1
|
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:133. [PMID: 39796923 PMCID: PMC11723123 DOI: 10.3390/s25010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.
Collapse
Affiliation(s)
| | - Emmanouel Hourdakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece;
| |
Collapse
|
2
|
Lv Q, Li Q, Cao P, Wei C, Li Y, Wang Z, Wang L. Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411946. [PMID: 39686818 DOI: 10.1002/adma.202411946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Indexed: 12/18/2024]
Abstract
Implantable medical electronic devices (IMEDs) have attracted great attention and shown versatility for solving clinical problems ranging from real-time monitoring of physiological/ pathological states to electrical stimulation therapy and from monitoring brain cell activity to deep brain stimulation. The ongoing challenge is to select appropriate materials in target device configuration for biomedical applications. Currently, silk-based biomaterials have been developed for the design of diagnostic and therapeutic electronic devices due to their excellent properties and abundant active sites in the structure. Herein, the aim is to summarize the structural characteristics, physicochemical properties, and bioactivities of natural silk biomaterials as well as their derived materials, with a particular focus on the silk-based implantable biomedical electronic devices, such as implantable devices for invasive brain-computer interfaces, neural recording, and in vivo electrostimulation. In addition, future opportunities and challenges are also envisioned, hoping to spark the interests of researchers in interdisciplinary fields such as biomaterials, clinical medicine, and electronics.
Collapse
Affiliation(s)
- Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Cao
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyu Wei
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyu Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Yamada S, Honda T. Material design of biodegradable primary batteries: boosting operating voltage by substituting the hydrogen evolution reaction at the cathode. NANOSCALE 2024; 16:20027-20036. [PMID: 39392400 DOI: 10.1039/d4nr03321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transient primary batteries (TPBs) degrade after use without leaving harmful toxic substances, providing power sources for developing low-invasive and environmentally benign sensing platforms. Magnesium and zinc, both abundant on Earth, possess low anodic potentials and good biodegradability, making them useful as anode materials. However, molybdenum, a biodegradable metal, causes the hydrogen evolution reaction (HER) at the cathode, reducing the operating voltage of cells because of its low cathodic potential. In this review, we examine recent material designs to increase the operating voltage by introducing alternative electrochemical reactions at the cathode, including the oxygen reduction reaction, metal-ion intercalation into transition metal oxides, and halogen ionization, all of which have higher cathodic potentials than the HER. After discussing the characteristics, constituents, and demonstration of TPBs, we conclude by exploring their potential as power sources for implants, wearables, and environmental sensing applications.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Takashi Honda
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
4
|
Bai H, Zhang S, Yang H, Wang J, Chen H, Li J, Li L, Yang Q, Peng B, Zhu Z, Ni S, Liu K, Lei W, Tao TH, Feng Y. Advanced nerve regeneration enabled by neural conformal electronic stimulators enhancing mitochondrial transport. Bioact Mater 2024; 39:287-301. [PMID: 38827170 PMCID: PMC11143791 DOI: 10.1016/j.bioactmat.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.
Collapse
Affiliation(s)
- Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Siqi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Qian Yang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Li S, Lu D, Li S, Liu J, Xu Y, Yan Y, Rodriguez JZ, Bai H, Avila R, Kang S, Ni X, Luan H, Guo H, Bai W, Wu C, Zhou X, Hu Z, Pet MA, Hammill CW, MacEwan MR, Ray WZ, Huang Y, Rogers JA. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. SCIENCE ADVANCES 2024; 10:eadj0268. [PMID: 38640247 PMCID: PMC11029800 DOI: 10.1126/sciadv.adj0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.
Collapse
Affiliation(s)
- Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge Zárate Rodriguez
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hedan Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shuming Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Mitchell A. Pet
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet W. Hammill
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew R. MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wilson Z. Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
7
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
9
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
10
|
Shin JW, Kim DJ, Jang TM, Han WB, Lee JH, Ko GJ, Yang SM, Rajaram K, Han S, Kang H, Lim JH, Eom CH, Bandodkar AJ, Min H, Hwang SW. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems. NANO-MICRO LETTERS 2024; 16:102. [PMID: 38300387 PMCID: PMC10834929 DOI: 10.1007/s40820-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/02/2024]
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix, 2091, Gyeongchung-daero, Bubal-eup, Icheon-si, Gyeonggi-do, 17336, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Kaveti Rajaram
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hanul Min
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
11
|
Quinn KN, Tian Y, Budde R, Irazoqui PP, Tuffaha S, Thakor NV. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024; 69:134-147. [PMID: 38126120 DOI: 10.1002/mus.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.
Collapse
Affiliation(s)
- Kiara N Quinn
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yucheng Tian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pedro P Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wang Y, Chen Z, Davis B, Lipman W, Xing S, Zhang L, Wang T, Hafiz P, Xie W, Yan Z, Huang Z, Song J, Bai W. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat Commun 2024; 15:511. [PMID: 38218967 PMCID: PMC10787768 DOI: 10.1038/s41467-023-44532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024] Open
Abstract
Transdermal drug delivery is of vital importance for medical treatments. However, user adherence to long-term repetitive drug delivery poses a grand challenge. Furthermore, the dynamic and unpredictable disease progression demands a pharmaceutical treatment that can be actively controlled in real-time to ensure medical precision and personalization. Here, we report a spatiotemporal on-demand patch (SOP) that integrates drug-loaded microneedles with biocompatible metallic membranes to enable electrically triggered active control of drug release. Precise control of drug release to targeted locations (<1 mm2), rapid drug release response to electrical triggers (<30 s), and multi-modal operation involving both drug release and electrical stimulation highlight the novelty. Solution-based fabrication ensures high customizability and scalability to tailor the SOP for various pharmaceutical needs. The wireless-powered and digital-controlled SOP demonstrates great promise in achieving full automation of drug delivery, improving user adherence while ensuring medical precision. Based on these characteristics, we utilized SOPs in sleep studies. We revealed that programmed release of exogenous melatonin from SOPs improve sleep of mice, indicating potential values for basic research and clinical treatments.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zeka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brayden Davis
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Will Lipman
- Department of Psychology and Neuroscience, University of North Carolina at chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sicheng Xing
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tian Wang
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Priyash Hafiz
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhili Huang
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
McDonald SM, Yang Q, Hsu YH, Nikam SP, Hu Z, Wang Z, Asheghali D, Yen T, Dobrynin AV, Rogers JA, Becker ML. Resorbable barrier polymers for flexible bioelectronics. Nat Commun 2023; 14:7299. [PMID: 37949871 PMCID: PMC10638316 DOI: 10.1038/s41467-023-42775-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.
Collapse
Affiliation(s)
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Zilu Wang
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Tiffany Yen
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Andrey V Dobrynin
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Rogers
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Orthopedic Surgery, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
17
|
Gao Y, Zhang H, Song B, Zhao C, Lu Q. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. BIOSENSORS 2023; 13:787. [PMID: 37622873 PMCID: PMC10452760 DOI: 10.3390/bios13080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan Gao
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Hanchu Zhang
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Bowen Song
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Chun Zhao
- School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| |
Collapse
|
18
|
Han WB, Ko GJ, Yang SM, Kang H, Lee JH, Shin JW, Jang TM, Han S, Kim DJ, Lim JH, Rajaram K, Bandodkar AJ, Hwang SW. Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics. ACS NANO 2023. [PMID: 37497757 DOI: 10.1021/acsnano.3c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Amay Jairaj Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
19
|
Adly N, Teshima TF, Hassani H, Boustani GA, Weiß LJ, Cheng G, Alexander J, Wolfrum B. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery. Adv Healthc Mater 2023; 12:e2202869. [PMID: 36827235 PMCID: PMC11468847 DOI: 10.1002/adhm.202202869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Indexed: 02/25/2023]
Abstract
The use of soft and flexible bioelectronic interfaces can enhance the quality for recording cells' electrical activity by ensuring a continuous and intimate contact with the smooth, curving surfaces found in the physiological environment. This work develops soft microelectrode arrays (MEAs) made of silk fibroin (SF) films for recording interfaces that can also serve as a drug delivery system. Inkjet printing is used as a tool to deposit the substrate, conductive electrode, and insulator, as well as a drug-delivery nanocomposite film. This approach is highly versatile, as shown in the fabrication of carbon microelectrodes, sandwiched between a silk substrate and a silk insulator. The technique permits the development of thin-film devices that can be employed for in vitro extracellular recordings of HL-1 cell action potentials. The tuning of SF by applying an electrical stimulus to produce a permeable layer that can be used in on-demand drug delivery systems is also demonstrated. The multifunctional MEA developed here can pave the way for in vitro drug screening by applying time-resolved and localized chemical stimuli.
Collapse
Affiliation(s)
- Nouran Adly
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Tetsuhiko F. Teshima
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | | | - George Al Boustani
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Lennart J.K. Weiß
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Gordon Cheng
- Chair for Cognitive SystemsDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichArcisstrasse 2180333MunichGermany
| | - Joe Alexander
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Bernhard Wolfrum
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| |
Collapse
|
20
|
Gogurla N, Wahab A, Kim S. A biomaterial-silicon junction for photodetection. Mater Today Bio 2023; 20:100642. [PMID: 37153757 PMCID: PMC10154958 DOI: 10.1016/j.mtbio.2023.100642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Bio-integrated optoelectronics can be interfaced with biological tissues, thereby offering opportunities for clinical diagnosis and therapy. However, finding a suitable biomaterial-based semiconductor to interface with electronics is still challenging. In this study, a semiconducting layer is assembled comprising a silk protein hydrogel and melanin nanoparticles (NPs). The silk protein hydrogel provides a water-rich environment for the melanin NPs that maximizes their ionic conductivity and bio-friendliness. An efficient photodetector is produced by forming a junction between melanin NP-silk and a p-type Si (p-Si) semiconductor. The observed charge accumulation/transport behavior at the melanin NP-silk/p-Si junction is associated with the ionic conductive state of the melanin NP-silk composite. The melanin NP-silk semiconducting layer is printed as an array on an Si substrate. The photodetector array exhibits uniform photo-response to illumination at various wavelengths, thus providing broadband photodetection. Efficient charge transfer between melanin NP-silk and Si provides fast photo-switching with rise and decay constants of 0.44 s and 0.19 s, respectively. The photodetector with a biotic interface comprising an Ag nanowire-incorporated silk layer as the top contact can operate when underneath biological tissue. The photo-responsive biomaterial-Si semiconductor junction using light as a stimulus offers a bio-friendly and versatile platform for artificial electronic skin/tissue.
Collapse
Affiliation(s)
- Narendar Gogurla
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Abdul Wahab
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sunghwan Kim
- Department of Biomedical Engineering & Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
- Corresponding author.
| |
Collapse
|
21
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
22
|
Li Q, Bai F, Sun J, Zhou X, Yuan W, Lin J, Zhang KQ, Li G, Liu Z. Bubble-blowing-inspired sub-micron thick freestanding silk films for programmable electronics. NANOSCALE 2023; 15:3796-3804. [PMID: 36648031 DOI: 10.1039/d2nr05490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thin film electronics that are capable of deforming and interfacing with nonplanar surfaces have attracted widespread interest in wearable motion detection or physiological signal recording due to their light weight, low stiffness, and high conformality. However, it is still a challenge to fabricate freestanding thin film substrates or matrices with only sub-micron thickness in a simple way, especially for those materials with metastable conformations, like regenerated silk protein. Herein, we developed a dip-coating method for the fabrication of sub-micron thick freestanding silk films inspired by blowing soap bubbles. Using a closed-loop frame to dip-coat in a concentrated silk fibroin aqueous solution, the substrate-free silk films with a thickness as low as hundreds of nanometres (∼150 nm) can be easily obtained after solvent evaporation. The silk films have extremely smooth surfaces (Rq < 3 nm) and can be tailored with different geometric shapes. The naturally dried silk films possess random coil dominated uncrystallized secondary structures, exhibiting high modulation ability and adaptability, which can be conformally attached on wrinkled skin or wrapped on human hair. Considering the methodological advantages and the unique properties of the obtained sub-micron thick silk films, several thin film based programmable electronics including transient/durable circuits, skin electrodes, transferred skin light-emitting devices and injectable electronics are successfully demonstrated after being deposited with gold or conducting polymer layers. This research provides a new avenue for preparing freestanding thin polymer films, showing great promise for developing thin film electronics in wearable and biomedical applications.
Collapse
Affiliation(s)
- Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Jing Sun
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Xiaomeng Zhou
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Wei Yuan
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jin Lin
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
23
|
Chung SC, Park JS, Jha RK, Kim J, Kim J, Kim M, Choi J, Kim H, Park DH, Gogurla N, Lee TY, Jeon H, Park JY, Choi J, Kim G, Kim S. Engineering Silk Protein to Modulate Polymorphic Transitions for Green Lithography Resists. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56623-56634. [PMID: 36524808 DOI: 10.1021/acsami.2c17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions to silk. Here, we report how polymorphic transitions are related with molecular structures of artificially synthesized silk protein and design principles to construct a green-lithographic and high-performative protein resist. The repetition number and ratio of two major building blocks in synthesized silk protein are essential to determine the size and content of β-sheet crystallites, and radicals resulting from tyrosine cleavages by the 193 nm laser irradiation induce the β-sheet to α-helix transition. Synthesized silk is designed to exclusively comprise homogeneous building blocks and exhibit high crystallization and tyrosine-richness, thus constituting an excellent basis for developing a high-performance deep-UV photoresist. Additionally, our findings can be conjugated to design an electron-beam resist governed by the different irradiation-protein interaction mechanisms. All synthesis and lithography processes are fully water-based, promising green lithography. Using the engineered silk, a nanopatterned planar color filter showing the reduced angle dependence can be obtained. Our study provides insights into the industrial scale production of silk protein with on-demand functions.
Collapse
Affiliation(s)
- Soon-Chun Chung
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Joon-Song Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Rakesh Kumar Jha
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Jieun Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Jinha Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Muyoung Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials, Daejeon 34103, Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Hongdeok Kim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Da-Hye Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Narendar Gogurla
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Tae-Yun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Ji-Yong Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Joonmyung Choi
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Ginam Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
24
|
Zhou Y, Gu C, Liang J, Zhang B, Yang H, Zhou Z, Li M, Sun L, Tao TH, Wei X. A silk-based self-adaptive flexible opto-electro neural probe. MICROSYSTEMS & NANOENGINEERING 2022; 8:118. [PMID: 36389054 PMCID: PMC9643444 DOI: 10.1038/s41378-022-00461-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits, which provides a promising approach for the study of progressive neurophysiological phenomena. Opto-electrophysiological neural probes with sufficient flexibility and biocompatibility are desirable to match the low mechanical stiffness of brain tissue for chronic reliable performance. However, lack of rigidity poses challenges for the accurate implantation of flexible neural probes with less invasiveness. Herein, we report a hybrid probe (Silk-Optrode) consisting of a silk protein optical fiber and multiple flexible microelectrode arrays. The Silk-Optrode can be accurately inserted into the brain and perform synchronized optogenetic stimulation and multichannel recording in freely behaving animals. Silk plays an important role due to its high transparency, excellent biocompatibility, and mechanical controllability. Through the hydration of the silk optical fiber, the Silk-Optrode probe enables itself to actively adapt to the environment after implantation and reduce its own mechanical stiffness to implant into the brain with high fidelity while maintaining mechanical compliance with the surrounding tissue. The probes with 128 recording channels can detect high-yield well-isolated single units while performing intracranial light stimulation with low optical losses, surpassing previous work of a similar type. Two months of post-surgery results suggested that as-reported Silk-Optrode probes exhibit better implant-neural interfaces with less immunoreactive glial responses and tissue lesions. A silk optical fiber-based Silk-Optrode probe consisting of a natural silk optical fiber and a flexible micro/nano electrode array is reported. The multifunctional soft probe can modify its own Young's modulus through hydration to achieve accurate implantation into the brain. The low optical loss and single-unit recording abilities allow simultaneous optogenetic stimulation and multichannel readout, which expands the applications in the operation and parsing of neural circuits in behavioral animals.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chi Gu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jizhi Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bohan Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 200031 Shanghai, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Meng Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, 200031 Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- Neuroxess Co., Ltd. (Jiangxi), 330029 Nanchang, Jiangxi China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, 519031 Zhuhai, Guangdong China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
25
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
26
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
27
|
Wang Y, Boero G, Zhang X, Brugger J. Nanopore Generation in Biodegradable Silk/Magnetic Nanoparticle Membranes by an External Magnetic Field for Implantable Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40418-40426. [PMID: 36036484 PMCID: PMC9460430 DOI: 10.1021/acsami.2c10603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Implantable devices for localized and controlled drug release are important, e.g., for therapies of cancer and chronic pain. However, most of the existing active implants are limited by the usage of nonbiodegradable materials; thus, surgery is needed to extract them after the treatment, which leads to secondary damage. Here, we show a fully biodegradable composite membrane made from silk fibroin and magnetic nanoparticles (MNPs). The membrane porosity can be remotely modified by an alternating magnetic field, which opens nanopores by local heating of MNPs in the composite allowing a liquid to diffuse through them. The stability of the silk membrane in water can be prolonged up to several months by increasing its β-sheet content through ethanol annealing. We present the following original findings. (a) Nanopores can be generated inside the silk/MNP composite membrane by exposing it to an external alternating magnetic field. (b) A longer exposure time results in more nanopore sites. (c) The controllable release of rhodamine B dye is achieved by tuning the period of exposure to the magnetic field. The obtained results demonstrate the suitability of the investigated silk/MNP composite membrane as a potential functional material for implantable drug delivery.
Collapse
Affiliation(s)
- Ya Wang
- Food
Science and Technology Program, Beijing
Normal University-Hong Kong Baptist University United International
College, 519087 Zhuhai, China
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni Boero
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaosheng Zhang
- School
of Electronic Science and Engineering, University
of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Juergen Brugger
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Zhai Z, Du X, Long Y, Zheng H. Biodegradable polymeric materials for flexible and degradable electronics. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.985681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodegradable electronics have great potential to reduce the environmental footprint of electronic devices and to avoid secondary removal of implantable health monitors and therapeutic electronics. Benefiting from the intensive innovation on biodegradable nanomaterials, current transient electronics can realize full components’ degradability. However, design of materials with tissue-comparable flexibility, desired dielectric properties, suitable biocompatibility and programmable biodegradability will always be a challenge to explore the subtle trade-offs between these parameters. In this review, we firstly discuss the general chemical structure and degradation behavior of polymeric biodegradable materials that have been widely studied for various applications. Then, specific properties of different degradable polymer materials such as biocompatibility, biodegradability, and flexibility were compared and evaluated for real-life applications. Complex biodegradable electronics and related strategies with enhanced functionality aimed for different components including substrates, insulators, conductors and semiconductors in complex biodegradable electronics are further researched and discussed. Finally, typical applications of biodegradable electronics in sensing, therapeutic drug delivery, energy storage and integrated electronic systems are highlighted. This paper critically reviews the significant progress made in the field and highlights the future prospects.
Collapse
|
29
|
Yoo C, Yoon J, Kaium MG, Osorto B, Han SS, Kim JH, Kim BK, Chung HS, Kim DJ, Jung Y. Large-area vertically aligned 2D MoS 2layers on TEMPO-cellulose nanofibers for biodegradable transient gas sensors. NANOTECHNOLOGY 2022; 33:475502. [PMID: 35944420 DOI: 10.1088/1361-6528/ac8811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
| | - Jaesik Yoon
- Materials Research and Education Center, 275 Wilmore Laboratory, Auburn University, Auburn, AL 36849, United States of America
| | - Md Golam Kaium
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| | - Brandon Osorto
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Bo Kyoung Kim
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, Republic of Korea
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, Republic of Korea
| | - Dong-Joo Kim
- Materials Research and Education Center, 275 Wilmore Laboratory, Auburn University, Auburn, AL 36849, United States of America
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, United States of America
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| |
Collapse
|
30
|
Wei Z, Ma X, Zhao H, Wu X, Guo Q. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33472-33481. [PMID: 35830227 DOI: 10.1021/acsami.2c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biodegradable conductive composites are key materials or components for printable transient electronics that can be fabricated in a low-cost and high-efficiency manner, thereby boosting their wide applications in biomedical engineering, hardware security, and environmental-friendly electronics. Continuous efforts in this area still lie in the development of strategies for highly conductive, safe, and reliable biodegradable conductive composite materials and devices. This paper introduces molybdenum/wax composites for multimodally printable transient electronics in which multiple transience modes including dissolution-induced degradation and thermally triggered degradation are available. Systematic experiments demonstrate several advantages and unique properties of this material system, including solvent-free fabrication, self-sintering behavior, and long-term and high conductivity via accelerable self-sintering treatment and rehealing capabilities. Notably, the immersion of molybdenum/wax composites in phosphate buffer solution can provide both positive effects (accelerated self-sintering-dominated) and negative effects (degradation-dominated) on their electrical conductivities. Mechanism analyses reveal the basis for balancing the degradation and accelerated self-sintering processes. The presented demonstrations foreshadow opportunities of the developed molybdenum/wax composites in rehealable electronics, on-demand smart transient electronics with multiple transience modes, and many other related unusual applications.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiao Ma
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Haonan Zhao
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiaozhong Wu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
31
|
Lewis DK, Oh Y, Mohanam LN, Wierzbicki M, Ing NL, Gu L, Hochbaum A, Wu R, Cui Q, Sharifzadeh S. Electronic Structure of de Novo Peptide ACC-Hex from First Principles. J Phys Chem B 2022; 126:4289-4298. [PMID: 35671500 DOI: 10.1021/acs.jpcb.2c02346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins are promising components for bioelectronic devices due in part to their biocompatibility, flexibility, and chemical diversity, which enable tuning of material properties. Indeed, an increasingly broad range of conductive protein supramolecular materials have been reported. However, due to their structural and environmental complexity, the electronic structure, and hence conductivity, of protein assemblies is not well-understood. Here we perform an all-atom simulation of the physical and electronic structure of a recently synthesized self-assembled peptide antiparallel coiled-coil hexamer, ACC-Hex. Using classical molecular dynamics and first-principles density functional theory, we examine the interactions of each peptide, containing phenylalanine residues along a hydrophobic core, to form a hexamer structure. We find that while frontier electronic orbitals are composed of phenylalanine, the peptide backbone and remaining residues, including those influenced by solvent, also contribute to the electronic density. Additionally, by studying dimers extracted from the hexamer, we show that structural distortions due to atomic fluctuations significantly impact the electronic structure of the peptide bundle. These results indicate that it is necessary to consider the full atomistic picture when using the electronic structure of supramolecular protein complexes to predict electronic properties.
Collapse
Affiliation(s)
- D Kirk Lewis
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Younghoon Oh
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michał Wierzbicki
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Nicole L Ing
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Lei Gu
- Department of Physics, University of California Irvine, Irvine, California 92697, United States
| | - Allon Hochbaum
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Ruqian Wu
- Department of Physics, University of California Irvine, Irvine, California 92697, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
33
|
|
34
|
Zhong G, An F, Qu K, Dong Y, Yang Z, Dai L, Xie S, Huang R, Luo Z, Li J. Highly Flexible Freestanding BaTiO 3 -CoFe 2 O 4 Heteroepitaxial Nanostructure Self-Assembled with Room-Temperature Multiferroicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104213. [PMID: 34816590 DOI: 10.1002/smll.202104213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Multiferroics with simultaneous electric and magnetic orderings are highly desirable for sensing, actuation, data storage, and bio-inspired systems, yet developing flexible materials with robust multiferroic properties at room temperature is a long-term challenge. Utilizing water-soluble Sr3 Al2 O6 as a sacrificial layer, the authors have successfully self-assembled a freestanding BaTiO3 -CoFe2 O4 heteroepitaxial nanostructure via pulse laser deposition, and confirmed its epitaxial growth in both out-of-plane and in-plane directions, with highly ordered CoFe2 O4 nanopillars embedded in a single crystalline BaTiO3 matrix free of substrate constraint. The freestanding nanostructure enjoys super flexibility and mechanical integrity, not only capable of spontaneously curving into a roll, but can also be bent with a radius as small as 4.23 µm. Moreover, piezoelectricity and ferromagnetism are demonstrated at both microscopic and macroscopic scales, confirming its robust multiferroicity at room temperature. This work establishes an effective route for flexible multiferroic materials, which have the potential for various practical applications.
Collapse
Affiliation(s)
- Gaokuo Zhong
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng An
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ke Qu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yongqi Dong
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhenzhong Yang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241, China
| | - Liyufen Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Shuhong Xie
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Jiangyu Li
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
35
|
Gou S, Chen N, Wu X, Zu M, Yi S, Ying B, Dai F, Ke B, Xiao B. Multi-responsive nanotheranostics with enhanced tumor penetration and oxygen self-producing capacities for multimodal synergistic cancer therapy. Acta Pharm Sin B 2022; 12:406-423. [PMID: 35127395 PMCID: PMC8800034 DOI: 10.1016/j.apsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin (DOX)-loaded silk fibroin-based nanoparticles (NPs) with surface functionalization by photosensitizer (N770). The obtained nanotheranostics (N770-DOX@NPs) had desirable particle size (157 nm) and negative surface charge (−25 mV). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli (acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared (NIR) fluorescence imaging, photothermal imaging, and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumor retardation effect among all treatment groups based on tumor-bearing mouse models and a patient-derived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imaging-guided mitochondrial phototherapy (photothermal therapy and photodynamic therapy) and chemotherapy. Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.
Collapse
Affiliation(s)
- Shuangquan Gou
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Nanxi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Corresponding authors.
| |
Collapse
|
36
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
37
|
Yi N, Gao Y, Verso AL, Zhu J, Erdely D, Xue C, Lavelle R, Cheng H. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:24-34. [PMID: 35177951 PMCID: PMC8846415 DOI: 10.1016/j.mattod.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Deployment of functional circuits on a 3D freeform surface is of significant interest to wearable devices on curvilinear skin/tissue surfaces or smart Internet-of-Things with sensors on 3D objects. Here we present a new fabrication strategy that can directly print functional circuits either transient or long-lasting onto freeform surfaces by intense pulsed light-induced mass transfer of zinc nanoparticles (Zn NPs). The intense pulsed light can locally raise the temperature of Zn NPs to cause evaporation. Lamination of a kirigami-patterned soft semi-transparent polymer film with Zn NPs conforming to a 3D surface results in condensation of Zn NPs to form conductive yet degradable Zn patterns onto a 3D freeform surface for constructing transient electronics. Immersing the Zn patterns into a copper sulfate or silver nitrate solution can further convert the transient device to a long-lasting device with copper or silver. Functional circuits with integrated sensors and a wireless communication component on 3D glass beakers and seashells with complex surface geometries demonstrate the viability of this manufacturing strategy.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Antonino Lo Verso
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cuili Xue
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China
| | - Robert Lavelle
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
38
|
Kalidasan V, Yang X, Xiong Z, Li RR, Yao H, Godaba H, Obuobi S, Singh P, Guan X, Tian X, Kurt SA, Li Z, Mukherjee D, Rajarethinam R, Chong CS, Wang JW, Ee PLR, Loke W, Tee BCK, Ouyang J, Charles CJ, Ho JS. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat Biomed Eng 2021; 5:1217-1227. [PMID: 34654900 DOI: 10.1038/s41551-021-00802-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Monitoring surgical wounds post-operatively is necessary to prevent infection, dehiscence and other complications. However, the monitoring of deep surgical sites is typically limited to indirect observations or to costly radiological investigations that often fail to detect complications before they become severe. Bioelectronic sensors could provide accurate and continuous monitoring from within the body, but the form factors of existing devices are not amenable to integration with sensitive wound tissues and to wireless data transmission. Here we show that multifilament surgical sutures functionalized with a conductive polymer and incorporating pledgets with capacitive sensors operated via radiofrequency identification can be used to monitor physicochemical states of deep surgical sites. We show in live pigs that the sutures can monitor wound integrity, gastric leakage and tissue micromotions, and in rodents that the healing outcomes are equivalent to those of medical-grade sutures. Battery-free wirelessly operated bioelectronic sutures may facilitate post-surgical monitoring in a wide range of interventions.
Collapse
Affiliation(s)
- Viveka Kalidasan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Xin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Ze Xiong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore. .,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore. .,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
| | - Renee R Li
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haicheng Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Hareesh Godaba
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Sybil Obuobi
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Priti Singh
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Xin Guan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Xi Tian
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Selman A Kurt
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Zhipeng Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Devika Mukherjee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Choon Seng Chong
- Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Weiqiang Loke
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Benjamin C K Tee
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Christopher J Charles
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore. .,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore. .,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Indexed: 12/14/2022]
Abstract
The emerging field of implantable bioelectronics has attracted widespread attention in modern society because it can improve treatment outcomes, reduce healthcare costs, and lead to an improvement in the quality of life. However, their continuous operation is often limited by conventional bulky and rigid batteries with a limited lifespan, which must be surgically removed after completing their missions and/or replaced after being exhausted. Herein, this paper gives a comprehensive review of recent advances in nonconventional energy solutions for implantable bioelectronics, emphasizing the miniaturized, flexible, biocompatible, and biodegradable power devices. According to their source of energy, the promising alternative energy solutions are sorted into three main categories, including energy storage devices (batteries and supercapacitors), internal energy-harvesting devices (including biofuel cells, piezoelectric/triboelectric energy harvesters, thermoelectric and biopotential power generators), and external wireless power transmission technologies (including inductive coupling/radiofrequency, ultrasound-induced, and photovoltaic devices). Their fundamentals, materials strategies, structural design, output performances, animal experiments, and typical biomedical applications are also discussed. It is expected to offer complementary power sources to extend the battery lifetime of bioelectronics while acting as an independent power supply. Thereafter, the existing challenges and perspectives associated with these powering devices are also outlined, with a focus on implantable bioelectronics.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Mingjiao Shao
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Cunjiang Yu
- Department of Mechanical Engineering Texas Center for Superconductivity University of Houston Houston TX 77204 USA
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
40
|
Mei X, Ye D, Zhang F, Di C. Implantable application of polymer‐based biosensors. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyuan Mei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Fengjiao Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
41
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
42
|
Li H, Gao F, Wang P, Yin L, Ji N, Zhang L, Zhao L, Hou G, Lu B, Chen Y, Ma Y, Feng X. Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21067-21075. [PMID: 33908774 DOI: 10.1021/acsami.1c04653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nowadays, controllable drug release is a vitally important strategy for cancer treatment and usually realized using implanting biocompatible devices. However, these devices need to be removed by another surgery after the function fails, which brings the risks of inflammation or potential death. In this article, a biodegradable flexible electronic device with controllable drug (paclitaxel) release was proposed for cancer treatment. The device is powered by an external alternating magnetic field to generate internal resistance heat and promote drug release loaded on the substrate. Moreover, the device temperature can even reach to 65 °C, which was sufficient for controllable drug release. This device also has similar mechanical properties to human tissues and can autonomously degrade due to the structure design of the circuit and degradable compositions. Finally, it is confirmed that the device has a good inhibitory effect on the proliferation of breast cancer cells (MCF-7) and could be completely degraded in vitro. Thus, its great biodegradability and conformity can relieve patients of second operation, and the device proposed in this paper provides a promising solution to complete conquest of cancer in situ.
Collapse
Affiliation(s)
- Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Fei Gao
- Shaanxi University of Chinese Medicine, Xi'an 712046, China
- Key Laboratory of Advanced Materials (Ministry of Education of China), State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Peng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Lan Yin
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (Ministry of Education of China), State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials (Ministry of Education of China), State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Guohui Hou
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
| | - Bingwei Lu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
- Qiantang Science and Technology Innovation Center, Hangzhou 310016, China
| | - Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021; 274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.
Collapse
Affiliation(s)
- Laura Ferlauto
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Adele Fanelli
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland.
| |
Collapse
|
44
|
Wen DL, Sun DH, Huang P, Huang W, Su M, Wang Y, Han MD, Kim B, Brugger J, Zhang HX, Zhang XS. Recent progress in silk fibroin-based flexible electronics. MICROSYSTEMS & NANOENGINEERING 2021; 7:35. [PMID: 34567749 PMCID: PMC8433308 DOI: 10.1038/s41378-021-00261-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 05/04/2023]
Abstract
With the rapid development of the Internet of Things (IoT) and the emergence of 5G, traditional silicon-based electronics no longer fully meet market demands such as nonplanar application scenarios due to mechanical mismatch. This provides unprecedented opportunities for flexible electronics that bypass the physical rigidity through the introduction of flexible materials. In recent decades, biological materials with outstanding biocompatibility and biodegradability, which are considered some of the most promising candidates for next-generation flexible electronics, have received increasing attention, e.g., silk fibroin, cellulose, pectin, chitosan, and melanin. Among them, silk fibroin presents greater superiorities in biocompatibility and biodegradability, and moreover, it also possesses a variety of attractive properties, such as adjustable water solubility, remarkable optical transmittance, high mechanical robustness, light weight, and ease of processing, which are partially or even completely lacking in other biological materials. Therefore, silk fibroin has been widely used as fundamental components for the construction of biocompatible flexible electronics, particularly for wearable and implantable devices. Furthermore, in recent years, more attention has been paid to the investigation of the functional characteristics of silk fibroin, such as the dielectric properties, piezoelectric properties, strong ability to lose electrons, and sensitivity to environmental variables. Here, this paper not only reviews the preparation technologies for various forms of silk fibroin and the recent progress in the use of silk fibroin as a fundamental material but also focuses on the recent advanced works in which silk fibroin serves as functional components. Additionally, the challenges and future development of silk fibroin-based flexible electronics are summarized. (1) This review focuses on silk fibroin serving as active functional components to construct flexible electronics. (2) Recent representative reports on flexible electronic devices that applied silk fibroin as fundamental supporting components are summarized. (3) This review summarizes the current typical silk fibroin-based materials and the corresponding advanced preparation technologies. (4) The current challenges and future development of silk fibroin-based flexible electronic devices are analyzed.
Collapse
Affiliation(s)
- Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - De-Heng Sun
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Wen Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Meng Su
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505 Japan
| | - Ya Wang
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Meng-Di Han
- Institute of Microelectronics, Peking University, 100087 Beijing, China
| | - Beomjoon Kim
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505 Japan
| | - Juergen Brugger
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hai-Xia Zhang
- Institute of Microelectronics, Peking University, 100087 Beijing, China
| | - Xiao-Sheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
45
|
Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front Bioeng Biotechnol 2021; 9:622524. [PMID: 33937212 PMCID: PMC8081831 DOI: 10.3389/fbioe.2021.622524] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process-the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants-devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Shao-Tuan Chen
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Molinnus D, Drinic A, Iken H, Kröger N, Zinser M, Smeets R, Köpf M, Kopp A, Schöning MJ. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens Bioelectron 2021; 183:113204. [PMID: 33836429 DOI: 10.1016/j.bios.2021.113204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
In modern days, there is an increasing relevance of and demand for flexible and biocompatible sensors for in-vivo and epidermal applications. One promising strategy is the implementation of biological (natural) polymers, which offer new opportunities for flexible biosensor devices due to their high biocompatibility and adjustable biodegradability. As a proof-of-concept experiment, a biosensor was fabricated by combining thin- (for Pt working- and counter electrode) and thick-film (for Ag/AgCl quasi-reference electrode) technologies: The biosensor consists of a fully bio-based and biodegradable fibroin substrate derived from silk fibroin of the silkworm Bombyx mori combined with immobilized enzyme glucose oxidase. The flexible glucose biosensor is encapsulated by a biocompatible silicon rubber which is certificated for a safe use onto human skin. Characterization of the sensor set-up is exemplarily demonstrated by glucose measurements in buffer and Ringer's solution, while the stability of the quasi-reference electrode has been investigated versus a commercial Ag/AgCl reference electrode. Repeated bending studies validated the mechanical properties of the electrode structures. The cross-sensitivity of the biosensor against ascorbic acid, noradrenaline and adrenaline was investigated, too. Additionally, biocompatibility and degradation tests of the silk fibroin with and without thin-film platinum electrodes were carried out.
Collapse
Affiliation(s)
- Denise Molinnus
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Aleksander Drinic
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Heiko Iken
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Marius Köpf
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Alexander Kopp
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany; Forschungszentrum Jülich GmbH, Institute of Biological Information Processing (IBI-3), Wilhelm-Johnen-Strasse 6, 52425, Jülich, Germany.
| |
Collapse
|
47
|
Lee MH, Lee J, Jung SK, Kang D, Park MS, Cha GD, Cho KW, Song JH, Moon S, Yun YS, Kim SJ, Lim YW, Kim DH, Kang K. A Biodegradable Secondary Battery and its Biodegradation Mechanism for Eco-Friendly Energy-Storage Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004902. [PMID: 33533125 DOI: 10.1002/adma.202004902] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The production of rechargeable batteries is rapidly expanding, and there are going to be new challenges in the near future about how the potential environmental impact caused by the disposal of the large volume of the used batteries can be minimized. Herein, a novel strategy is proposed to address these concerns by applying biodegradable device technology. An eco-friendly and biodegradable sodium-ion secondary battery (SIB) is developed through extensive material screening followed by the synthesis of biodegradable electrodes and their seamless assembly with an unconventional biodegradable separator, electrolyte, and package. Each battery component decomposes in nature into non-toxic compounds or elements via hydrolysis and/or fungal degradation, with all of the biodegradation products naturally abundant and eco-friendly. Detailed biodegradation mechanisms and toxicity influence of each component on living organisms are determined. In addition, this new SIB delivers performance comparable to that of conventional non-degradable SIBs. The strategy and findings suggest a novel eco-friendly biodegradable paradigm for large-scale rechargeable battery systems.
Collapse
Affiliation(s)
- Myeong Hwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Kyun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Hyuk Song
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehwan Moon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Soo Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seok Joo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kisuk Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
48
|
Zhu S, Tang Y, Lin C, Liu XY, Lin Y. Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. SMALL METHODS 2021; 5:e2001060. [PMID: 34927826 DOI: 10.1002/smtd.202001060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Indexed: 06/14/2023]
Abstract
The development of a flexible and efficient strategy to precisely fabricate polymer patterns is increasingly significant for many research areas, especially for cell biology, pharmaceutical science, tissue engineering, soft photonics, and bioelectronics. Recent advances of patterning natural polymers using various nanofabrication techniques, including photolithography, electron-beam lithography, dip-pen nanolithography, inkjet printing, soft lithography, and nanoimprint lithography are discussed here. Integrating nanofabrication techniques with naturally derived macromolecules provides a feasible route for transforming these polymer materials into versatile and sophisticated devices while maintaining their intrinsic and excellent properties. Furthermore, the corresponding applications of these natural polymer patterns generated by the above techniques are elaborated. In the end, a summary of this promising research field is offered and an outlook for the future is given. It is expected that advances in precise spatial patterns of natural polymers would provide new avenues for various applications, such as tissue engineering, flexible electronics, biomedical diagnosis, and soft photonics.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Changxu Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Xiang Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
49
|
Manikandan G, Murali A, Kumar R, Satapathy DK. Rapid Moisture-Responsive Silk Fibroin Actuators. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8880-8888. [PMID: 33576225 DOI: 10.1021/acsami.0c17525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the unique actuation characteristics of moisture-driven, fully reversible soft biopolymer films fabricated from Bombyx mori silk. The instantaneous actuation is driven by the water vapor induced stress gradient generated across the thickness of the film, and it possesses subsecond response and actuation times. The excellent durability and consistent performance of the film without any noticeable fatigue are established by subjecting it to more than a thousand continuous actuation cycles. The weight-lifting capability of the film is fascinating, where a few tens of micrograms of water generate a colossal force required to lift hundreds of milligrams of weight. Several other potential uses of silk fibroin based soft actuators, such as an intelligent textile layer with the crescent-shaped windows that open on perspiring skin and an autonomous crawler, are also demonstrated. Interestingly, even moisture emanating from the human palm triggers the ultrafast actuation process. These silk films are fabricated using a simple facile solution-casting technique, which can be scaled up with relative ease.
Collapse
Affiliation(s)
- Ganesan Manikandan
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Aathira Murali
- Department of Physics, Indian Institute of Technology, Palakkad, 678557, India
| | - Ravi Kumar
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
50
|
Development of robust, ultra-smooth, flexible and transparent regenerated silk composite films for bio-integrated electronic device applications. Int J Biol Macromol 2021; 176:498-509. [PMID: 33571588 DOI: 10.1016/j.ijbiomac.2021.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/21/2023]
Abstract
Regenerated Silk Fibroin (RSF) films are considered promising substrate candidates primarily in the field of bio-integrated electronic device applications. The key issues that ought to be addressed to exploit the inherent advantages of silk thin films include enhancing their flexibility and chemical durability. Such films find a plethora of applications, the significant one being conformal, transparent microelectrode arrays. Elevated temperatures that are regularly used in lithographic processes tend to dehydrate RSF films, making them brittle. Furthermore, the solvents/etchants used in typical device fabrication results in the formation of micro-cracks. This paper addressed both these issues by developing composite films and studying the effect of biodegradable additives in enhancing flexibility and chemical durability without compromising on optical transparency and surface smoothness. Through our rigorous experimentation, regenerated silk blended with Polyvinyl Alcohol (Silk/PVA) is identified as the composite for achieving the objectives. Furthermore, the Cyto-compatibility studies suggest that Silk/PVA, along with all other silk composites, have shown above 80% cell viability, as verified using L929 fibroblast cell lines. Going a step further, we demonstrated the successful patterning of 32 channel optically transparent microelectrode array (MEA) pattern, with a minimum feature size of 5 μm above the free-standing and optically transparent Silk/PVA composite film.
Collapse
|