1
|
De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer's disease from insights into the structure and function of γ-secretases. EMBO J 2024; 43:887-903. [PMID: 38396302 PMCID: PMC10943082 DOI: 10.1038/s44318-024-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aβ peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Bart De Strooper
- Dementia Research Institute, Institute of Neurology, University College London, at the Francis Crick Institute, London, NW1 AT, UK.
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, and Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| | - Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Chen SY, Koch M, Chávez-Gutiérrez L, Zacharias M. How Modulator Binding at the Amyloidβ-γ-Secretase Interface Enhances Substrate Binding and Attenuates Membrane Distortion. J Med Chem 2023; 66:16772-16782. [PMID: 38059872 DOI: 10.1021/acs.jmedchem.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibition of γ-secretase, an intramembrane protease, to reduce secretion of Amyloid-β (Aβ) peptides has been considered for treating Alzheimer's disease. However, γ-secretase inhibitors suffer from severe side effects. As an alternative, γ-secretase modulators (GSM) reduce the generation of toxic peptides by enhancing the cleavage processivity without diminishing the enzyme activity. Starting from a known γ-secretase structure without substrate but in complex with an E2012 GSM, we generated a structural model that included a bound Aβ43 peptide and studied interactions among enzyme, substrate, GSM, and lipids. Our result suggests that E2012 binding at the enzyme-substrate-membrane interface attenuates the membrane distortion by shielding the substrate-membrane interaction. The model predicts that the E2012 modulation is charge-dependent and explains the preserved hydrogen acceptor and the aromatic ring observed in many imidazole-based GSM. Predicted effects of γ-secretase mutations on E2012 modulation were confirmed experimentally. We anticipate that the study will facilitate the future development of effective GSMs.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Center for Functional Protein Assemblies, Garching 85748, Germany
| | - Matthias Koch
- VIB/KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
| | | | - Martin Zacharias
- Center for Functional Protein Assemblies, Garching 85748, Germany
| |
Collapse
|
3
|
Koch M, Enzlein T, Chen S, Petit D, Lismont S, Zacharias M, Hopf C, Chávez‐Gutiérrez L. APP substrate ectodomain defines amyloid-β peptide length by restraining γ-secretase processivity and facilitating product release. EMBO J 2023; 42:e114372. [PMID: 37853914 PMCID: PMC10690472 DOI: 10.15252/embj.2023114372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Sequential proteolysis of the amyloid precursor protein (APP) by γ-secretases generates amyloid-β (Aβ) peptides and defines the proportion of short-to-long Aβ peptides, which is tightly connected to Alzheimer's disease (AD) pathogenesis. Here, we study the mechanism that controls substrate processing by γ-secretases and Aβ peptide length. We found that polar interactions established by the APPC99 ectodomain (ECD), involving but not limited to its juxtamembrane region, restrain both the extent and degree of γ-secretases processive cleavage by destabilizing enzyme-substrate interactions. We show that increasing hydrophobicity, via mutation or ligand binding, at APPC99 -ECD attenuates substrate-driven product release and rescues the effects of Alzheimer's disease-associated pathogenic γ-secretase and APP variants on Aβ length. In addition, our study reveals that APPC99 -ECD facilitates the paradoxical production of longer Aβs caused by some γ-secretase inhibitors, which act as high-affinity competitors of the substrate. These findings assign a pivotal role to the substrate ECD in the sequential proteolysis by γ-secretases and suggest it as a sweet spot for the potential design of APP-targeting compounds selectively promoting its processing by these enzymes.
Collapse
Affiliation(s)
- Matthias Koch
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
| | - Shu‐Yu Chen
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Dieter Petit
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Sam Lismont
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Martin Zacharias
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
4
|
Petit D, Hitzenberger M, Koch M, Lismont S, Zoltowska KM, Enzlein T, Hopf C, Zacharias M, Chávez-Gutiérrez L. Enzyme-substrate interface targeting by imidazole-based γ-secretase modulators activates γ-secretase and stabilizes its interaction with APP. EMBO J 2022; 41:e111084. [PMID: 36121025 DOI: 10.15252/embj.2022111084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation-prone amyloid β (Aβ) peptides in the brain. Γ-secretases generate Aβ peptides from the amyloid precursor protein (APP). Γ-secretase modulators (GSMs) promote the generation of shorter, less-amyloidogenic Aβs and have therapeutic potential. However, poorly defined drug-target interactions and mechanisms of action have hampered their therapeutic development. Here, we investigate the interactions between the imidazole-based GSM and its target γ-secretase-APP using experimental and in silico approaches. We map the GSM binding site to the enzyme-substrate interface, define a drug-binding mode that is consistent with functional and structural data, and provide molecular insights into the underlying mechanisms of action. In this respect, our analyses show that occupancy of a γ-secretase (sub)pocket, mediating binding of the modulator's imidazole moiety, is sufficient to trigger allosteric rearrangements in γ-secretase as well as stabilize enzyme-substrate interactions. Together, these findings may facilitate the rational design of new modulators of γ-secretase with improved pharmacological properties.
Collapse
Affiliation(s)
- Dieter Petit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Manuel Hitzenberger
- Center for Functional Protein Assemblies, Theoretical Biophysics (T38), Technical University of Munich, Garching, Germany
| | - Matthias Koch
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Katarzyna Marta Zoltowska
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Theoretical Biophysics (T38), Technical University of Munich, Garching, Germany
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Lichtenthaler SF, Tschirner SK, Steiner H. Secretases in Alzheimer's disease: Novel insights into proteolysis of APP and TREM2. Curr Opin Neurobiol 2021; 72:101-110. [PMID: 34689040 DOI: 10.1016/j.conb.2021.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Secretases are a group of proteases that are major drug targets considered for the prevention and treatment of Alzheimer's disease (AD). Secretases do not only process the AD-linked neuronal amyloid precursor protein (APP) but also the triggering receptor expressed on myeloid cells 2 (TREM2), thereby controlling microglial functions. This review highlights selected recent discoveries for the α-secretases a disintegrin and metalloprotease 10 (ADAM10) and a disintegrin and metalloprotease 17 (ADAM17), the β-secretase β-site APP cleaving enzyme 1 (BACE1) and γ-secretase and their link to AD. New genetic evidence strengthens the role of α-secretases in AD through cleavage of APP and TREM2. Novel proteins were linked to AD, which control α- and β-secretase activity through transcriptional and post-translational mechanisms. Finally, new opportunities but also challenges are discussed for pharmacologically targeting β- and γ-secretase cleavage of APP and α-secretase cleavage of TREM2 with the aim to prevent or treat AD.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
6
|
Santiago Á, Guzmán-Ocampo DC, Aguayo-Ortiz R, Dominguez L. Characterizing the Chemical Space of γ-Secretase Inhibitors and Modulators. ACS Chem Neurosci 2021; 12:2765-2775. [PMID: 34291906 DOI: 10.1021/acschemneuro.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
γ-Secretase (GS) is one of the most attractive molecular targets for the treatment of Alzheimer's disease (AD). Its key role in the final step of amyloid-β peptides generation and its relationship in the cascade of events for disease development have caught the attention of many pharmaceutical groups. Over the past years, different inhibitors and modulators have been evaluated as promising therapeutics against AD. However, despite the great chemical diversity of the reported compounds, a global classification and visual representation of the chemical space for GS inhibitors and modulators remain unavailable. In the present work, we carried out a two-dimensional (2D) chemical space analysis from different classes and subclasses of GS inhibitors and modulators based on their structural similarity. Along with the novel structural information available for GS complexes, our analysis opens the possibility to identify compounds with high molecular similarity, critical to finding new chemical structures through the optimization of existing compounds and relating them with a potential binding site.
Collapse
Affiliation(s)
- Ángel Santiago
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Dulce C. Guzmán-Ocampo
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
8
|
Li WH, Gan LH, Ma FF, Feng RL, Wang J, Li YH, Sun YY, Wang YJ, Diao X, Qian FY, Wen TQ. Deletion of Dcf1 Reduces Amyloid-β Aggregation and Mitigates Memory Deficits. J Alzheimers Dis 2021; 81:1181-1194. [PMID: 33896839 DOI: 10.3233/jad-200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-β (Aβ) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aβ aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients. OBJECTIVE Our goal is to investigate the effect of Dcf1 on Aβ aggregation and memory deficits in AD development. METHODS The mouse and Drosophila AD model were used to test the expression and aggregation of Aβ, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies. RESULTS Deletion of Dcf1 resulted in decreased Aβ42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aβ42 AD Drosophila, the expression of Dcf1 in Aβ42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aβ aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice. CONCLUSION Dcf1 causes Aβ-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.
Collapse
Affiliation(s)
- Wei-Hao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin-Hua Gan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang-Fang Ma
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui-Li Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan-Hui Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang-Yang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ya-Jiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin Diao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei-Yang Qian
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tie-Qiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Cai T, Tomita T. Sequential conformational changes in transmembrane domains of presenilin 1 in Aβ42 downregulation. J Biochem 2021; 170:215-227. [PMID: 33739423 DOI: 10.1093/jb/mvab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease worldwide. AD is pathologically characterized by the deposition of senile plaques in the brain, which are composed of an amyloid-β peptide (Aβ) that is produced through the multistep cleavage of amyloid precursor protein (APP) by γ-secretase. γ-Secretase is a membrane protein complex, which includes its catalytic subunit presenilin 1 (PS1). However, much about the structural dynamics of this enzyme remain unclear. We have previously demonstrated that movements of the transmembrane domain (TMD) 1 and TMD3 of PS1 are strongly associated with decreased production of the Aβ peptide ending at the 42nd residue (i.e., Aβ42), which is the aggregation-prone, toxic species. However, the association between these movements as well as the sequence of these TMDs remains unclear. In this study, we raised the possibility that the vertical movement of TMD1 is a prerequisite for expansion of the catalytic cavity around TMD3 of PS1, resulting in reduced Aβ42 production. Our results shed light on the association between the conformational changes of TMDs and the regulation of γ-secretase activity.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
11
|
Liu L, Lauro BM, Wolfe MS, Selkoe DJ. Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate γ-secretase function in generating Alzheimer-causing Aβ peptides. J Biol Chem 2021; 296:100393. [PMID: 33571524 PMCID: PMC7961089 DOI: 10.1016/j.jbc.2021.100393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
γ-Secretase is responsible for the proteolysis of amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides, which are centrally implicated in the pathogenesis of Alzheimer’s disease (AD). The biochemical mechanism of how processing by γ-secretase is regulated, especially as regards the interaction between enzyme and substrate, remains largely unknown. Here, mutagenesis reveals that the hydrophilic loop-1 (HL-1) of presenilin-1 (PS1) is critical for both γ-secretase step-wise cleavages (processivity) and its allosteric modulation by heterocyclic γ-modulatory compounds. Systematic mutagenesis of HL-1, including all of its familial AD mutations and additional engineered variants, and quantification of the resultant Aβ products show that HL-1 is necessary for proper sequential γ-secretase processivity. We identify Y106, L113, and Y115 in HL-1 as key targets for heterocyclic γ-secretase modulators (GSMs) to stimulate processing of pathogenic Aβ peptides. Further, we confirm that the GxxxG domain in the APP transmembrane region functions as a critical substrate motif for γ-secretase processivity: a G29A substitution in APP-C99 mimics the beneficial effects of GSMs. Together, these findings provide a molecular basis for the structural regulation of γ-processivity by enzyme and substrate, facilitating the rational design of new GSMs that lower AD-initiating amyloidogenic Aβ peptides.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bianca M Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S Wolfe
- Department of Medical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Mehra R, Kepp KP. Computational prediction and molecular mechanism of γ-secretase modulators. Eur J Pharm Sci 2021; 157:105626. [DOI: 10.1016/j.ejps.2020.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
|
13
|
Chen SY, Zacharias M. How Mutations Perturb γ-Secretase Active Site Studied by Free Energy Simulations. ACS Chem Neurosci 2020; 11:3321-3332. [PMID: 32960571 DOI: 10.1021/acschemneuro.0c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is involved in processing of the amyloid precursor protein (APP) and generation of short Aβ peptides that may play a key role in neurodegenerative diseases such as Alzheimer's disease (AD). Several mutations in γ-secretase influence its activity, resulting in early AD onset (Familial AD or FAD mutations). The molecular details of how mutations, not located close to the active site, can affect enzyme activity is not understood. In molecular dynamics simulations of γ-secretase in the absence of substrate (apo), we identified two active site conformational states characterized by a direct contact between catalytic Asp residues (closed state) and an open water-bridged state. In the presence of substrate, only conformations compatible with the open active site geometry are accessible. Systematic free energy simulations on wild type and FAD mutations indicate a free energy difference between closed and open states that is significantly modulated by FAD mutations and correlates with the corresponding experimental activity. For mutations with reduced activity, an increased penalty for open-state transitions was found. Only for two mutations located at the active site a direct perturbation of the open-state geometry was observed that could directly explain the drop of enzyme activity. The simulations suggest that modulation of the closed/open equilibrium and perturbation of the open (active) catalytic geometry are possible mechanisms of how FAD mutations affect γ-secretase activity. The results also offer an explanation for the experimental finding that FAD mutations, although not located at the interface to the substrate, mainly destabilize the enzyme-substrate complex.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physik-Department T38,Techniche Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
14
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
15
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
16
|
Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. Front Mol Neurosci 2020; 13:137. [PMID: 32848600 PMCID: PMC7418514 DOI: 10.3389/fnmol.2020.00137] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of senile dementia, characterized by neurofibrillary tangle and amyloid plaque in brain pathology. Major efforts in AD drug were devoted to the interference with the production and accumulation of amyloid-β peptide (Aβ), which plays a causal role in the pathogenesis of AD. Aβ is generated from amyloid precursor protein (APP), by consecutive cleavage by β-secretase and γ-secretase. Therefore, β-secretase and γ-secretase inhibition have been the focus for AD drug discovery efforts for amyloid reduction. Here, we review β-secretase inhibitors and γ-secretase inhibitors/modulators, and their efficacies in clinical trials. In addition, we discussed the novel concept of specifically targeting the γ-secretase substrate APP. Targeting amyloidogenic processing of APP is still a fundamentally sound strategy to develop disease-modifying AD therapies and recent advance in γ-secretase/APP complex structure provides new opportunities in designing selective inhibitors/modulators for AD.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Nie P, Vartak A, Li YM. γ-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of γ-Secretase. Semin Cell Dev Biol 2020; 105:43-53. [PMID: 32249070 DOI: 10.1016/j.semcdb.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Over two decades, γ-secretase has been the target for extensive therapeutic development due to its pivotal role in pathogenesis of Alzheimer's disease and cancer. However, it has proven to be a challenging task owing to its large set of substrates and our limited understanding of the enzyme's structural and mechanistic features. The scientific community is taking bigger strides towards solving this puzzle with recent advancement in techniques like cryogenic electron microscopy (cryo-EM) and photo-affinity labelling (PAL). This review highlights the significance of the PAL technique with multiple examples of photo-probes developed from γ-secretase inhibitors and modulators. The binding of these probes into active and/or allosteric sites of the enzyme has provided crucial information on the γ-secretase complex and improved our mechanistic understanding of this protease. Combining the knowledge of function and regulation of γ-secretase will be a decisive factor in developing novel γ-secretase modulators and biological therapeutics.
Collapse
Affiliation(s)
- Pengju Nie
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Abhishek Vartak
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
20
|
Trambauer J, Fukumori A, Steiner H. Pathogenic Aβ generation in familial Alzheimer’s disease: novel mechanistic insights and therapeutic implications. Curr Opin Neurobiol 2020; 61:73-81. [DOI: 10.1016/j.conb.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/06/2023]
|
21
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Trambauer J, Rodríguez Sarmiento RM, Fukumori A, Feederle R, Baumann K, Steiner H. Aβ43-producing PS1 FAD mutants cause altered substrate interactions and respond to γ-secretase modulation. EMBO Rep 2020; 21:e47996. [PMID: 31762188 PMCID: PMC6945062 DOI: 10.15252/embr.201947996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Abnormal generation of neurotoxic amyloid-β peptide (Aβ) 42/43 species due to mutations in the catalytic presenilin 1 (PS1) subunit of γ-secretase is the major cause of familial Alzheimer's disease (FAD). Deeper mechanistic insight on the generation of Aβ43 is still lacking, and it is unclear whether γ-secretase modulators (GSMs) can reduce the levels of this Aβ species. By comparing several types of Aβ43-generating FAD mutants, we observe that very high levels of Aβ43 are often produced when presenilin function is severely impaired. Altered interactions of C99, the precursor of Aβ, are found for all mutants and are independent of their particular effect on Aβ production. Furthermore, unlike previously described GSMs, the novel compound RO7019009 can effectively lower Aβ43 production of all mutants. Finally, substrate-binding competition experiments suggest that RO7019009 acts mechanistically after initial C99 binding. We conclude that altered C99 interactions are a common feature of diverse types of PS1 FAD mutants and that also patients with Aβ43-generating FAD mutations could in principle be treated by GSMs.
Collapse
Affiliation(s)
- Johannes Trambauer
- Biomedical Center (BMC), Metabolic BiochemistryLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Akio Fukumori
- Department of Aging NeurobiologyNational Center for Geriatrics and GerontologyObuJapan
- Department of Mental Health PromotionOsaka University Graduate School of MedicineToyonakaJapan
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center MunichGerman Research Center for Environmental HealthNeuherbergGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Karlheinz Baumann
- Roche Pharma Research and Early DevelopmentRoche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic BiochemistryLudwig‐Maximilians‐UniversityMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
23
|
Mehra R, Dehury B, Kepp KP. Cryo-temperature effects on membrane protein structure and dynamics. Phys Chem Chem Phys 2020; 22:5427-5438. [DOI: 10.1039/c9cp06723j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cryo-electron structures revolutionize biology, yet cooling effects are unclear. Using a simulation protocol of hot, cold, and rapidly cooled γ-secretase we identify cryo-contraction and modes relevant to Aβ production and cryo-analysis in general.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- DTU Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Budheswar Dehury
- DTU Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Kasper P. Kepp
- DTU Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| |
Collapse
|
24
|
Cai T, Morishima K, Takagi-Niidome S, Tominaga A, Tomita T. Conformational Dynamics of Transmembrane Domain 3 of Presenilin 1 Is Associated with the Trimming Activity of γ-Secretase. J Neurosci 2019; 39:8600-8610. [PMID: 31527118 PMCID: PMC6807281 DOI: 10.1523/jneurosci.0838-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates the toxic species of the amyloid-β peptide (Aβ) that is responsible for the pathology of Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which is a polytopic membrane protein with a hydrophilic catalytic pore. The length of the C terminus of Aβ is proteolytically determined by its processive trimming by γ-secretase, although the precise mechanism still remains largely unknown. Here, we identified that transmembrane domain (TMD) 3 of human PS1 is involved in the formation of the intramembranous hydrophilic pore. Notably, the water accessibility of TMD3 was greatly altered by point mutations and compounds, which modify γ-secretase activity. The changes in the water accessibility of TMD3 was also correlated with Aβ42 production. Moreover, crosslinking between TMD3 and TMD7 resulted in a loss of sensitivity to a γ-secretase modulator that reduces Aβ42 production. Therefore, our findings indicate that the conformational dynamics of TMD3 is a prerequisite for regulation of the Aβ trimming activity of γ-secretase.SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce the level of toxic amyloid-β species is thought to be a therapeutic strategy for Alzheimer disease. However, the detailed mechanism of the regulation of amyloid-β production, as well as the structure-and-activity relationship of γ-secretase remains unclear. Here we identified that the water accessibility around transmembrane domain 3 in presenilin 1 was increased along with a reduction in toxic amyloid-β production. Our findings demonstrate how the structure of presenilin 1 dynamically changes during amyloid-β production, and provides insights toward the development of treatments against Alzheimer disease.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Kanan Morishima
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shizuka Takagi-Niidome
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Aya Tominaga
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
25
|
Silva GM, Barcelos MP, Poiani JGC, Hage-Melim LIDS, da Silva CHTDP. Allosteric Modulators of Potential Targets Related to Alzheimer's Disease: a Review. ChemMedChem 2019; 14:1467-1483. [PMID: 31310701 DOI: 10.1002/cmdc.201900299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common type of dementia, and there is an urgent need to discover new and efficacious forms of treatment for it. Pathological patterns of AD include cholinergic dysfunction, increased β-amyloid (Aβ) peptide concentration, the appearance of neurofibrillary tangles, among others, all of which are strongly associated with specific biological targets. Interactions observed between these targets and potential drug candidates in AD most often occur by competitive mechanisms driven by orthosteric ligands that sometimes result in the production of side effects. In this context, the allosteric mechanism represents a key strategy; this can be regarded as the selective modulation of such targets by allosteric modulators in an advantageous manner, as this may decrease the likelihood of side effects. The purpose of this review is to present an overview of compounds that act as allosteric modulators of the main biological targets related to AD.
Collapse
Affiliation(s)
- Guilherme Martins Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - João Gabriel Curtolo Poiani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil
| | - Lorane Izabel da Silva Hage-Melim
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, KM-02, 68903-419, Macapá, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Li H, Chang YY, Lee JY, Bahar I, Yang LW. DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 2019; 45:W374-W380. [PMID: 28472330 PMCID: PMC5793847 DOI: 10.1093/nar/gkx385] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
DynOmics (dynomics.pitt.edu) is a portal developed to leverage rapidly growing structural proteomics data by efficiently and accurately evaluating the dynamics of structurally resolved systems, from individual molecules to large complexes and assemblies, in the context of their physiological environment. At the core of the portal is a newly developed server, ENM 1.0, which permits users to efficiently generate information on the collective dynamics of any structure in PDB format, user-uploaded or database-retrieved. ENM 1.0 integrates two widely used elastic network models (ENMs)—the Gaussian Network Model (GNM) and the Anisotropic Network Model (ANM), extended to take account of molecular environment. It enables users to assess potentially functional sites, signal transduction or allosteric communication mechanisms, and protein–protein and protein–DNA interaction poses, in addition to delivering ensembles of accessible conformers reconstructed at atomic details based on the global modes of motions predicted by the ANM. The ‘environment’ is defined in a flexible manner, from lipid bilayer and crystal contacts, to substrate or ligands bound to a protein, or surrounding subunits in a multimeric structure or assembly. User-friendly interactive features permit users to easily visualize how the environment alter the intrinsic dynamics of the query systems. ENM 1.0 can be accessed at http://enm.pitt.edu/ or http://dyn.life.nthu.edu.tw/oENM/.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213, USA
| | - Yuan-Yu Chang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Taiwan
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213, USA
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Taiwan
| |
Collapse
|
27
|
Blanco JA, Alonso A, Blanco J, Rojo E, Tellería JJ, Torres MA, Uribe F. Novel presenilin 1 mutation (p.Thr-Pro116-117Ser-Thr) in a Spanish family with early-onset Alzheimer's disease. Neurobiol Aging 2019; 84:238.e19-238.e24. [PMID: 31204041 DOI: 10.1016/j.neurobiolaging.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
Abstract
Presenilin 1 (PSEN1) is a γ-secretase component, which is in charge of the amyloid precursor protein (APP) cleavage. APP is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). PSEN1 mutations are the most important causes of familial AD, being related to the earlier onset and rapid progression of the disease. Presenilins and APP mutations represent an extraordinary opportunity to study the pathophysiology of AD. We describe the clinical and genetic study of a 37-year-old male patient with a novel mutation in PSEN1 (p.Thr-Pro116-117Ser-Thr). We have studied the pedigree of his family with a further 9 members affected, all of them with onset in their 30s. We have also described the clinical data and results of brain biopsies in 2 of them. DNA sequencing of a tissue sample from an uncle of the patient, who died of AD in the 80s, showed the same mutation as in the patient. These data and predictive analysis indicate the pathogenicity of the mutation.
Collapse
Affiliation(s)
- Jose Antonio Blanco
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain; School of Medicine, University of Valladolid, Valladolid, Spain.
| | - Adrian Alonso
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Jorge Blanco
- Psychiatry Service, Basurto Hospital of Bilbao, Bilbao, Spain
| | - Esther Rojo
- Neurology Service, Clinical University Hospital of Valladolid, Valladolid, Spain
| | | | - Maria Angeles Torres
- Histopathology Service, Rio Hortega University Hospital of Valladolid, Valladolid, Spain
| | - Fernando Uribe
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
28
|
Petit D, Hitzenberger M, Lismont S, Zoltowska KM, Ryan NS, Mercken M, Bischoff F, Zacharias M, Chávez-Gutiérrez L. Extracellular interface between APP and Nicastrin regulates Aβ length and response to γ-secretase modulators. EMBO J 2019; 38:e101494. [PMID: 31109937 PMCID: PMC6576158 DOI: 10.15252/embj.2019101494] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
γ-Secretase complexes (GSECs) are multimeric membrane proteases involved in a variety of physiological processes and linked to Alzheimer's disease (AD). Presenilin (PSEN, catalytic subunit), Nicastrin (NCT), Presenilin Enhancer 2 (PEN-2), and Anterior Pharynx Defective 1 (APH1) are the essential subunits of GSECs. Mutations in PSEN and the Amyloid Precursor Protein (APP) cause early-onset AD GSECs successively cut APP to generate amyloid-β (Aβ) peptides of various lengths. AD-causing mutations destabilize GSEC-APP/Aβn interactions and thus enhance the production of longer Aβs, which elicit neurotoxic events underlying pathogenesis. Here, we investigated the molecular strategies that anchor GSEC and APP/Aβn during the sequential proteolysis. Our studies reveal that a direct interaction between NCT ectodomain and APPC99 influences the stability of GSEC-Aβn assemblies and thereby modulates Aβ length. The data suggest a potential link between single-nucleotide variants in NCSTN and AD risk. Furthermore, our work indicates that an extracellular interface between the protease (NCT, PSEN) and the substrate (APP) represents the target for compounds (GSMs) modulating Aβ length. Our findings may guide future rationale-based drug discovery efforts.
Collapse
Affiliation(s)
- Dieter Petit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Manuel Hitzenberger
- Physics Department, Theoretical Biophysics (T38), Technical University of Munich, München, Germany
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Katarzyna Marta Zoltowska
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology, London, UK
| | - Marc Mercken
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
- Janssen Research & Development, Neuroscience biology Turnhoutseweg, Beerse, Belgium
| | - François Bischoff
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martin Zacharias
- Physics Department, Theoretical Biophysics (T38), Technical University of Munich, München, Germany
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
30
|
Aguayo-Ortiz R, Straub JE, Dominguez L. Influence of membrane lipid composition on the structure and activity of γ-secretase. Phys Chem Chem Phys 2018; 20:27294-27304. [PMID: 30357233 PMCID: PMC11260083 DOI: 10.1039/c8cp04138e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
γ-Secretase (GS) is a multi-subunit membrane-embedded aspartyl protease that cleaves more than 80 integral membrane proteins, including the amyloid precursor protein (APP) to produce the amyloid-β (Aβ) peptide. Oligomerization and aggregation of the 42-amino acid length Aβ isoform in the brain has been associated with the development and progression of Alzheimer's disease (AD). Based on recent experimental structural studies and using multiscale computational modeling approaches, the conformational states and protein-membrane interactions of the GS complex embedded in six homogeneous and six heterogeneous lipid bilayers were characterized. In order to identify potential lipid and cholesterol binding sites, GS regions with high lipid/cholesterol occupancy values were analyzed using atomistic and coarse-grained simulations. Long lipid residence times were observed to be correlated with a large number of hydrogen bonds between the charged headgroups and key GS amino acids. This observation provides a plausible explanation for the inhibition of GS by charged lipids observed in previous experimental studies. Computed lateral pressure profiles suggest that higher transmembrane pressures favor active state conformations of the catalytic subunit. A probable mechanism for the regulation of the local stress response in cholesterol-rich multicomponent lipid bilayers is identified. Finally, it is demonstrated that interactions between the nicastrin extracellular domain and lipid headgroups leads to a compact structural conformation of the GS complex. Overall, this study provides valuable insight into the effect of bilayer lipid composition on the GS structural ensemble and its function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | | | | |
Collapse
|
31
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
32
|
Imai S, Cai T, Yoshida C, Tomita T, Futai E. Specific mutations in presenilin 1 cause conformational changes in γ-secretase to modulate amyloid β trimming. J Biochem 2018; 165:37-46. [DOI: 10.1093/jb/mvy081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- So Imai
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Tetsuo Cai
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Chika Yoshida
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Eugene Futai
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiazaaoba, Aobaku, Sendai, Miyagi, Japan
| |
Collapse
|
33
|
Kanatsu K, Hori Y, Ebinuma I, Chiu YW, Tomita T. Retrograde transport of γ-secretase from endosomes to the trans-Golgi network regulates Aβ42 production. J Neurochem 2018; 147:110-123. [PMID: 29851073 DOI: 10.1111/jnc.14477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/08/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
The aberrant metabolism of amyloid-β protein (Aβ) in the human brain has been implicated in the etiology of Alzheimer disease (AD). γ-Secretase is the enzyme that generates various forms of Aβ, such as Aβ40 and Aβ42, the latter being an aggregation-prone toxic peptide that is involved in the pathogenesis of AD. Recently, we found that clathrin-mediated endocytosis of γ-secretase affects the production and deposition of Aβ42 in vivo, suggesting that the membrane trafficking of γ-secretase affects its enzymatic activity. However, the detailed intracellular trafficking pathway of γ-secretase and its contribution to Aβ42 generation remain unclear. Here, we show that Retro-2, which inhibits the retrograde transport, elevated the Aβ42-generating activity both in cultured cells and mice brain. However, the result of in vitro γ-secretase assay using a recombinant substrate suggested that Retro-2 did not elevate the intrinsic Aβ42-production activity of γ-secretase. Immunocytochemistry and cell-surface biotinylation experiments revealed that γ-secretase is recycled via the endosome-to-trans-Golgi network transport. In addition, γ-secretase is retrogradely transported by syntaxin 5/6, known as targets of Retro-2, independent pathway. Conversely, TPT-260, which enhances the trafficking function of retromers, lowered Aβ42 levels and the Aβ42/(Aβ40 + Aβ42) ratio in secreted Aβ from cultured cells. Our results strongly suggest that the endosome-to-trans-Golgi network trafficking of γ-secretase regulates its Aβ42 production activity. Modulation of this trafficking pathway might be a potential target for the development of Aβ42-lowering AD therapeutics. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Kunihiko Kanatsu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ihori Ebinuma
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Aguayo-Ortiz R, Dominguez L. Simulating the γ-secretase enzyme: Recent advances and future directions. Biochimie 2018; 147:130-135. [DOI: 10.1016/j.biochi.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/27/2018] [Indexed: 11/17/2022]
|
35
|
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. Eur J Med Chem 2018; 148:436-452. [DOI: 10.1016/j.ejmech.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
36
|
Naing SH, Kalyoncu S, Smalley DM, Kim H, Tao X, George JB, Jonke AP, Oliver RC, Urban VS, Torres MP, Lieberman RL. Both positional and chemical variables control in vitro proteolytic cleavage of a presenilin ortholog. J Biol Chem 2018; 293:4653-4663. [PMID: 29382721 DOI: 10.1074/jbc.ra117.001436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His-Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr-Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aβ42 peptide (Ala-Thr) and the other to the non-pathogenic Aβ48 (Thr-Leu). For the former site, we observed more favorable kinetics in lipid bilayer-mimicking bicelles than in detergent solution, indicating that substrate-lipid and substrate-enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions.
Collapse
Affiliation(s)
- Swe-Htet Naing
- School of Chemistry and Biochemistry, Atlanta, Georgia 30332
| | - Sibel Kalyoncu
- School of Chemistry and Biochemistry, Atlanta, Georgia 30332
| | - David M Smalley
- Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia 30332
| | - Hyojung Kim
- School of Chemistry and Biochemistry, Atlanta, Georgia 30332; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Xingjian Tao
- School of Chemistry and Biochemistry, Atlanta, Georgia 30332
| | - Josh B George
- School of Chemistry and Biochemistry, Atlanta, Georgia 30332
| | - Alex P Jonke
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
37
|
Allosteric Modulation of Intact γ-Secretase Structural Dynamics. Biophys J 2018; 113:2634-2649. [PMID: 29262358 DOI: 10.1016/j.bpj.2017.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
As a protease complex involved in the cleavage of amyloid precursor proteins that lead to the formation of amyloid β fibrils implicated in Alzheimer's disease, γ-secretase is an important target for developing therapeutics against Alzheimer's disease. γ-secretase is composed of four subunits: nicastrin (NCT) in the extracellular (EC) domain, presenilin-1 (PS1), anterior pharynx defective 1, and presenilin enhancer 2 in the transmembrane (TM) domain. NCT and PS1 play important roles in binding amyloid β precursor proteins and modulating PS1 catalytic activity. Yet, the molecular mechanisms of coupling between substrate/modulator binding and catalytic activity remain to be elucidated. Recent determination of intact human γ-secretase cryo-electron microscopy structure has opened the way for a detailed investigation of the structural dynamics of this complex. Our analysis, based on a membrane-coupled anisotropic network model, reveals two types of NCT motions, bending and twisting, with respect to PS1. These underlie the fluctuations between the "open" and "closed" states of the lid-like NCT with respect to a hydrophilic loop 1 (HL1) on PS1, thus allowing or blocking access of the substrate peptide (EC portion) to HL1 and to the neighboring helix TM2. In addition to this alternating access mechanism, fluctuations in the volume of the PS1 central cavity facilitate the exposure of the catalytic site for substrate cleavage. Druggability simulations show that γ-secretase presents several hot spots for either orthosteric or allosteric inhibition of catalytic activity, consistent with experimental data. In particular, a hinge region at the interface between the EC and TM domains, near the interlobe groove of NCT, emerges as an allo-targeting site that would impact the coupling between HL1/TM2 and the catalytic pocket, opening, to our knowledge, new avenues for structure-based design of novel allosteric modulators of γ-secretase protease activity.
Collapse
|
38
|
Johnson DS, Li YM, Pettersson M, St George-Hyslop PH. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024067. [PMID: 28320827 PMCID: PMC5710098 DOI: 10.1101/cshperspect.a024067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presenilin proteins are the catalytic subunits of a tetrameric complex containing presenilin 1 or 2, anterior pharynx defective 1 (APH1), nicastrin, and PEN-2. Other components such as TMP21 may exist in a subset of specialized complexes. The presenilin complex is the founding member of a unique class of aspartyl proteases that catalyze the γ, ɛ, ζ site cleavage of the transmembrane domains of Type I membrane proteins including amyloid precursor protein (APP) and Notch. Here, we detail the structural and chemical biology of this unusual enzyme. Taken together, these studies suggest that the complex exists in several conformations, and subtle long-range (allosteric) shifts in the conformation of the complex underpin substrate access to the catalytic site and the mechanism of action for allosteric inhibitors and modulators. Understanding the mechanics of these shifts will facilitate the design of γ-secretase modulator (GSM) compounds that modulate the relative efficiency of γ, ɛ, ζ site cleavage and/or substrate specificity.
Collapse
Affiliation(s)
- Douglas S. Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Peter H. St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom,Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
39
|
Activation of γ-Secretase Trimming Activity by Topological Changes of Transmembrane Domain 1 of Presenilin 1. J Neurosci 2017; 37:12272-12280. [PMID: 29118109 DOI: 10.1523/jneurosci.1628-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane cleaving protease that is responsible for the generation of amyloid-β peptides, which are linked to the pathogenesis of Alzheimer disease. Recently, γ-secretase modulators (GSMs) have been shown to specifically decrease production of the aggregation-prone and toxic longer Aβ species, and concomitantly increase the levels of shorter Aβ. We previously found that phenylimidazole-type GSMs bind to presenilin 1 (PS1), the catalytic subunit of the γ-secretase, and allosterically modulate γ-secretase activity. However, the precise conformational alterations in PS1 remained unclear. Here we mapped the amino acid residues in PS1 that is crucial for the binding and pharmacological actions of E2012, a phenylimidazole-type GSM, using photoaffinity labeling and the substituted cysteine accessibility method. We also demonstrated that a piston-like vertical motion of transmembrane domain (TMD) 1 occurs during modulation of Aβ production. Taking these results together, we propose a model for the molecular mechanism of phenylimidazole-type GSMs, in which the trimming activity of γ-secretase is modulated by the position of the TMD1 of PS1 in the lipid bilayer.SIGNIFICANCE STATEMENT Reduction of the toxic longer amyloid-β peptide is one of the therapeutic approaches for Alzheimer disease. A subset of small compounds called γ-secretase modulators specifically decreases the longer amyloid-β production, although its mechanistic action remains unclear. Here we found that the modulator compound E2012 targets to the hydrophilic loop 1 of presenilin 1, which is a catalytic subunit of the γ-secretase. Moreover, E2012 triggers the piston movement of the transmembrane domain 1 of presenilin 1, which impacts on the γ-secretase activity. These results illuminate how γ-secretase modulators allosterically affect the proteolytic activity, and highlight the importance of the structural dynamics of presenilin 1 in the complexed process of the intramembrane cleavage.
Collapse
|
40
|
Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017; 170:443-456.e14. [DOI: 10.1016/j.cell.2017.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
|
41
|
Pan S, Zhang H, Wang C, Yao SCL, Yao SQ. Target identification of natural products and bioactive compounds using affinity-based probes. Nat Prod Rep 2017; 33:612-20. [PMID: 26580476 DOI: 10.1039/c5np00101c] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covering: 2010 to 2014.Advances in isolation, synthesis and screening strategies have made many bioactive substances available. However, in most cases their putative biological targets remain unknown. Herein, we highlight recent advances in target identification of natural products and bioactive compounds by using affinity-based probes. Aided by photoaffinity labelling, this strategy can capture potential cellular targets (on and off) of a natural product or bioactive compound in live cells directly, even when the compound-target interaction is reversible with moderate affinity. The knowledge of these targets may help uncover molecular pathways and new therapeutics for currently untreatable diseases. In this highlight, we will introduce the development of various photoactivatable groups, their synthesis and applications in target identification of natural products and bioactive compounds, with a focus on work done in recent years and from our laboratory. We will further discuss the strengths and weaknesses of each group and the outlooks for this novel proteome-wide profiling strategy.
Collapse
Affiliation(s)
- Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Hailong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Chenyu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Samantha C L Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
42
|
Liu CY, Ohki Y, Tomita T, Osawa S, Reed BR, Jagust W, Van Berlo V, Jin LW, Chui HC, Coppola G, Ringman JM. Two Novel Mutations in the First Transmembrane Domain of Presenilin1 Cause Young-Onset Alzheimer’s Disease. J Alzheimers Dis 2017; 58:1035-1041. [DOI: 10.3233/jad-161203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Collin Y. Liu
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Yu Ohki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoko Osawa
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Bruce R. Reed
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | - William Jagust
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
| | | | - Lee-Way Jin
- Alzheimer’s Disease Research Center, UC Davis, Davis, CA, USA
| | - Helena C. Chui
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Giovanni Coppola
- Semel Institute at UCLA, Los Angeles, CA, USA
- Easton Center for Alzheimer’s Disease Research, UCLA, Los Angeles, CA, USA
| | - John M. Ringman
- Alzheimer’s Disease Research Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
- Easton Center for Alzheimer’s Disease Research, UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Kikuchi K, Kidana K, Tatebe T, Tomita T. Dysregulated Metabolism of the Amyloid‐β Protein and Therapeutic Approaches in Alzheimer Disease. J Cell Biochem 2017; 118:4183-4190. [DOI: 10.1002/jcb.26129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kiwami Kidana
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takuya Tatebe
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
44
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
45
|
Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease. Adv Biol Regul 2017; 64:33-38. [PMID: 28082052 DOI: 10.1016/j.jbior.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 01/18/2023]
Abstract
Amyloid-β peptide (Aβ) and tau are major components of senile plaques and neurofibrillary tangles, respectively, deposited in the brains of Alzheimer disease (AD) patients. Aβ is derived from amyloid-β precursor protein that is sequentially cleaved by two aspartate proteases, β- and γ-secretases. Secreted Aβ is then catabolized by several proteases. Several lines of evidence suggest that accumulation of Aβ by increased production or decreased degradation induces the tau-mediated neuronal toxicity and symptomatic manifestations of AD. Thus, the dynamics of cerebral Aβ, called as "Aβ economy", would be the mechanistic basis of AD pathogenesis. Partial loss of γ-secretase activity leads to the increased generation of toxic Aβ isoforms, indicating that activation of γ-secretase would provide a beneficial effect for AD. After extensive discovery and development efforts, BACE1, which is a β-secretase enzyme, has emerged as a prime drug target for lowering brain Aβ levels. Recent studies revealed the decreased clearance of Aβ in sporadic AD patients, suggesting the importance of the catabolic mechanism in the pathogenesis of AD. I will discuss with these proteolytic mechanisms involved in the regulation of Aβ economy, and development of effective treatment and diagnostics for AD.
Collapse
|
46
|
Probing the Structure and Function Relationships of Presenilin by Substituted-Cysteine Accessibility Method. Methods Enzymol 2017; 584:185-205. [DOI: 10.1016/bs.mie.2016.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
47
|
γ-Secretase Modulators as Aβ42-Lowering Pharmacological Agents to Treat Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Trambauer J, Fukumori A, Kretner B, Steiner H. Analyzing Amyloid-β Peptide Modulation Profiles and Binding Sites of γ-Secretase Modulators. Methods Enzymol 2017; 584:157-183. [DOI: 10.1016/bs.mie.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
50
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|