1
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
2
|
Chourashi R, Oglesby AG. Iron starvation increases the production of the Pseudomonas aeruginosa RsmY and RsmZ sRNAs in static conditions. J Bacteriol 2024; 206:e0027823. [PMID: 38624234 PMCID: PMC11112995 DOI: 10.1128/jb.00278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.
Collapse
Affiliation(s)
- Rhishita Chourashi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Guadarrama-Orozco KD, Perez-Gonzalez C, Kota K, Cocotl-Yañez M, Jiménez-Cortés JG, Díaz-Guerrero M, Hernández-Garnica M, Munson J, Cadet F, López-Jácome LE, Estrada-Velasco ÁY, Fernández-Presas AM, García-Contreras R. To cheat or not to cheat: cheatable and non-cheatable virulence factors in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2023; 99:fiad128. [PMID: 37827541 DOI: 10.1093/femsec/fiad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Important bacterial pathogens such as Pseudomonas aeruginosa produce several exoproducts such as siderophores, degradative enzymes, biosurfactants, and exopolysaccharides that are used extracellularly, benefiting all members of the population, hence being public goods. Since the production of public goods is a cooperative trait, it is in principle susceptible to cheating by individuals in the population who do not invest in their production, but use their benefits, hence increasing their fitness at the expense of the cooperators' fitness. Among the most studied virulence factors susceptible to cheating are siderophores and exoproteases, with several studies in vitro and some in animal infection models. In addition to these two well-known examples, cheating with other virulence factors such as exopolysaccharides, biosurfactants, eDNA production, secretion systems, and biofilm formation has also been studied. In this review, we discuss the evidence of the susceptibility of each of those virulence factors to cheating, as well as the mechanisms that counteract this behavior and the possible consequences for bacterial virulence.
Collapse
Affiliation(s)
- Katya Dafne Guadarrama-Orozco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Caleb Perez-Gonzalez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Kokila Kota
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Jesús Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Mariel Hernández-Garnica
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Julia Munson
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, 75013, France
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389 Mexico City, Mexico
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| |
Collapse
|
4
|
Zhang H, Xu Y, Huang Y, Xiong X, Wu X, Yuan G, Zheng D. Tn-seq identifies Ralstonia solanacearum genes required for tolerance of plant immunity induced by exogenous salicylic acid. MOLECULAR PLANT PATHOLOGY 2023; 24:536-548. [PMID: 36912695 DOI: 10.1111/mpp.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Ralstonia solanacearum, the causal agent of the devastating bacterial wilt disease, is of particular interest to the scientific community. The repertoire of type III effectors plays an important role in the evasion of plant immunity, but tolerance to plant immunity is also crucial for the survival and virulence of R. solanacearum. Nevertheless, a systematic study of R. solanacearum tolerance to plant immunity is lacking. In this study, we used exogenous salicylic acid (SA) to improve the immunity of tomato plants, followed by transposon insertion sequencing (Tn-seq) analysis and the identification of R. solanacearum genes associated with tolerance to plant immunity. Target gene deletion revealed that the lipopolysaccharide (LPS) production genes RS_RS02830, RS_RS03460, and RS_RS03465 are essential for R. solanacearum tolerance to plant immunity, and their expression is induced by plant immunity, thereby expanding our knowledge of the pathogenic function of R. solanacearum LPS. SA treatment increased the relative abundance of transposon insertion mutants of four genes, including two genes with unknown function, RS_RS11975 and RS_RS07760. Further verification revealed that deletion of RS_RS11975 or RS_RS07760 resulted in reduced in vivo competitive indexes but increased tolerance to plant immunity induced by SA treatment, suggesting that these two genes contribute to the trade-off between tolerance to plant immunity and fitness cost. In conclusion, this work identified and validated R. solanacearum genes required for tolerance to plant immunity and provided essential information for a more complete view of the interaction between R. solanacearum and the host plant.
Collapse
Affiliation(s)
- Huimeng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yingying Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoqi Xiong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Xie T, Wu X, Luo L, Qu Y, Fan R, Wu S, Long Y, Zhao Z. Natural variation in the hrpL promoter renders the phytopathogen Pseudomonas syringae pv. actinidiae nonpathogenic. MOLECULAR PLANT PATHOLOGY 2023; 24:262-271. [PMID: 36600466 PMCID: PMC9923390 DOI: 10.1111/mpp.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
The genetic basis underlying loss-of-virulence mutations that arise among natural phytopathogen populations is not well documented. In this study, we examined the virulence of 377 isolates of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) that were isolated from 76 kiwifruit orchards suffering from bacterial canker disease. Eighty-four nonpathogenic isolates were identified in 40 orchards. A nonpathogenic isolate G166 was found to be defective in hrpL transcription and the downstream type III secretion system (T3SS)-dependent phenotypes. Comparative genomics and complementary expression assay revealed that a single-base "G" insertion in the hrpL promoter blocks gene transcription by reducing promoter activity. The electrophoretic mobility shift assay showed that the genetic variation impairs σ54 /promoter binding during gene transcription under hrp-inducing conditions, resulting in lower expression of hrpL. A PCR-restriction fragment length polymorphism assay was performed to trace the evolutionary history of this mutation, which revealed the independent onset of genetic variations in natural Psa3 populations. We also found that nonpathogenic variants outperformed virulent Psa3 bacteria for both epiphytic and apoplast colonization of kiwifruit leaves in mixed inoculations. Our study highlights a novel mechanism for loss of virulence in Psa3 and provides insight into bacterial adaptive evolution under natural settings.
Collapse
Affiliation(s)
- Ting Xie
- Department of Plant Pathology, College of AgricultureGuizhou UniversityGuiyangChina
| | - Xiujiao Wu
- Department of Plant Pathology, College of AgricultureGuizhou UniversityGuiyangChina
| | - Le Luo
- Department of Plant Pathology, College of AgricultureGuizhou UniversityGuiyangChina
| | - Yuan Qu
- Department of Plant Pathology, College of AgricultureGuizhou UniversityGuiyangChina
| | - Rong Fan
- Kiwifruit Engineering & Technology Research CenterGuizhou UniversityGuiyangChina
| | - Shiping Wu
- Institute of Plant ProtectionGuizhou Academy of Agricultural SciencesGuiyangChina
| | - Youhua Long
- Kiwifruit Engineering & Technology Research CenterGuizhou UniversityGuiyangChina
| | - Zhibo Zhao
- Department of Plant Pathology, College of AgricultureGuizhou UniversityGuiyangChina
- Kiwifruit Engineering & Technology Research CenterGuizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Narasimhan S, Rajeevan N, Graham M, Wu MJ, DePonte K, Marion S, Masson O, O'Neal AJ, Pedra JHF, Sonenshine DE, Fikrig E. Tick transmission of Borrelia burgdorferi to the murine host is not influenced by environmentally acquired midgut microbiota. MICROBIOME 2022; 10:173. [PMID: 36253842 PMCID: PMC9575305 DOI: 10.1186/s40168-022-01378-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/20/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ixodes scapularis is the predominant tick vector of Borrelia burgdorferi, the agent of Lyme disease, in the USA. Molecular interactions between the tick and B. burgdorferi orchestrate the migration of spirochetes from the midgut to the salivary glands-critical steps that precede transmission to the vertebrate host. Over the last decade, research efforts have invoked a potential role for the tick microbiome in modulating tick-pathogen interactions. RESULTS Using multiple strategies to perturb the microbiome composition of B. burgdorferi-infected nymphal ticks, we observe that changes in the microbiome composition do not significantly influence B. burgdorferi migration from the midgut, invasion of salivary glands, or transmission to the murine host. We also show that within 24 and 48 h of the onset of tick feeding, B. burgdorferi spirochetes are within the peritrophic matrix and epithelial cells of the midgut in preparation for exit from the midgut. CONCLUSIONS This study highlights two aspects of tick-spirochete interactions: (1) environmental bacteria associated with the tick do not influence spirochete transmission to the mammalian host and (2) the spirochete may utilize an intracellular exit route during migration from the midgut to the salivary glands, a strategy that may allow the spirochete to distance itself from microbiota in the midgut lumen effectively. This may explain in part, the inability of environment-acquired midgut microbiota to significantly influence spirochete transmission. Unraveling a molecular understanding of this exit strategy will be critical to gain new insights into the biology of the spirochete and the tick. Video Abstract.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA.
| | | | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Ming-Jie Wu
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Kathleen DePonte
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Solenne Marion
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
- Current address: Roche Diagnostics International, 6343, Rotkreuz, Switzerland
| | - Orlanne Masson
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel E Sonenshine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, New Haven, USA
| |
Collapse
|
7
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
8
|
Bakkeren E, Gül E, Huisman JS, Steiger Y, Rocker A, Hardt WD, Diard M. Impact of horizontal gene transfer on emergence and stability of cooperative virulence in Salmonella Typhimurium. Nat Commun 2022; 13:1939. [PMID: 35410999 PMCID: PMC9001671 DOI: 10.1038/s41467-022-29597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Intestinal inflammation fuels the transmission of Salmonella Typhimurium (S.Tm). However, a substantial fitness cost is associated with virulence expression. Mutations inactivating transcriptional virulence regulators generate attenuated variants profiting from inflammation without enduring virulence cost. Such variants interfere with the transmission of fully virulent clones. Horizontal transfer of functional regulatory genes (HGT) into attenuated variants could nevertheless favor virulence evolution. To address this hypothesis, we cloned hilD, coding for the master regulator of virulence, into a conjugative plasmid that is highly transferrable during intestinal colonization. The resulting mobile hilD allele allows virulence to emerge from avirulent populations, and to be restored in attenuated mutants competing against virulent clones within-host. However, mutations inactivating the mobile hilD allele quickly arise. The stability of virulence mediated by HGT is strongly limited by its cost, which depends on the hilD expression level, and by the timing of transmission. We conclude that robust evolution of costly virulence expression requires additional selective forces such as narrow population bottlenecks during transmission. Salmonella Typhimurium virulence is costly and can be lost by mutation during infection. Bakkeren et al. show that virulence restoration via horizontal gene transfer is only transient while transmission bottlenecks promote long-term virulence stability.
Collapse
|
9
|
Su Y, Xu Y, Liang H, Yuan G, Wu X, Zheng D. Genome-Wide Identification of Ralstonia solanacearum Genes Required for Survival in Tomato Plants. mSystems 2021; 6:e0083821. [PMID: 34636662 PMCID: PMC8510521 DOI: 10.1128/msystems.00838-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Ralstonia solanacearum is an extremely destructive phytopathogenic bacterium for which there is no effective control method. Though many pathogenic factors have been identified, the survival strategies of R. solanacearum in host plants remain unclear. Transposon insertion sequencing (Tn-seq) is a high-throughput genetic screening technology. This study conducted a Tn-seq analysis using the in planta environment as selective pressure to identify R. solanacearum genes required for survival in tomato plants. One hundred thirty genes were identified as putative genes required for survival in tomato plants. Sixty-three of these genes were classified into four Clusters of Orthologous Groups categories. The absence of genes that encode the outer membrane lipoprotein LolB (RS_RS01965) or the membrane protein RS_RS04475 severely decreased the in planta fitness of R. solanacearum. RS_RS09970 and RS_RS04490 are involved in tryptophan and serine biosynthesis, respectively. Mutants that lack RS_RS09970 or RS_RS04490 did not cause any wilt symptoms in susceptible tomato plants. These results confirmed the importance of genes related to "cell wall/membrane/envelope biogenesis" and "amino acid transport and metabolism" for survival in plants. The gene encoding NADH-quinone oxidoreductase subunit B (RS_RS10340) is one of the 13 identified genes involved in "energy production and conversion," and the Clp protease gene (RS_RS08645) is one of the 11 identified genes assigned to "posttranslational modification, protein turnover, and chaperones." Both genes were confirmed to be required for survival in plants. In conclusion, this study globally identified and validated R. solanacearum genes required for survival in tomato plants and provided essential information for a more complete view of the pathogenic mechanism of R. solanacearum. IMPORTANCE Tomato plant xylem is a nutritionally limiting and dynamically changing habitat. Studies on how R. solanacearum survives in this hostile environment are important for our full understanding of the pathogenic mechanism of this bacterium. Though many omics approaches have been employed to study in planta survival strategies, the direct genome-wide identification of R. solanacearum genes required for survival in plants is still lacking. This study performed a Tn-seq analysis in R. solanacearum and revealed that genes in the categories "cell wall/membrane/envelope biogenesis," "amino acid transport and metabolism," "energy production and conversion," "posttranslational modification, protein turnover, chaperones" and others play important roles in the survival of R. solanacearum in tomato plants.
Collapse
Affiliation(s)
- Yaxing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, People’s Republic of China
| | - Hailing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
10
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. mBio 2021; 12:e0083121. [PMID: 34154400 PMCID: PMC8262847 DOI: 10.1128/mbio.00831-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 3 secretion systems (T3SS) are complex nanomachines that span the cell envelope and play a central role in the biology of Gram-negative pathogens and symbionts. In Pseudomonas aeruginosa, T3SS expression is strongly associated with human disease severity and with mortality in murine acute pneumonia models. Uniform exposure of isogenic cells to T3SS-activating signal results in heterogeneous expression of this critical virulence trait. To understand the function of such diversity, we measured the production of the T3SS master regulator ExsA and the expression of T3SS genes using fluorescent reporters. We found that heterogeneous expression of ExsA in the absence of activating signal generates a "primed" subpopulation of cells that can rapidly induce T3SS gene expression in response to signal. T3SS expression is accompanied by a reproductive trade-off as measured by increased division time of T3SS-expressing cells. Although T3SS-primed cells are a minority of the population, they compose the majority of T3SS-expressing cells for several hours following activation. The primed state therefore allows P. aeruginosa to maximize reproductive fitness while maintaining the capacity to quickly express the T3SS. As T3SS effectors can serve as shared public goods for nonproducing cells, this division of labor benefits the population as a whole. IMPORTANCE The expression of specific virulence traits is strongly associated with Pseudomonas aeruginosa's success in establishing acute infections but is thought to carry a cost for bacteria. Producing multiprotein secretion systems or motility organelles is metabolically expensive and can target a cell for recognition by innate immune system receptors that recognize structural components of the type 3 secretion system (T3SS) or flagellum. These acute virulence factors are also negatively selected when P. aeruginosa establishes chronic infections in the lung. We demonstrate a regulatory mechanism by which only a minority subpopulation of genetically identical P. aeruginosa cells is "primed" to respond to signals that turn on T3SS expression. This phenotypic heterogeneity allows the population to maximize the benefit of rapid T3SS effector production while maintaining a rapidly growing and nonexpressing reservoir of cells that perpetuates this genotype within the population.
Collapse
|
12
|
Medina-Rojas M, Stribling W, Snesrud E, Garry BI, Li Y, Gann PM, Demons ST, Tyner SD, Zurawski DV, Antonic V. Comparison of Pseudomonas aeruginosa strains reveals that Exolysin A toxin plays an additive role in virulence. Pathog Dis 2020; 78:5804881. [PMID: 32167551 DOI: 10.1093/femspd/ftaa010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa possesses an array of virulence genes ensuring successful infection development. A two-partner secretion system Exolysin BA (ExlBA) is expressed in the PA7-like genetic outliers consisting of ExlA, a pore-forming toxin and ExlB transporter protein. Presence of exlBA in multidrug-resistant (MDR) strains has not been investigated, particularly in the strains isolated from wounded soldiers. METHODS We screened whole genome sequences of 2439 MDR- P. aeruginosa strains for the presence of exlBA. We compiled all exlBA positive strains and compared them with a diversity set for demographics, antimicrobial profiles and phenotypic characteristics: surface motility, biofilm formation, pyocyanin production and hemolysis. We compared the virulence of strains with comparable phenotypic characteristics in Galleria mellonella. RESULTS We identified 33 exlBA-positive strains (1.5%). These strains have increased antibiotic resistance, they are more motile, produce more robust biofilms and have comparable pyocianin production with the diversity set despite the phenotypic differences within the group. In in vivo infection models, these strains were less virulent than Type III Secretion System (T3SS) positive counterparts. CONCLUSIONS exlBA-positive strains are wide spread among the PA7-like outliers. While not as virulent as strains possessing T3SS, these strains exhibit phenotypic features associated with virulence and are still lethal in vivo.
Collapse
Affiliation(s)
- Maria Medina-Rojas
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - William Stribling
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Erik Snesrud
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Brittany I Garry
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Yuanzhang Li
- Walter Reed Army Institute of Research, Preventive Medicine, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Patrick Mc Gann
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Samandra T Demons
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Stuart D Tyner
- Walter Reed Army Institute of Research, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Daniel V Zurawski
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Vlado Antonic
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| |
Collapse
|
13
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
14
|
Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas aeruginosa Infection. J Mol Biol 2020; 432:5509-5528. [PMID: 32750389 DOI: 10.1016/j.jmb.2020.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
In the face of growing antimicrobial resistance, there is an urgent need for the development of effective strategies to target Pseudomonas aeruginosa. This metabolically versatile bacterium can cause a wide range of severe opportunistic infections in patients with serious underlying medical conditions, such as those with burns, surgical wounds or people with cystic fibrosis. Many of the key adaptations that arise in this organism during infection are centered on core metabolism and virulence factor synthesis. Interfering with these processes may provide a new strategy to combat infection which could be combined with conventional antibiotics. This review will provide an overview of the most recent work that has advanced our understanding of P. aeruginosa infection. Strategies that exploit this recent knowledge to combat infection will be highlighted alongside potential alternative therapeutic options and their limitations.
Collapse
|
15
|
For the Greater (Bacterial) Good: Heterogeneous Expression of Energetically Costly Virulence Factors. Infect Immun 2020; 88:IAI.00911-19. [PMID: 32041785 DOI: 10.1128/iai.00911-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial populations are phenotypically heterogeneous, which allows subsets of cells to survive and thrive following changes in environmental conditions. For bacterial pathogens, changes within the host environment occur over the course of the immune response to infection and can result in exposure to host-derived, secreted antimicrobials or force direct interactions with immune cells. Many recent studies have shown host cell interactions promote virulence factor expression, forcing subsets of bacterial cells to battle the host response, while other bacteria reap the benefits of this pacification. It still remains unclear whether virulence factor expression is truly energetically costly within host tissues and whether expression is sufficient to impact the growth kinetics of virulence factor-expressing cells. However, it is clear that slow-growing subsets of bacteria emerge during infection and that these subsets are particularly difficult to eliminate with antibiotics. This minireview will focus on our current understanding of heterogenous virulence factor expression and discuss the evidence that supports or refutes the hypothesis that virulence factor expression is linked to slowed growth and antibiotic tolerance.
Collapse
|
16
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
17
|
Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, Tomás M. Relationship Between Quorum Sensing and Secretion Systems. Front Microbiol 2019; 10:1100. [PMID: 31231316 PMCID: PMC6567927 DOI: 10.3389/fmicb.2019.01100] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Quorum sensing (QS) is a communication mechanism between bacteria that allows specific processes to be controlled, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms such as bacterial competition systems including secretion systems (SS). These SS have an important role in bacterial communication. SS are ubiquitous; they are present in both Gram-negative and Gram-positive bacteria and in Mycobacterium sp. To date, 8 types of SS have been described (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, and T9SS). They have global functions such as the transport of proteases, lipases, adhesins, heme-binding proteins, and amidases, and specific functions such as the synthesis of proteins in host cells, adaptation to the environment, the secretion of effectors to establish an infectious niche, transfer, absorption and release of DNA, translocation of effector proteins or DNA and autotransporter secretion. All of these functions can contribute to virulence and pathogenesis. In this review, we describe the known types of SS and discuss the ones that have been shown to be regulated by QS. Due to the large amount of information about this topic in some pathogens, we focus mainly on Pseudomonas aeruginosa and Vibrio spp.
Collapse
Affiliation(s)
- Rocio Trastoy Pena
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Antón Ambroa
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Fernández-García
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Ines Bleriot
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - German Bou
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thomas Keith Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Maria Tomás
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
18
|
Cheating on Cheaters Stabilizes Cooperation in Pseudomonas aeruginosa. Curr Biol 2018; 28:2070-2080.e6. [DOI: 10.1016/j.cub.2018.04.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
|
19
|
The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression. mBio 2018; 9:mBio.00668-18. [PMID: 29717012 PMCID: PMC5930308 DOI: 10.1128/mbio.00668-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen.
Collapse
|
20
|
Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques MA, Fischer-Le Saux M. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 2017; 26:5939-5952. [PMID: 28869687 PMCID: PMC7168496 DOI: 10.1111/mec.14343] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re‐acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Martial Briand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Céline Rousseau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Perrine Portier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Matthieu Barret
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | | |
Collapse
|
21
|
Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE) Pathogenicity Island in Enteropathogenic Escherichia coli. mBio 2017; 8:mBio.00773-17. [PMID: 28790204 PMCID: PMC5550750 DOI: 10.1128/mbio.00773-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro. Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression. Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro, the binding of H-NS to the LEE5 promoter results in local structural modifications of DNA distinct from those generated through Ler binding. Furthermore, ler expression is a key parameter modulating the variability of the proportions of bacterial subpopulations. Accordingly, modulating the production of Ler into a nonpathogenic E. coli strain reproduces the bimodal expression of LEE5. Finally, this study illustrates how two nucleoid-binding proteins can reshape the epigenetic regulation of bacterial virulence.
Collapse
|
22
|
Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev 2017; 41:679-697. [DOI: 10.1093/femsre/fux023] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
|
23
|
Bury-Moné S, Sclavi B. Stochasticity of gene expression as a motor of epigenetics in bacteria: from individual to collective behaviors. Res Microbiol 2017; 168:503-514. [PMID: 28427910 DOI: 10.1016/j.resmic.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 01/22/2023]
Abstract
Measuring gene expression at the single cell and single molecule level has recently made possible the quantitative measurement of stochasticity of gene expression. This enables identification of the probable sources and roles of noise. Gene expression noise can result in bacterial population heterogeneity, offering specific advantages for fitness and survival in various environments. This trait is therefore selected during the evolution of the species, and is consequently regulated by a specific genetic network architecture. Examples exist in stress-response mechanisms, as well as in infection and pathogenicity strategies, pointing to advantages for multicellularity of bacterial populations.
Collapse
Affiliation(s)
- Stéphanie Bury-Moné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, Université Paris-Saclay, F-94235, Cachan, France.
| |
Collapse
|
24
|
Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae. mBio 2017; 8:mBio.02273-16. [PMID: 28119474 PMCID: PMC5263251 DOI: 10.1128/mbio.02273-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The type III secretion system (T3SS) is a principal virulence determinant of the model bacterial plant pathogen Pseudomonas syringae T3SS effector proteins inhibit plant defense signaling pathways in susceptible hosts and elicit evolved immunity in resistant plants. The extracytoplasmic function sigma factor HrpL coordinates the expression of most T3SS genes. Transcription of hrpL is dependent on sigma-54 and the codependent enhancer binding proteins HrpR and HrpS for hrpL promoter activation. hrpL is oriented adjacently to and divergently from the HrpL-dependent gene hrpJ, sharing an intergenic upstream regulatory region. We show that association of the RNA polymerase (RNAP)-HrpL complex with the hrpJ promoter element imposes negative autogenous control on hrpL transcription in P. syringae pv. tomato DC3000. The hrpL promoter was upregulated in a ΔhrpL mutant and was repressed by plasmid-borne hrpL In a minimal Escherichia coli background, the activity of HrpL was sufficient to achieve repression of reconstituted hrpL transcription. This repression was relieved if both the HrpL DNA-binding function and the hrp-box sequence of the hrpJ promoter were compromised, implying dependence upon the hrpJ promoter. DNA-bound RNAP-HrpL entirely occluded the HrpRS and partially occluded the integration host factor (IHF) recognition elements of the hrpL promoter in vitro, implicating inhibition of DNA binding by these factors as a cause of negative autogenous control. A modest increase in the HrpL concentration caused hypersecretion of the HrpA1 pilus protein but intracellular accumulation of later T3SS substrates. We argue that negative feedback on HrpL activity fine-tunes expression of the T3SS regulon to minimize the elicitation of plant defenses. IMPORTANCE The United Nations Food and Agriculture Organization has warned that agriculture will need to satisfy a 50% to 70% increase in global food demand if the human population reaches 9 billion by 2050 as predicted. However, diseases caused by microbial pathogens represent a major threat to food security, accounting for over 10% of estimated yield losses in staple wheat, rice, and maize crops. Understanding the decision-making strategies employed by pathogens to coordinate virulence and to evade plant defenses is vital for informing crop resistance traits and management strategies. Many plant-pathogenic bacteria utilize the needle-like T3SS to inject virulence factors into host plant cells to suppress defense signaling. Pseudomonas syringae is an economically and environmentally devastating plant pathogen. We propose that the master regulator of its entire T3SS gene set, HrpL, downregulates its own expression to minimize elicitation of plant defenses. Revealing such conserved regulatory strategies will inform future antivirulence strategies targeting plant pathogens.
Collapse
|
25
|
Ito K, McNamara JM, Yamauchi A, Higginson AD. The evolution of cooperation by negotiation in a noisy world. J Evol Biol 2016; 30:603-615. [PMID: 27987525 DOI: 10.1111/jeb.13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023]
Abstract
Cooperative interactions among individuals are ubiquitous despite the possibility of exploitation by selfish free riders. One mechanism that may promote cooperation is 'negotiation': individuals altering their behaviour in response to the behaviour of others. Negotiating individuals decide their actions through a recursive process of reciprocal observation, thereby reducing the possibility of free riding. Evolutionary games with response rules have shown that infinitely many forms of the rule can be evolutionarily stable simultaneously, unless there is variation in individual quality. This potentially restricts the conditions under which negotiation could maintain cooperation. Organisms interact with one another in a noisy world in which cooperative effort and the assessment of effort may be subject to error. Here, we show that such noise can make the number of evolutionarily stable rules finite, even without quality variation, and so noise could help maintain cooperative behaviour. We show that the curvature of the benefit function is the key factor determining whether individuals invest more or less as their partner's investment increases, investing less when the benefit to investment has diminishing returns. If the benefits of low investment are very small then behavioural flexibility tends to promote cooperation, because negotiation enables cooperators to reach large benefits. Under some conditions, this leads to a repeating cycle in which cooperative behaviour rises and falls over time, which may explain between-population differences in cooperative behaviour. In other conditions, negotiation leads to extremely high levels of cooperative behaviour, suggesting that behavioural flexibility could facilitate the evolution of eusociality in the absence of high relatedness.
Collapse
Affiliation(s)
- K Ito
- School of Science, Kyushu University, Nishi-ku, Fukuoka, Japan.,Center for Ecological Research, Kyoto University, Otsu, Japan.,Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - J M McNamara
- School of Mathematics, University of Bristol, Bristol, UK
| | - A Yamauchi
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - A D Higginson
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
26
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
27
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|
28
|
Li M, Long Y, Liu Y, Liu Y, Chen R, Shi J, Zhang L, Jin Y, Yang L, Bai F, Jin S, Cheng Z, Wu W. HigB of Pseudomonas aeruginosa Enhances Killing of Phagocytes by Up-Regulating the Type III Secretion System in Ciprofloxacin Induced Persister Cells. Front Cell Infect Microbiol 2016; 6:125. [PMID: 27790409 PMCID: PMC5064212 DOI: 10.3389/fcimb.2016.00125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Bacterial persister cells are dormant and highly tolerant to lethal antibiotics, which are believed to be the major cause of recurring and chronic infections. Activation of toxins of bacterial toxin-antitoxin systems inhibits bacterial growth and plays an important role in persister formation. However, little is known about the overall gene expression profile upon toxin activation. More importantly, how the dormant bacterial persisters evade host immune clearance remains poorly understood. Here we demonstrate that a Pseudomonas aeruginosa toxin-antitoxin system HigB-HigA is required for the ciprofloxacin induced persister formation. Transcriptome analysis of a higA::Tn mutant revealed up regulation of type III secretion systems (T3SS) genes. Overexpression of HigB increased the expression of T3SS genes as well as bacterial cytotoxicity. We further demonstrate that wild type bacteria that survived ciprofloxacin treatment contain higher levels of T3SS proteins and display increased cytotoxicity to macrophage compared to vegetative bacterial cells. These results suggest that P. aeruginosa accumulates T3SS proteins during persister formation, which can protect the persister cells from host clearance by efficiently killing host immune cells.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ying Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yang Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore; School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological UniversitySingapore, Singapore
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
29
|
Affiliation(s)
- Ethan A. Rundell
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Saria A. McKeithen-Mead
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
31
|
Xavier JB. Sociomicrobiology and Pathogenic Bacteria. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0019-2015. [PMID: 27337482 PMCID: PMC4920084 DOI: 10.1128/microbiolspec.vmbf-0019-2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action, and potential drug targets, and much of medicine's success in the treatment of infectious disease stems from that approach. But many bacteria-caused diseases cannot be explained by a single bacterium. Several aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction among bacteria of the same species and between species in consortia such as the human microbiome. The emerging discipline of sociomicrobiology provides a framework to dissect microbial interactions in single and multi-species communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology, where communities, their interactions with hosts, and with the environment play key roles.
Collapse
Affiliation(s)
- Joao B. Xavier
- Program for Computational Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, NY 10065,
| |
Collapse
|
32
|
Khandige S, Møller-Jensen J. Fimbrial phase variation: stochastic or cooperative? Curr Genet 2015; 62:237-41. [DOI: 10.1007/s00294-015-0529-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
|
33
|
Desmarais SM, Tropini C, Miguel A, Cava F, Monds RD, de Pedro MA, Huang KC. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography. J Biol Chem 2015; 290:31090-100. [PMID: 26468288 DOI: 10.1074/jbc.m115.661660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
Collapse
Affiliation(s)
| | - Carolina Tropini
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305
| | | | - Felipe Cava
- the Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, 90187 Sweden
| | - Russell D Monds
- From the Departments of Bioengineering and the Bio-X Program, Stanford University, Stanford, California 94305, and
| | - Miguel A de Pedro
- the Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Kerwyn Casey Huang
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305, the Bio-X Program, Stanford University, Stanford, California 94305, and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305,
| |
Collapse
|
34
|
Trantas EA, Licciardello G, Almeida NF, Witek K, Strano CP, Duxbury Z, Ververidis F, Goumas DE, Jones JDG, Guttman DS, Catara V, Sarris PF. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol 2015; 6:811. [PMID: 26300874 PMCID: PMC4528175 DOI: 10.3389/fmicb.2015.00811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.
Collapse
Affiliation(s)
- Emmanouil A Trantas
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | | | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul Campo Grande, Brazil
| | - Kamil Witek
- The Sainsbury Laboratory, John Innes Centre Norwich, UK
| | - Cinzia P Strano
- Department of Agriculture, Food and Environment, University of Catania Catania, Italy
| | - Zane Duxbury
- The Sainsbury Laboratory, John Innes Centre Norwich, UK
| | - Filippos Ververidis
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | - Dimitrios E Goumas
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece ; Plant Pathology and Bacteriology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | | | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto Toronto, ON, Canada
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania Catania, Italy
| | - Panagiotis F Sarris
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece ; The Sainsbury Laboratory, John Innes Centre Norwich, UK
| |
Collapse
|
35
|
Abstract
Laboratory experiments show that social interactions between bacterial cells can drive evolutionary change at the population level, but significant challenges limit attempts to assess the relevance of these findings to natural populations, where selection pressures are unknown. We have increasingly sophisticated methods for monitoring phenotypic and genotypic dynamics in bacteria causing infectious disease, but in contrast, we lack evidence-based adaptive explanations for those changes. Evolutionary change during infection is often interpreted as host adaptation, but this assumption neglects to consider social dynamics shown to drive evolutionary change in vitro. We provide evidence to show that long-term behavioral dynamics observed in a pathogen are driven by selection to outcompete neighboring conspecific cells through social interactions. We find that Pseudomonas aeruginosa bacteria, causing lung infections in patients with cystic fibrosis, lose cooperative iron acquisition by siderophore production during infection. This loss could be caused by changes in iron availability in the lung, but surprisingly, we find that cells retain the ability to take up siderophores produced by conspecifics, even after they have lost the ability to synthesize siderophores. Only when cooperative producers are lost from the population is the receptor for uptake lost. This finding highlights the potential pitfalls of interpreting loss of function in pathogenic bacterial populations as evidence for trait redundancy in the host environment. More generally, we provide an example of how sequence analysis can be used to generate testable hypotheses about selection driving long-term phenotypic changes of pathogenic bacteria in situ.
Collapse
|