1
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
2
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
3
|
Jones ST, Guo K, Cooper EH, Dillon SM, Wood C, Nguyen DH, Shen G, Barrett BS, Frank DN, Kroehl M, Janoff EN, Kechris K, Wilson CC, Santiago ML. Altered Immunoglobulin Repertoire and Decreased IgA Somatic Hypermutation in the Gut during Chronic HIV-1 Infection. J Virol 2022; 96:e0097622. [PMID: 35938870 PMCID: PMC9472609 DOI: 10.1128/jvi.00976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Sean T. Jones
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cheyret Wood
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H. Nguyen
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward N. Janoff
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Tsukimoto S, Hakata Y, Tsuji-Kawahara S, Enya T, Tsukamoto T, Mizuno S, Takahashi S, Nakao S, Miyazawa M. Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses 2022; 14:v14040832. [PMID: 35458563 PMCID: PMC9029289 DOI: 10.3390/v14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue and subcellular localization and its changes upon cell activation of virus-restricting APOBEC3 at protein levels are important to understanding physiological functions of this cytidine deaminase, but have not been thoroughly analyzed in vivo. To precisely follow the possible activation-induced changes in expression levels of APOBEC3 protein in different mouse tissues and cell populations, genome editing was utilized to establish knock-in mice that express APOBEC3 protein with an in-frame FLAG tag. Flow cytometry and immunohistochemical analyses were performed prior to and after an immunological stimulation. Cultured B cells expressed higher levels of APOBEC3 protein than T cells. All differentiation and activation stages of freshly prepared B cells expressed significant levels of APOBEC3 protein, but germinal center cells possessed the highest levels of APOBEC3 protein localized in their cytoplasm. Upon immunological stimulation with sheep red blood cells in vivo, germinal center cells with high levels of APOBEC3 protein expression increased in their number, but FLAG-specific fluorescence intensity in each cell did not change. T cells, even those in germinal centers, did not express significant levels of APOBEC3 protein. Thus, mouse APOBEC3 protein is expressed at distinctively high levels in germinal center B cells. Antigenic stimulation did not affect expression levels of cellular APOBEC3 protein despite increased numbers of germinal center cells.
Collapse
Affiliation(s)
- Shota Tsukimoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Sachiyo Tsuji-Kawahara
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Takuji Enya
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Pediatrics, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Laboratory Animal Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Anti-Aging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Correspondence:
| |
Collapse
|
5
|
Barrett B, Nguyen DH, Xu J, Guo K, Shetty S, Jones ST, Mickens KL, Shepard C, Roers A, Behrendt R, Wu L, Kim B, Santiago ML. SAMHD1 Promotes the Antiretroviral Adaptive Immune Response in Mice Exposed to Lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:444-453. [PMID: 34893529 DOI: 10.4049/jimmunol.2001389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
SAMHD1 is a potent HIV-1 restriction factor that blocks reverse transcription in monocytes, dendritic cells and resting CD4+ T cells by decreasing intracellular dNTP pools. However, SAMHD1 may diminish innate immune sensing and Ag presentation, resulting in a weaker adaptive immune response. To date, the role of SAMHD1 on antiretroviral immunity remains unclear, as mouse SAMHD1 had no impact on murine retrovirus replication in prior in vivo studies. Here, we show that SAMHD1 significantly inhibits acute Friend retrovirus infection in mice. Pretreatment with LPS, a significant driver of inflammation during HIV-1 infection, further unmasked a role for SAMHD1 in influencing immune responses. LPS treatment in vivo doubled the intracellular dNTP levels in immune compartments of SAMHD1 knockout but not wild-type mice. SAMHD1 knockout mice exhibited higher plasma infectious viremia and proviral DNA loads than wild-type mice at 7 d postinfection (dpi), and proviral loads inversely correlated with a stronger CD8+ T cell response. SAMHD1 deficiency was also associated with weaker NK, CD4+ T and CD8+ T cell responses by 14 dpi and weaker neutralizing Ab responses by 28 dpi. Intriguingly, SAMHD1 influenced these cell-mediated immune (14 dpi) and neutralizing Ab (28 dpi) responses in male but not female mice. Our findings formally demonstrate SAMHD1 as an antiretroviral factor in vivo that could promote adaptive immune responses in a sex-dependent manner. The requirement for LPS to unravel the SAMHD1 immunological phenotype suggests that comorbidities associated with a "leaky" gut barrier may influence the antiviral function of SAMHD1 in vivo.
Collapse
Affiliation(s)
- BradleyS Barrett
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - David H Nguyen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Joella Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Shravida Shetty
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Sean T Jones
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Kaylee L Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA.,Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA
| | - Mario L Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO; .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
6
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
8
|
Mouse APOBEC3 Restriction of Retroviruses. Viruses 2020; 12:v12111217. [PMID: 33121095 PMCID: PMC7692085 DOI: 10.3390/v12111217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.
Collapse
|
9
|
Issaoui H, Ferrad M, Ghazzaui N, Lecardeur S, Cook-Moreau J, Boyer F, Denizot Y. Molecular analysis of γ1, γ3, and α class switch recombination junctions in APOBEC3-deficient mice using high-throughput sequencing. Cell Mol Immunol 2019; 17:418-420. [PMID: 31595054 DOI: 10.1038/s41423-019-0301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hussein Issaoui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - Mélissa Ferrad
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - Nour Ghazzaui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - Sandrine Lecardeur
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - Jeanne Cook-Moreau
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - François Boyer
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France.
| | - Yves Denizot
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France.
| |
Collapse
|
10
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
11
|
Singh GB, Byun H, Ali AF, Medina F, Wylie D, Shivram H, Nash AK, Lozano MM, Dudley JP. A Protein Antagonist of Activation-Induced Cytidine Deaminase Encoded by a Complex Mouse Retrovirus. mBio 2019; 10:e01678-19. [PMID: 31409681 PMCID: PMC6692512 DOI: 10.1128/mbio.01678-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes.IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.
Collapse
Affiliation(s)
- Gurvani B Singh
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hyewon Byun
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Almas F Ali
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Frank Medina
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Dennis Wylie
- Computational Biology and Bioinformatics and Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, USA
| | - Haridha Shivram
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea K Nash
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mary M Lozano
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jaquelin P Dudley
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
12
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
13
|
Single Cell Profiling Reveals PTEN Overexpression in Influenza-Specific B cells in Aging HIV-infected individuals on Anti-retroviral Therapy. Sci Rep 2019; 9:2482. [PMID: 30792481 PMCID: PMC6385500 DOI: 10.1038/s41598-019-38906-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
Memory B cells (MBC) respond to secondary antigen challenge to protect against infection and to boost immunity following vaccinations. Despite effective treatment, chronic HIV infection disturbs MBCs by reducing numbers and altering functionality due to hyper-activation and increased apoptosis leading to suboptimal antibody responses against common infectious agents. We used single cell gene expression analysis to evaluate antigen-specific memory B cells in peripheral blood of virally-suppressed HIV-infected individuals and healthy controls stratified by serum H1N1 antibody response 3 weeks post-administration of the seasonal trivalent inactivated influenza vaccine. We used a fluorescent probe to isolate influenza H1N1-specific B cells and a multiplexed and targeted RT-PCR approach to measure expression levels of 96 genes involved in B cell activation and function. Gene profiling revealed a 4-gene predictive signature containing the phosphoinositide-3 kinase (PI3K) inhibitor, PTEN, for identifying antigen-specific MBC from HIV-infected individuals compared to healthy controls. Gene co-expression analysis showed that in addition to overexpression of PTEN, there was increased co-expression of type I interferon-associated genes with PTEN on single cell level in HIV compared to controls. This study highlights the persistent defects in MBC from HIV-infected individuals and points to the PI3K signaling pathway as a target for potential immune intervention.
Collapse
|
14
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
15
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
16
|
Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats. mSphere 2017; 2:mSphere00245-17. [PMID: 28959737 PMCID: PMC5615131 DOI: 10.1128/msphere.00245-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022] Open
Abstract
As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection.
Collapse
|
17
|
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell 2017; 67:361-373.e4. [PMID: 28757211 PMCID: PMC5771415 DOI: 10.1016/j.molcel.2017.06.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.
Collapse
Affiliation(s)
- Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fei-Long Meng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Barrett BS, Harper MS, Jones ST, Guo K, Heilman KJ, Kedl RM, Hasenkrug KJ, Santiago ML. Type I interferon signaling is required for the APOBEC3/Rfv3-dependent neutralizing antibody response but not innate retrovirus restriction. Retrovirology 2017; 14:25. [PMID: 28415995 PMCID: PMC5392950 DOI: 10.1186/s12977-017-0349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background APOBEC3/Rfv3 restricts acute Friend retrovirus (FV) infection and promotes virus-specific neutralizing antibody (NAb) responses. Classical Rfv3 studies utilized FV stocks containing lactate-dehydrogenase elevating virus (LDV), a potent type I interferon inducer. Previously, we showed that APOBEC3 is required for the anti-FV activity of exogenous IFN-alpha treatment. Thus, type I interferon receptor (IFNAR) signaling may be required for the APOBEC3/Rfv3 response. Results To test if the APOBEC3/Rfv3 response is dependent on type I IFN signaling, we infected IFNAR knockout versus IFNAR/APOBEC3 double-knockout mice with FV/LDV or LDV-free FV, and evaluated acute FV infection and subsequent NAb titers. We show that LDV co-infection and type I IFN signaling are not required for innate APOBEC3-mediated restriction. By contrast, removal of LDV and/or type I IFN signaling abrogated the APOBEC3-dependent NAb response. Conclusions APOBEC3 can restrict retroviruses in a type I IFN-independent manner in vivo. By contrast, the ability of APOBEC3 to promote NAb responses is type I IFN-dependent. These findings reveal novel insights on the interplay between type I IFNs and APOBEC3 in vivo that may have implications for augmenting antiretroviral NAb responses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0349-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bradley S Barrett
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Sean T Jones
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Karl J Heilman
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | | | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA. .,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA. .,Division of Infectious Diseases, University of Colorado Denver, Mail Stop B-168, 12700 E 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
19
|
Li SX, Barrett BS, Guo K, Santiago ML. Tetherin/BST-2: Restriction Factor or Immunomodulator? Curr HIV Res 2016; 14:235-46. [PMID: 26957198 DOI: 10.2174/1570162x14999160224102752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell-mediated immune (CMI) responses are critical for the control of HIV-1 infection and their importance was highlighted by the existence of viral proteins, particularly Vpu and Nef, that antagonize these responses. Pandemic HIV-1 Vpu counteracts Tetherin/BST-2, a host factor that could prevent the release of HIV-1 virions by tethering virions on the cell surface, but a link between Tetherin and HIV-1 CMI responses has not yet been demonstrated in vivo. In vitro, the virological and immunological impact of Tetherin-mediated accumulation of virions ranged from enhanced or diminished cell-to-cell spread to enhanced recognition by virus-specific antibodies for natural killer cellmediated lysis. However, Tetherin-restricted virions could be internalized through an endocytosis motif in the Tetherin cytoplasmic tail. METHODS Given the uncertainties on which in vitro results manifest in vivo and the dearth of knowledge on how Tetherin influences retroviral immunity, in vivo retrovirus infections in mice encoding wild-type, null and endocytosis-defective Tetherin were performed. Here, we review and highlight the results from these in vivo studies. RESULTS Current data suggests that endocytosis-defective Tetherin functions as a potent innate restriction factor. By contrast, endocytosis-competent Tetherin, the form found in most mammals including humans and the form counteracted by HIV-1 Vpu, was linked to stronger CMI responses in mice. CONCLUSION We propose that the main role of endocytosis-competent Tetherin is not to directly restrict retroviral replication, but to promote a more effective CMI response against retroviruses.
Collapse
Affiliation(s)
| | | | | | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, Mail Stop B-168, 12700 E 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Rubtsova K, Rubtsov AV, Halemano K, Li SX, Kappler JW, Santiago ML, Marrack P. T Cell Production of IFNγ in Response to TLR7/IL-12 Stimulates Optimal B Cell Responses to Viruses. PLoS One 2016; 11:e0166322. [PMID: 27880772 PMCID: PMC5120817 DOI: 10.1371/journal.pone.0166322] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the processes that underlie IgG subclass switching could inform strategies designed to counteract infections and autoimmunity. Here we show that TLR7 ligands induce subsets of memory CD4 and CD8 T cells to secrete interferon γ (IFNγ) in the absence of antigen receptor stimulation. In turn, TLR ligation and IFNγ cause B cells to express the transcription factor, T-bet, and to switch immunoglobulin production to IgG2a/c. Absence of TLR7 in T cells leads to the impaired T-bet expression in B cells and subsequent inefficient IgG2a isotype switching both in vitro and during the infection with Friend virus in vivo. Our results reveal a surprising mechanism of antiviral IgG subclass switching through T-cell intrinsic TLR7/IL-12 signaling.
Collapse
Affiliation(s)
- Kira Rubtsova
- Howard Hughes Medical Institute, Denver, Colorado, 80206, United States of America.,Department of Biomedical Sciences, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80206, United States of America
| | - Anatoly V Rubtsov
- Howard Hughes Medical Institute, Denver, Colorado, 80206, United States of America.,Department of Biomedical Sciences, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80206, United States of America
| | - Kalani Halemano
- Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, United States of America.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado 80045, United States of America
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, United States of America.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado 80045, United States of America
| | - John W Kappler
- Howard Hughes Medical Institute, Denver, Colorado, 80206, United States of America.,Department of Biomedical Sciences, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80206, United States of America.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States of America.,Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, United States of America.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado 80045, United States of America
| | - Philippa Marrack
- Howard Hughes Medical Institute, Denver, Colorado, 80206, United States of America.,Department of Biomedical Sciences, National Jewish Health and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80206, United States of America.,University of Colorado School of Medicine, Aurora, Colorado 80045, United States of America.,Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, United States of America
| |
Collapse
|
21
|
Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In Vivo. J Virol 2016; 90:6001-6013. [PMID: 27099312 DOI: 10.1128/jvi.00451-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8(+) T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL(+) NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.
Collapse
|
22
|
Bonissone SR, Pevzner PA. Immunoglobulin Classification Using the Colored Antibody Graph. J Comput Biol 2016; 23:483-94. [PMID: 27149636 DOI: 10.1089/cmb.2016.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The somatic recombination of V, D, and J gene segments in B-cells introduces a great deal of diversity, and divergence from reference segments. Many recent studies of antibodies focus on the population of antibody transcripts that show which V, D, and J gene segments have been favored for a particular antigen, a repertoire. To properly describe the antibody repertoire, each antibody must be labeled by its constituting V, D, and J gene segment, a task made difficult by somatic recombination and hypermutation events. While previous approaches to repertoire analysis were based on sequential alignments, we describe a new de Bruijn graph-based algorithm to perform VDJ labeling and benchmark its performance.
Collapse
Affiliation(s)
- Stefano R Bonissone
- 1 Bioinformatics and Systems Biology Program, University of California San diego , La Jolla, California
| | - Pavel A Pevzner
- 2 Department of Computer Science and Engineering, University of California San diego , La Jolla, California
| |
Collapse
|
23
|
Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection. Sci Rep 2016; 6:20425. [PMID: 26846717 PMCID: PMC4742778 DOI: 10.1038/srep20425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/06/2016] [Indexed: 11/08/2022] Open
Abstract
Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation.
Collapse
|
24
|
Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities. Sci Rep 2016; 6:19035. [PMID: 26738439 PMCID: PMC4704027 DOI: 10.1038/srep19035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022] Open
Abstract
APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.
Collapse
|
25
|
Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4565-70. [PMID: 26546688 PMCID: PMC4638160 DOI: 10.4049/jimmunol.1501504] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Susan R Ross
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| |
Collapse
|
26
|
Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, McCarter MD, Hasenkrug KJ, Dittmer U, Wilson CC, Santiago ML. Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS Pathog 2015; 11:e1005254. [PMID: 26529416 PMCID: PMC4631339 DOI: 10.1371/journal.ppat.1005254] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.
Collapse
Affiliation(s)
- Michael S. Harper
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kathrin Gibbert
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eric J. Lee
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Bradley S. Barrett
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Martin D. McCarter
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (UD); (CCW); (MLS)
| | - Cara C. Wilson
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (UD); (CCW); (MLS)
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (UD); (CCW); (MLS)
| |
Collapse
|
27
|
Guo K, Halemano K, Schmitt K, Katuwal M, Wang Y, Harper MS, Heilman KJ, Kuwata T, Stephens EB, Santiago ML. Immunoglobulin VH gene diversity and somatic hypermutation during SIV infection of rhesus macaques. Immunogenetics 2015; 67:355-70. [PMID: 25994147 DOI: 10.1007/s00251-015-0844-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/30/2015] [Indexed: 01/12/2023]
Abstract
B cell functional defects are associated with delayed neutralizing antibody development in pathogenic lentivirus infections. However, the timeframe for alterations in the antibody repertoire and somatic hypermutation (SHM) remains unclear. Here, we utilized the SIV/rhesus macaque (RM) model to investigate the dynamics of immunoglobulin V(H) gene diversity and SHM following infection. Three RMs were infected with SIVmac239, and V(H)1, V(H)3, and V(H)4 genes were amplified from peripheral blood at 0, 2, 6, 24, and 36 weeks postinfection for next-generation sequencing. Analysis of over 3.8 million sequences against currently available RM germline V(H) genes revealed a highly biased V(H) gene repertoire in outbred RMs. SIV infection did not significantly perturb the predominant IgG1 response, but overall immunoglobulin SHM declined during the course of SIV infection. Moreover, SHM at the AID deamination hotspot, WRC, rapidly decreased and was suppressed throughout SIV infection. In contrast, a transient increase in mutations at the APOBEC3G deamination hotspot, CCC, coincided with a spike in APOBEC3G expression during acute SIV infection. The results outline a timetable for altered V(H) gene repertoire and IgG SHM in the SIV/RM model and suggest a burst of APOBEC3G-mediated antibody SHM during acute SIV infection.
Collapse
Affiliation(s)
- Kejun Guo
- Departments of Medicine, Immunology and Microbiology, University of Colorado Denver, Aurora, CO, 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
29
|
Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and cancer. Oncoscience 2015; 2:320-33. [PMID: 26097867 PMCID: PMC4468319 DOI: 10.18632/oncoscience.155] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Mutations are the basis for evolution and the development of genetic diseases. Especially in cancer, somatic mutations in oncogenes and tumor suppressor genes alongside the occurrence of passenger mutations have been observed by recent deep-sequencing approaches. While mutations have long been considered random events induced by DNA-replication errors or by DNA damaging agents, genome sequencing led to the discovery of non-random mutation signatures in many human cancer. Common non-random mutations comprise DNA strand-biased mutation showers and mutations restricted to certain DNA motifs, which recently have become attributed to the activity of the AID/APOBEC family of DNA deaminases. Hence, APOBEC enzymes, which have evolved as key players in natural and adaptive immunity, have been proposed to contribute to cancer development and clonal evolution of cancer by inducing collateral genomic damage due to their DNA deaminating activity. This review focuses on how mutagenic events through AID/APOBEC deaminases may contribute to cancer development.
Collapse
Affiliation(s)
- Stefan Rebhandl
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Michael Huemer
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Richard Greil
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| | - Roland Geisberger
- Department of internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria ; Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
30
|
Beck-Engeser GB, Winkelmann R, Wheeler ML, Shansab M, Yu P, Wünsche S, Walchhütter A, Metzner M, Vettermann C, Eilat D, DeFranco A, Jäck HM, Wabl M. APOBEC3 enzymes restrict marginal zone B cells. Eur J Immunol 2015; 45:695-704. [PMID: 25501566 PMCID: PMC4972502 DOI: 10.1002/eji.201445218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 12/16/2022]
Abstract
In general, a long-lasting immune response to viruses is achieved when they are infectious and replication competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive because A3 directly controls viremia before the onset of adaptive antiviral immune responses. It suggests that A3 also affects the antibody response directly. Here, we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes and compared it to WT and mouse A3-deficient mice. A3 enzymes decreased the number of marginal zone B cells, but not the number of follicular B or T cells. When mouse A3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by marginal zone B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response.
Collapse
Affiliation(s)
| | - Rebecca Winkelmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthew L. Wheeler
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Maryam Shansab
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Philipp Yu
- Institut für Immunologie, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah Wünsche
- Institut für Immunologie, Philipps-Universität Marburg, Marburg, Germany
| | - Anja Walchhütter
- Institut für Immunologie, Philipps-Universität Marburg, Marburg, Germany
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Anthony DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Requirement for Fc effector mechanisms in the APOBEC3/Rfv3-dependent neutralizing antibody response. J Virol 2015; 89:4011-4. [PMID: 25589647 DOI: 10.1128/jvi.03399-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiretroviral neutralizing antibody (NAb) responses are often evaluated in the absence of Fc-dependent immune effectors. In murine Friend retrovirus infection, Apobec3/Rfv3 promotes a potent polyclonal NAb response. Here, we show that the Apobec3/Rfv3-dependent NAb response correlated with virus-specific IgG2 titers and that the in vivo neutralization potency of Apobec3/Rfv3-resistant antisera was dependent on activating Fcγ receptors but not complement. The data strengthen retroviral vaccine strategies aimed at eliciting NAbs that activate specific Fcγ receptors.
Collapse
|
32
|
Class switch recombination and somatic hypermutation of virus-neutralizing antibodies are not essential for control of friend retrovirus infection. J Virol 2014; 89:1468-73. [PMID: 25378499 DOI: 10.1128/jvi.02293-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor 7 and Myd88 are required for antiretroviral antibody and germinal center responses, but whether somatic hypermutation and class-switch recombination are required for antiretroviral immunity has not been examined. Mice deficient in activation-induced cytidine deaminase (AID) resisted Friend virus infection, produced virus-neutralizing antibodies, and controlled viremia. Passive transfer demonstrated that immune IgM from AID-deficient mice contributes to Friend virus control in the presence of virus-specific CD4+ T cells.
Collapse
|
33
|
Abstract
UNLABELLED Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.
Collapse
|
34
|
Barrett BS, Guo K, Harper MS, Li SX, Heilman KJ, Davidson NO, Santiago ML. Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo. Virology 2014; 468-470:601-608. [PMID: 25303118 DOI: 10.1016/j.virol.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/21/2022]
Abstract
APOBEC1 is a cytidine deaminase involved in cholesterol metabolism that has been linked to retrovirus restriction, analogous to the evolutionarily-related APOBEC3 proteins. In particular, murine APOBEC1 was shown to inhibit Friend retrovirus (FV) in vitro, generating high levels of C-to-T and G-to-A mutations. These observations raised the possibility that FV infection might be altered in APOBEC1-null mice. To examine this question directly, we infected wild-type and APOBEC1-null mice with FV complex and evaluated acute infection levels. Surprisingly, APOBEC1-null mice exhibited similar cellular infection levels and plasma viremia relative to wild-type mice. Moreover, next-generation sequencing analyses revealed that in contrast to APOBEC3, APOBEC1 did not enhance retroviral C-to-T and G-to-A mutational frequencies in genomic DNA. Thus, APOBEC1 neither inhibited nor significantly drove the molecular evolution of FV in vivo. Our findings reinforce that not all retrovirus restriction factors characterized as potent in vitro may be functionally relevant in vivo.
Collapse
Affiliation(s)
- Bradley S Barrett
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Karl J Heilman
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|