potential alternative to electrochemotherapy. Ca2+ is an important component of the cell membrane repair system and its presence directly influences the dynamics of the pore cycle after electroporation which can be exploited for cancer therapies. Here, the influence of Ca2+ concentration is investigated on small molecule electrotransfer and release of Calcein from 4T1, MX-1, B16F10, U87 cancer cells after cell exposure to microsecond electric pulses. Moreover, we investigated simultaneous molecule electrotransfer and intracellular calcium ion influx when media was supplemented with different Ca2+ concentrations. Results show that increased concentrations of calcium ions reduce the electrotransfer of small molecules to different lines of cancer cells as well as the release of Calcein. These effects are related with an enhanced membrane repair mechanism. Overall, we show that the efficiency of molecular electrotransfer can be controlled by regulating Ca2+ concentration in the electroporation medium. For the first time, the cause of cancer cell death in vitro from 1 mM CaCl2 concentrations is related to the irreversible loss of Ca2+ homeostasis after cell electroporation. Our findings provide fundamental insight on the mechanisms of Ca2+ electroporation that might lead to improved therapeutic outcomes.
Collapse
|
28
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
29
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
30
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
31
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
33
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
34
|
Corrotte M, Cerasoli M, Maeda FY, Andrews NW. Endophilin-A2-dependent tubular endocytosis promotes plasma membrane repair and parasite invasion. J Cell Sci 2020; 134:jcs249524. [PMID: 33093240 PMCID: PMC7725609 DOI: 10.1242/jcs.249524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endocytosis of caveolae has previously been implicated in the repair of plasma membrane wounds. Here, we show that caveolin-1-deficient fibroblasts lacking caveolae upregulate a tubular endocytic pathway and have a reduced capacity to reseal after permeabilization with pore-forming toxins compared with wild-type cells. Silencing endophilin-A2 expression inhibited fission of endocytic tubules and further reduced plasma membrane repair in cells lacking caveolin-1, supporting a role for tubular endocytosis as an alternative pathway for the removal of membrane lesions. Endophilin-A2 was visualized in association with cholera toxin B-containing endosomes and was recruited to recently formed intracellular vacuoles containing Trypanosoma cruzi, a parasite that utilizes the plasma membrane wounding repair pathway to invade host cells. Endophilin-A2 deficiency inhibited T. cruzi invasion, and fibroblasts deficient in both caveolin-1 and endophilin-A2 did not survive prolonged exposure to the parasites. These findings reveal a novel crosstalk between caveolin-1 and endophilin-A2 in the regulation of clathrin-independent endocytosis and plasma membrane repair, a process that is subverted by T. cruzi parasites for cell invasion.
Collapse
Affiliation(s)
- Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Department of Veterinary Medicine, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mark Cerasoli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
35
|
Lambert MR, Spinazzola JM, Widrick JJ, Pakula A, Conner JR, Chin JE, Owens JM, Kunkel LM. PDE10A Inhibition Reduces the Manifestation of Pathology in DMD Zebrafish and Represses the Genetic Modifier PITPNA. Mol Ther 2020; 29:1086-1101. [PMID: 33221436 PMCID: PMC7934586 DOI: 10.1016/j.ymthe.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Janelle M Spinazzola
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James R Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Janice E Chin
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Jane M Owens
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
37
|
Demirci H, Durmus H, Toksoy G, Uslu A, Parman Y, Hanagasi H. Cognition of the mothers of patients with Duchenne muscular dystrophy. Muscle Nerve 2020; 62:710-716. [PMID: 32893363 DOI: 10.1002/mus.27057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) has been found to be associated with cognitive impairment. However, few studies have addressed cognitive impairment among mothers of children with DMD. In the present study, the neuropsychological profiles of both carrier mothers (C-Ms) and noncarrier mothers (NC-Ms) were examined, and the findings were compared with healthy control mothers (HC-Ms). There were 90 participants, consisting of 31 C-Ms, 24 NC-Ms, and 35 HC-Ms, each of whom completed a neuropsychological test battery. C-Ms had poorer cognition performance in attention, working memory, immediate verbal memory, visuospatial skills, and executive functions than NC-Ms, and HC-Ms. This study provides evidence that there may be cognitive impairment in mothers of patients with DMD. The cognitive impairment of C-Ms has similarities to that seen in children with DMD.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Psychiatry, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yesim Parman
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
38
|
Bittel DC, Chandra G, Tirunagri LMS, Deora AB, Medikayala S, Scheffer L, Defour A, Jaiswal JK. Annexin A2 Mediates Dysferlin Accumulation and Muscle Cell Membrane Repair. Cells 2020; 9:cells9091919. [PMID: 32824910 PMCID: PMC7565960 DOI: 10.3390/cells9091919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Muscle cell plasma membrane is frequently damaged by mechanical activity, and its repair requires the membrane protein dysferlin. We previously identified that, similar to dysferlin deficit, lack of annexin A2 (AnxA2) also impairs repair of skeletal myofibers. Here, we have studied the mechanism of AnxA2-mediated muscle cell membrane repair in cultured muscle cells. We find that injury-triggered increase in cytosolic calcium causes AnxA2 to bind dysferlin and accumulate on dysferlin-containing vesicles as well as with dysferlin at the site of membrane injury. AnxA2 accumulates on the injured plasma membrane in cholesterol-rich lipid microdomains and requires Src kinase activity and the presence of cholesterol. Lack of AnxA2 and its failure to translocate to the plasma membrane, both prevent calcium-triggered dysferlin translocation to the plasma membrane and compromise repair of the injured plasma membrane. Our studies identify that Anx2 senses calcium increase and injury-triggered change in plasma membrane cholesterol to facilitate dysferlin delivery and repair of the injured plasma membrane.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Goutam Chandra
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Laxmi M. S. Tirunagri
- Department of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA;
| | - Arun B. Deora
- Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Sushma Medikayala
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Luana Scheffer
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Aurelia Defour
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
- Department of Genomics and Precision medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-(202)476-6456; Fax: +1-(202)476-6014
| |
Collapse
|
39
|
Croissant C, Gounou C, Bouvet F, Tan S, Bouter A. Annexin-A6 in Membrane Repair of Human Skeletal Muscle Cell: A Role in the Cap Subdomain. Cells 2020; 9:E1742. [PMID: 32708200 PMCID: PMC7409186 DOI: 10.3390/cells9071742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Céline Gounou
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| |
Collapse
|
40
|
Simonsen AC, Boye TL, Nylandsted J. Annexins Bend Wound Edges during Plasma Membrane Repair. Curr Med Chem 2020; 27:3600-3610. [DOI: 10.2174/0929867326666190121121143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment
and, thus provides essential protection from the surroundings. Consequently, disruptions to
the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to
cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating
their plasma membrane repair system, which is shared by other cellular functions, and includes
mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization
of cytoskeleton and membrane fusion events to reseal the membrane. Members of the
annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids,
are important regulators of plasma membrane repair. Recent studies based on cellular and
biophysical membrane models show that they have more distinct functions in the repair response
than previously assumed by regulating membrane curvature and excision of damaged membrane. In
cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins
including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and
constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are
dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane
injuries, which opens novel avenues to target cancer cells through their membrane repair system.
Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane
curvature.
Collapse
Affiliation(s)
- Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK- 5230 Odense M, Denmark
| | - Theresa Louise Boye
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Smith LR, Meyer GA. Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connect Tissue Res 2020; 61:248-261. [PMID: 31492079 PMCID: PMC8837600 DOI: 10.1080/03008207.2019.1662409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Skeletal muscle tissue explants have been cultured and studied for nearly 100 years. These cultures, which retain complex tissue structure in an environment suited to precision manipulation and measurement, have led to seminal discoveries of the extrinsic and intrinsic mechanisms regulating contractility, metabolism and regeneration. This review discusses the two primary models of muscle explant: isolated myofiber and intact muscle.Materials and Methods: Relevant literature was reviewed and synthesized with a focus on the unique challenges and capabilities of each explant model.Results: Impactful past, current and future novel applications are discussed.Conclusions: Experiments using skeletal muscle explants have been integral to our understanding of the fundamentals of muscle physiology. As they are refined and adapted, they are poised to continue to inform the field for years to come.
Collapse
Affiliation(s)
- Lucas R Smith
- Departments of Neurobiology, Physiology and Behavior and Physical Medicine and Rehabilitation, University of California, Davis, CA, USA
| | - Gretchen A Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
42
|
Talukder MSU, Pervin MS, Tanvir MIO, Fujimoto K, Tanaka M, Itoh G, Yumura S. Ca 2+-Calmodulin Dependent Wound Repair in Dictyostelium Cell Membrane. Cells 2020; 9:cells9041058. [PMID: 32340342 PMCID: PMC7226253 DOI: 10.3390/cells9041058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Wound repair of cell membrane is a vital physiological phenomenon. We examined wound repair in Dictyostelium cells by using a laserporation, which we recently invented. We examined the influx of fluorescent dyes from the external medium and monitored the cytosolic Ca2+ after wounding. The influx of Ca2+ through the wound pore was essential for wound repair. Annexin and ESCRT components accumulated at the wound site upon wounding as previously described in animal cells, but these were not essential for wound repair in Dictyostelium cells. We discovered that calmodulin accumulated at the wound site upon wounding, which was essential for wound repair. The membrane accumulated at the wound site to plug the wound pore by two-steps, depending on Ca2+ influx and calmodulin. From several lines of evidence, the membrane plug was derived from de novo generated vesicles at the wound site. Actin filaments also accumulated at the wound site, depending on Ca2+ influx and calmodulin. Actin accumulation was essential for wound repair, but microtubules were not essential. A molecular mechanism of wound repair will be discussed.
Collapse
Affiliation(s)
- Md. Shahabe Uddin Talukder
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Institute of Food and Radiation Biology, AERE, Bangladesh Atomic Energy Commission, Savar, Dhaka 3787, Bangladesh
| | - Mst. Shaela Pervin
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Rajshahi Diabetic Association General Hospital, Luxmipur, Jhautala, Rajshahi 6000, Bangladesh
| | - Md. Istiaq Obaidi Tanvir
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Masahito Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan; (M.S.U.T.); (M.S.P.); (M.I.O.T.); (K.F.); (M.T.)
- Correspondence: yumura@yamaguchi–u.ac.jp; Tel./Fax: +81-83-933-5717
| |
Collapse
|
43
|
Wang B, Li Y, Sui M, Qi Q, Wang T, Liu D, Zhou M, Zheng Y, Zhu LQ, Zhang B. Identification of the downstream molecules of agrin/Dok-7 signaling in muscle. FASEB J 2020; 34:5144-5161. [PMID: 32043676 DOI: 10.1096/fj.201901693rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2020; 28:2030-2045. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.
Collapse
Affiliation(s)
| | | | | | - Kevin E McElhanon
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | | | | | - Federica Accornero
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | - Noah L Weisleder
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | |
Collapse
|
45
|
Vann CG, Roberson PA, Osburn SC, Mumford PW, Romero MA, Fox CD, Moore JH, Haun CT, Beck DT, Moon JR, Kavazis AN, Young KC, Badisa VLD, Mwashote BM, Ibeanusi V, Singh RK, Roberts MD. Skeletal Muscle Myofibrillar Protein Abundance Is Higher in Resistance-Trained Men, and Aging in the Absence of Training May Have an Opposite Effect. Sports (Basel) 2020; 8:sports8010007. [PMID: 31936810 PMCID: PMC7022975 DOI: 10.3390/sports8010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance training generally increases skeletal muscle hypertrophy, whereas aging is associated with a loss in muscle mass. Interestingly, select studies suggest that aging, as well as resistance training, may lead to a reduction in the abundance of skeletal muscle myofibrillar (or contractile) protein (per mg tissue). Proteomic interrogations have also demonstrated that aging, as well as weeks to months of resistance training, lead to appreciable alterations in the muscle proteome. Given this evidence, the purpose of this small pilot study was to examine total myofibrillar as well as total sarcoplasmic protein concentrations (per mg wet muscle) from the vastus lateralis muscle of males who were younger and resistance-trained (denoted as YT, n = 6, 25 ± 4 years old, 10 ± 3 self-reported years of training), younger and untrained (denoted as YU, n = 6, 21 ± 1 years old), and older and untrained (denoted as OU, n = 6, 62 ± 8 years old). The relative abundances of actin and myosin heavy chain (per mg tissue) were also examined using SDS-PAGE and Coomassie staining, and shotgun proteomics was used to interrogate the abundances of individual sarcoplasmic and myofibrillar proteins between cohorts. Whole-body fat-free mass (YT > YU = OU), VL thickness (YT > YU = OU), and leg extensor peak torque (YT > YU = OU) differed between groups (p < 0.05). Total myofibrillar protein concentrations were greater in YT versus OU (p = 0.005), but were not different between YT versus YU (p = 0.325). The abundances of actin and myosin heavy chain were greater in YT versus YU (p < 0.05) and OU (p < 0.001). Total sarcoplasmic protein concentrations were not different between groups. While proteomics indicated that marginal differences existed for individual myofibrillar and sarcoplasmic proteins between YT versus other groups, age-related differences were more prominent for myofibrillar proteins (YT = YU > OU, p < 0.05: 7 proteins; OU > YT = YU, p < 0.05: 11 proteins) and sarcoplasmic proteins (YT = YU > OU, p < 0.05: 8 proteins; OU > YT&YU, p < 0.05: 29 proteins). In summary, our data suggest that modest (~9%) myofibrillar protein packing (on a per mg muscle basis) was evident in the YT group. This study also provides further evidence to suggest that notable skeletal muscle proteome differences exist between younger and older humans. However, given that our n-sizes are low, these results only provide a preliminary phenotyping of the reported protein and proteomic variables.
Collapse
Affiliation(s)
- Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Paul. A. Roberson
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Matthew A. Romero
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Carlton D. Fox
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Johnathon H. Moore
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Cody T. Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA 30240, USA;
| | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | | | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Veera L. D. Badisa
- School of the Environment, Florida A&M University, Tallahassee, FL 32306, USA; (V.L.D.B.); (B.M.M.); (V.I.)
| | - Benjamin M. Mwashote
- School of the Environment, Florida A&M University, Tallahassee, FL 32306, USA; (V.L.D.B.); (B.M.M.); (V.I.)
| | - Victor Ibeanusi
- School of the Environment, Florida A&M University, Tallahassee, FL 32306, USA; (V.L.D.B.); (B.M.M.); (V.I.)
| | - Rakesh K. Singh
- Translational Science Lab, College of Medicine, Florida State University, Tallahassee, FL32306, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.G.V.); (P.A.R.); (S.C.O.); (P.W.M.); (M.A.R.); (C.D.F.); (J.H.M.); (D.T.B.); (A.N.K.); (K.C.Y.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
- Correspondence:
| |
Collapse
|
46
|
Nam TS, Zhang J, Chandrasekaran G, Jeong IY, Li W, Lee SH, Kang KW, Maeng JS, Kang H, Shin HY, Park HC, Kim S, Choi SY, Kim MK. A zebrafish model of nondystrophic myotonia with sodium channelopathy. Neurosci Lett 2020; 714:134579. [PMID: 31669315 DOI: 10.1016/j.neulet.2019.134579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
Abstract
Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl- (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.
Collapse
Affiliation(s)
- Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jun Zhang
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | | | - In Young Jeong
- Department of Biomedical Sciences, Korea University, Ansan, 15355, Republic of Korea
| | - Wenting Li
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - So-Hyun Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Kyung-Wook Kang
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jin-Soo Maeng
- Research Group of Bioprocess Engineering, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyuno Kang
- Korea Basic Science Institute, Gwangju Center, Gwangju, 61186, Republic of Korea
| | - Hee-Young Shin
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, 15355, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
47
|
Li P, Liu A, Liu C, Qu Z, Xiao W, Huang J, Liu Z, Zhang S. Role and mechanism of catechin in skeletal muscle cell differentiation. J Nutr Biochem 2019; 74:108225. [DOI: 10.1016/j.jnutbio.2019.108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
|
48
|
Demonbreun AR, Wyatt EJ, Fallon KS, Oosterbaan CC, Page PG, Hadhazy M, Quattrocelli M, Barefield DY, McNally EM. A gene-edited mouse model of limb-girdle muscular dystrophy 2C for testing exon skipping. Dis Model Mech 2019; 13:dmm040832. [PMID: 31582396 PMCID: PMC6906631 DOI: 10.1242/dmm.040832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the γ-sarcoglycan (SGCG) gene. The most common SGCG mutation is a single nucleotide deletion from a stretch of five thymine residues in SGCG exon 6 (521ΔT). This founder mutation disrupts the transcript reading frame, abolishing protein expression. An antisense oligonucleotide exon-skipping method to reframe the human 521ΔT transcript requires skipping four exons to generate a functional, internally truncated protein. In vivo evaluation of this multi-exon skipping, antisense-mediated therapy requires a genetically appropriate mouse model. The human and mouse γ-sarcoglycan genes are highly homologous in sequence and gene structure, including the exon 6 region harboring the founder mutation. Herein, we describe a new mouse model of this form of limb-girdle muscular dystrophy generated using CRISPR/Cas9-mediated gene editing to introduce a single thymine deletion in murine exon 6, recreating the 521ΔT point mutation in Sgcg These mice express the 521ΔT transcript, lack γ-sarcoglycan protein and exhibit a severe dystrophic phenotype. Phenotypic characterization demonstrated reduced muscle mass, increased sarcolemmal leak and fragility, and decreased muscle function, consistent with the human pathological findings. Furthermore, we showed that intramuscular administration of a murine-specific multiple exon-directed antisense oligonucleotide cocktail effectively corrected the 521ΔT reading frame. These data demonstrate a molecularly and pathologically suitable model for in vivo testing of a multi-exon skipping strategy to advance preclinical development of this genetic correction approach.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
49
|
Demonbreun AR, Fallon KS, Oosterbaan CC, Bogdanovic E, Warner JL, Sell JJ, Page PG, Quattrocelli M, Barefield DY, McNally EM. Recombinant annexin A6 promotes membrane repair and protects against muscle injury. J Clin Invest 2019; 129:4657-4670. [PMID: 31545299 PMCID: PMC6819108 DOI: 10.1172/jci128840] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane repair is essential to cell survival. In skeletal muscle, injury often associates with plasma membrane disruption. Additionally, muscular dystrophy is linked to mutations in genes that produce fragile membranes or reduce membrane repair. Methods to enhance repair and reduce susceptibility to injury could benefit muscle in both acute and chronic injury settings. Annexins are a family of membrane-associated Ca2+-binding proteins implicated in repair, and annexin A6 was previously identified as a genetic modifier of muscle injury and disease. Annexin A6 forms the repair cap over the site of membrane disruption. To elucidate how annexins facilitate repair, we visualized annexin cap formation during injury. We found that annexin cap size positively correlated with increasing Ca2+ concentrations. We also found that annexin overexpression promoted external blebs enriched in Ca2+ and correlated with a reduction of intracellular Ca2+ at the injury site. Annexin A6 overexpression reduced membrane injury, consistent with enhanced repair. Treatment with recombinant annexin A6 protected against acute muscle injury in vitro and in vivo. Moreover, administration of recombinant annexin A6 in a model of muscular dystrophy reduced serum creatinine kinase, a biomarker of disease. These data identify annexins as mediators of membrane-associated Ca2+ release during membrane repair and annexin A6 as a therapeutic target to enhance membrane repair capacity.
Collapse
Affiliation(s)
- Alexis R. Demonbreun
- Center for Genetic Medicine, and
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kitmitto A, Baudoin F, Cartwright EJ. Cardiomyocyte damage control in heart failure and the role of the sarcolemma. J Muscle Res Cell Motil 2019; 40:319-333. [PMID: 31520263 PMCID: PMC6831538 DOI: 10.1007/s10974-019-09539-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.
Collapse
Affiliation(s)
- Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK.
| | - Florence Baudoin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|