1
|
Katchkovsky S, Meiri R, Lacham-Hartman S, Orenstein Y, Levaot N, Papo N. Mapping the sclerostin-LRP4 binding interface identifies critical interaction hotspots in loops 1 and 3 of sclerostin. FEBS Lett 2024. [PMID: 39443289 DOI: 10.1002/1873-3468.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
The interaction of sclerostin (Scl) with the low-density lipoprotein receptor-related protein 4 (LRP4) leads to a marked reduction in bone formation by inhibiting the Wnt/β-catenin pathway. To characterize the Scl-LRP4 binding interface, we sorted a combinatorial library of Scl variants and isolated variants with reduced affinity to LRP4. We identified Scl single-mutation variants enriched during the sorting process and verified their reduction in affinity toward LRP4-a reduction that was not a result of changes in the variants' secondary structure or stability. We found that Scl positions K75 (loop 1) and V136 (loop 3) are critical hotspots for binding to LRP4. Our findings establish the foundation for targeting these hotspots for developing novel therapeutic strategies to promote bone formation.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reut Meiri
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. The Relationship between Sclerostin and Kidney Transplantation Mineral Bone Disorders: A Molecule of Controversies. Calcif Tissue Int 2024; 115:339-361. [PMID: 39078512 PMCID: PMC11405501 DOI: 10.1007/s00223-024-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024]
Abstract
Kidney transplantation is the most effective treatment option for most patients with end-stage kidney disease due to reduced mortality, decreased cardiovascular events and increased quality of life compared to patients treated with dialysis. However, kidney transplantation is not devoid of both acute and chronic complications including mineral bone disorders (MBD) which are already present in patients with chronic kidney disease (CKD) before kidney transplantation. The natural history of MBD after kidney transplantation is variable and new markers are needed to define MBD after kidney transplantation. One of these promising molecules is sclerostin. The main action of sclerostin is to inhibit bone formation and mineralization by blocking osteoblast differentiation and function. In kidney transplant recipients (KTRs), various studies have shown that sclerostin is associated with graft function, bone parameters, vascular calcification, and arterial stiffness although non-uniformly. Furthermore, data for inhibition of sclerostin with monoclonal antibody romosozumab for treatment of osteoporosis is available for general population but not in KTRs which osteoporosis is highly prevalent. In this narrative review, we have summarized the studies investigating the change of sclerostin before and after kidney transplantation, the relationship between sclerostin and laboratory parameters, bone metabolism and vascular calcification in the context of kidney transplantation. We also pointed out the uncertainties, explained the causes of divergent findings and suggest further potential study topics regarding sclerostin in kidney transplantation.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| | - Yasar Caliskan
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| | - Krista L Lentine
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
3
|
Di T, Chen Y, Zhou Z, Liu J, Du Y, Feng C, Zhu B, Wang L. Effect of α7 nAChR-autophagy axis of deciduous tooth pulp stem cells in regulating IL-1β in the process of physiological root resorption of deciduous teeth. J Mol Med (Berl) 2024; 102:1135-1149. [PMID: 39002004 DOI: 10.1007/s00109-024-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1β. Significantly increased IL-1β and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1β. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1β and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1β. α7 nAChR acts as an initiating factor to regulate IL-1β through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1β expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China
| | - Jiajia Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yang Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Chao Feng
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
- Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Bin Zhu
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China.
| | - Lulu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
4
|
Batoon L, Koh AJ, Millard SM, Grewal J, Choo FM, Kannan R, Kinnaird A, Avey M, Teslya T, Pettit AR, McCauley LK, Roca H. Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation. Bone Res 2024; 12:43. [PMID: 39103355 DOI: 10.1038/s41413-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 08/07/2024] Open
Abstract
Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Amy Jean Koh
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Susan Marie Millard
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jobanpreet Grewal
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Fang Ming Choo
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Aysia Kinnaird
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Megan Avey
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Tatyana Teslya
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Allison Robyn Pettit
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, 48109, USA.
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Xiaohui T, Wang L, Yang X, Jiang H, Zhang N, Zhang H, Li D, Li X, Zhang Y, Wang S, Zhong C, Yu S, Ren M, Sun M, Li N, Chen T, Ma Y, Li F, Liu J, Yu Y, Yue H, Zhang Z, Zhang G. Sclerostin inhibition in rare bone diseases: Molecular understanding and therapeutic perspectives. J Orthop Translat 2024; 47:39-49. [PMID: 39007037 PMCID: PMC11245887 DOI: 10.1016/j.jot.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.
Collapse
Affiliation(s)
- Tao Xiaohui
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaofei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenghang Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meishen Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O'Brien CA. Refining the identity of mesenchymal cell types associated with murine periosteal and endosteal bone. J Biol Chem 2024; 300:107158. [PMID: 38479598 PMCID: PMC11007436 DOI: 10.1016/j.jbc.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
Affiliation(s)
- Intawat Nookaew
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Biomedical Informatics, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melda Onal
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Physiology and Cell Biology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cecile Bustamante-Gomez
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Qiang Fu
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
8
|
Stringer F, Sims NA, Sachithanandan N, Aleksova J. Severe Osteoporosis With Pathogenic LRP5 Variant. JCEM CASE REPORTS 2024; 2:luae021. [PMID: 38404691 PMCID: PMC10888517 DOI: 10.1210/jcemcr/luae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 02/27/2024]
Abstract
A 24-year-old female patient was diagnosed with osteoporosis after presenting with numerous fractures throughout her childhood and adolescence. Risk factors included chronic constipation, severe vitamin D deficiency, and long-term high-dose steroid use for severe eczema. Metabolic bone disorder clinical exome screening (limited panel of metabolic bone disorders and gastrointestinal disorders) was undertaken and revealed a class 4 likely pathogenic variant in the LRP5 gene known to cause osteoporosis. Optimal treatment for patients with this variant is not well defined. A literature review of the condition and potential treatment options is discussed.
Collapse
Affiliation(s)
- Felicity Stringer
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - Natalie A Sims
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nirupa Sachithanandan
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jasna Aleksova
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Department of Medicine, Monash University, Clayton, VIC 3168, Australia
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
9
|
Hendrickx G, Boudin E, Mateiu L, Yorgan TA, Steenackers E, Kneissel M, Kramer I, Mortier G, Schinke T, Van Hul W. An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling. Calcif Tissue Int 2024; 114:171-181. [PMID: 38051321 DOI: 10.1007/s00223-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Eveline Boudin
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ellen Steenackers
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geert Mortier
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wim Van Hul
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res 2023; 58:1139-1147. [PMID: 37712722 DOI: 10.1111/jre.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Periodontitis, a chronic infectious disease, primarily arises from infections and the invasion of periodontal pathogens. This condition is typified by alveolar bone loss resulting from host immune responses and inflammatory reactions. Periodontal pathogens trigger aberrant inflammatory reactions within periodontal tissues, thereby exacerbating the progression of periodontitis. Simultaneously, these pathogens and metabolites stimulate osteoclast differentiation, which leads to alveolar bone resorption. Moreover, a range of systemic diseases, including diabetes, postmenopausal osteoporosis, obesity and inflammatory bowel disease, can contribute to the development and progression of periodontitis. Many studies have underscored the pivotal role of gut microbiota in bone health through the gut-alveolar bone axis. The circulation may facilitate the transfer of gut pathogens or metabolites to distant alveolar bone, which in turn regulates bone homeostasis. Additionally, gut pathogens can elicit gut immune responses and direct immune cells to remote organs, potentially exacerbating periodontitis. This review summarizes the influence of oral microbiota on the development of periodontitis as well as the association between gut microbiota and periodontitis. By uncovering potential mechanisms of the gut-bone axis, this analysis provides novel insights for the targeted treatment of pathogenic bacteria in periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O'Brien CA. A framework for defining mesenchymal cell types associated with murine periosteal and endosteal bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567528. [PMID: 38014179 PMCID: PMC10680810 DOI: 10.1101/2023.11.17.567528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell RNA sequencing has led to numerous novel designations for mesenchymal cell types associated with bone. Consequently, there are now multiple designations for what appear to be the same cell type. In addition, existing datasets contain relatively small numbers of mature osteoblasts and osteocytes and there has been no comparison of periosteal bone cells to those at the endosteum and trabecular bone. The main goals of this study were to increase the amount of single cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. To do this, we created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-CAR, osteo-CAR, pre-osteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by Postn expression. Osteo-X, osteo-CAR, and pre-osteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in any cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of skeletal stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in pre-osteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single cell RNA sequencing datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
Affiliation(s)
- Intawat Nookaew
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Melda Onal
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Physiology and Cell Biology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Cecile Bustamante-Gomez
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Visanu Wanchai
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Fu
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
12
|
Khan H, Ullah K, Jan A, Ali H, Ullah I, Ahmad W. A variant in the LDL receptor-related protein encoding gene LRP4 underlying polydactyly and phalangeal synostosis in a family of Pakistani origin. Congenit Anom (Kyoto) 2023; 63:190-194. [PMID: 37563890 DOI: 10.1111/cga.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/07/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023]
Abstract
A family of Pakistani origin, segregating polydactyly, and phalangeal synostosis in an autosomal dominant manner, has been investigated and presented in the present report. Whole-exome sequencing (WES), followed by segregation analysis using Sanger sequencing, revealed a heterozygous missense variant [c.G1696A, p.(Gly566Ser)] in the LRP4 gene located on human chromosome 11p11.2. Homology protein modeling revealed the mutant Ser566 generated new interactions with at least four other amino acids and disrupted protein folding and function. Our findings demonstrated the first direct evidence of involvement of LRP4 in causing polydactyly and phalangeal synostosis in the same family. This study highlighted the importance of inclusion of LRP4 gene in screening individuals presenting polydactyly in hands and feet, and phalangeal synostosis in the same family.
Collapse
Affiliation(s)
- Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kifayat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
13
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
14
|
Wu Z, Yang KG, Lam TP, Cheng JCY, Zhu Z, Lee WYW. Genetic insight into the putative causal proteins and druggable targets of osteoporosis: a large-scale proteome-wide mendelian randomization study. Front Genet 2023; 14:1161817. [PMID: 37448626 PMCID: PMC10336211 DOI: 10.3389/fgene.2023.1161817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Osteoporosis is a major causative factor of the global burden of disease and disability, characterized by low bone mineral density (BMD) and high risks of fracture. We aimed to identify putative causal proteins and druggable targets of osteoporosis. Methods: This study utilized the largest GWAS summary statistics on plasma proteins and estimated heel BMD (eBMD) to identify causal proteins of osteoporosis by mendelian randomization (MR) analysis. Different GWAS datasets were used to validate the results. Multiple sensitivity analyses were conducted to evaluate the robustness of primary MR findings. We have also performed an enrichment analysis for the identified causal proteins and evaluated their druggability. Results: After Bonferroni correction, 67 proteins were identified to be causally associated with estimated BMD (eBMD) (p < 4 × 10-5). We further replicated 38 of the 67 proteins to be associated with total body BMD, lumbar spine BMD, femoral neck BMD as well as fractures, such as RSPO3, IDUA, SMOC2, and LRP4. The findings were supported by sensitivity analyses. Enrichment analysis identified multiple Gene Ontology items, including collagen-containing extracellular matrix (GO:0062023, p = 1.6 × 10-10), collagen binding (GO:0005518, p = 8.6 × 10-5), and extracellular matrix structural constituent (GO:0005201, p = 2.7 × 10-5). Conclusion: The study identified novel putative causal proteins for osteoporosis which may serve as potential early screening biomarkers and druggable targets. Furthermore, the role of plasma proteins involved in collagen binding and extracellular matrix in the development of osteoporosis was highlighted. Further studies are warranted to validate our findings and investigate the underlying mechanism.
Collapse
Affiliation(s)
- Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kenneth Guangpu Yang
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Ministry of Education, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jack Chun Yiu Cheng
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Ministry of Education, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
15
|
Kavoosian S, Asgharian A, Asouri M, Fattahi S, Amirbozorgi G, Kheirandish A, Abolfazli S, Lotfi M, Ebrahimi N, Ataee R. Polymorphism of LRP4 Gene (rs9667108) among Post Menopause Women with Osteoporosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:840-847. [PMID: 37551184 PMCID: PMC10404332 DOI: 10.18502/ijph.v52i4.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 08/09/2023]
Abstract
Background Many studies have been done to identify the factors that influence the development and progression of osteoporosis. One genetic factor is polymorphisms of LRP4 gene. Regarding the lack of comprehensive study on polymorphisms of LRP4 gene in the north of Iran, mainly Mazandaran Province, we decided to investigate the polymorphism of this gene in postmenopausal women with osteoporosis. Methods This case-control study has been conducted at GhaemShahr Valiasr Hospital on 100 female patients with osteoporosis (average age of 58.1) and 90 healthy females without osteoporosis (average age of 55.2). After sampling and extraction of genomic DNA via of the salt deposition method, the genotype and SNP (rs9667108) polymorphism of LRP4 gene were evaluated with the PCR-RFLP method. Restriction enzymes cut the PCR products. In order to identify patients, their bone mineral density was tested by the DEXA method. The results of digestion (digestion enzyme) were analyzed by MedCalc, SPSS software, Hardy-Weinberg equilibrium, and Chi2. Results The statistical analysis has shown the significant relationship between SNP (rs9667108) polymorphism and the risk of osteoporosis disease in patients and control groups (P<0.05). In SNP (rs9667108), the GC genotype, compared to GG, increased the risk of disease significantly (1.556 time). Similarly, CC genotype, compared to GG genotype, increased the risk of this disease by 2.091 time. Conclusion The existence of mutation in the LRP4 gene could increase susceptibility to osteoporosis disease. Moreover, determining this patient's genotype in SNP (rs9667108) can be used to identify individuals who are in endanger osteoporosis.
Collapse
Affiliation(s)
- Saeid Kavoosian
- College of Basic Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Alimohammad Asgharian
- Department Cell and Molecular Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohsen Asouri
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Ali Kheirandish
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Lotfi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Ataee
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Riddle RC. Endocrine Functions of Sclerostin. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 28:10.1016/j.coemr.2022.100433. [PMID: 36713826 PMCID: PMC9881182 DOI: 10.1016/j.coemr.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sclerostin, the product of the SOST gene has primarily been studied for its profound impact on bone mass. By interacting with LRP5 and LRP6, the glycoprotein suppresses the propagation of Wnt signals to β-catenin and thereby suppresses new bone formation. In this review, we discuss emerging data which suggest that sclerostin also acts outside the skeleton to influence metabolism. In humans, serum sclerostin levels are associated with body mass index and indices of metabolic function. Likewise, genetic mouse models of Sost gene deficiency indicate sclerostin influences adipocyte development and insulin signaling. These data raise the possibility that sclerostin neutralization may be effective at treating two epidemic conditions: osteoporosis and obesity.
Collapse
Affiliation(s)
- Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.,Address Correspondence to: Ryan C. Riddle, Ph.D., Department of Orthopaedics, University of Maryland School of Medicine, 660 W. Redwood Street, Room 592, Baltimore, MD 21201, USA, , Ph: 410-706-0422
| |
Collapse
|
17
|
Marini F, Giusti F, Palmini G, Brandi ML. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 2023; 34:213-238. [PMID: 35982318 DOI: 10.1007/s00198-022-06523-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
UNLABELLED Wnt signaling and its bone tissue-specific inhibitor sclerostin are key regulators of bone homeostasis. The therapeutic potential of anti-sclerostin antibodies (Scl-Abs), for bone mass recovery and fragility fracture prevention in low bone mass phenotypes, has been supported by animal studies. The Scl-Ab romosozumab is currently used for osteoporosis treatment. INTRODUCTION Wnt signaling is a key regulator of skeletal development and homeostasis; germinal mutations affecting genes encoding components, inhibitors, and enhancers of the Wnt pathways were shown to be responsible for the development of rare congenital metabolic bone disorders. Sclerostin is a bone tissue-specific inhibitor of the Wnt/β-catenin pathway, secreted by osteocytes, negatively regulating osteogenic differentiation and bone formation, and promoting osteoclastogenesis and bone resorption. PURPOSE AND METHODS Here, we reviewed current knowledge on the role of sclerostin and Wnt pathways in bone metabolism and skeletal disorders, and on the state of the art of therapy with sclerostin-neutralizing antibodies in low-bone-mass diseases. RESULTS Various in vivo studies on animal models of human low-bone-mass diseases showed that targeting sclerostin to recover bone mass, restore bone strength, and prevent fragility fracture was safe and effective in osteoporosis, osteogenesis imperfecta, and osteoporosis pseudoglioma. Currently, only treatment with romosozumab, a humanized monoclonal anti-sclerostin antibody, has been approved in human clinical practice for the treatment of osteoporosis, showing a valuable capability to increase BMD at various skeletal sites and reduce the occurrence of new vertebral, non-vertebral, and hip fragility fractures in treated male and female osteoporotic patients. CONCLUSIONS Preclinical studies demonstrated safety and efficacy of therapy with anti-sclerostin monoclonal antibodies in the preservation/restoration of bone mass and prevention of fragility fractures in low-bone-mass clinical phenotypes, other than osteoporosis, to be validated by clinical studies for their approved translation into prevalent clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy
| | - Francesca Giusti
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy.
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
18
|
Heterozygous LRP1 deficiency causes developmental dysplasia of the hip by impairing triradiate chondrocytes differentiation due to inhibition of autophagy. Proc Natl Acad Sci U S A 2022; 119:e2203557119. [PMID: 36067312 PMCID: PMC9477389 DOI: 10.1073/pnas.2203557119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing and identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. We found that the timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment. Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. All patients harboring the LRP1 variants presented a typical DDH phenotype. The heterozygous Lrp1 knockout (KO) mouse (Lrp1+/−) showed phenotypes recapitulating the human DDH phenotypes, indicating Lrp1 loss of function causes DDH. Lrp1 knockin mice with a missense variant corresponding to a human variant identified in DDH (Lrp1R1783W) also presented DDH phenotypes, which were milder in heterozygotes and severer in homozygotes than those of the Lrp1 KO mouse. The timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. During the chondrogenic induction of mice bone marrow stem cells and ATDC5 (an inducible chondrogenic cell line), Lrp1 deficiency caused decreased autophagy levels with significant β-catenin up-regulation and suppression of chondrocyte marker genes. The expression of chondrocyte markers was rescued by PNU-74654 (a β-catenin antagonist) in an shRNA-Lrp1–expressed ATDC5 cell. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment.
Collapse
|
19
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Eckhardt B, Vos S, Grain S, Kroupova K, Ruan M, Weivoda M, Oursler MJ, Farr JN, Monroe DG, Khosla S. Skeletal Effects of Inducible ERα Deletion in Osteocytes in Adult Mice. J Bone Miner Res 2022; 37:1750-1760. [PMID: 35789113 PMCID: PMC9474695 DOI: 10.1002/jbmr.4644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/12/2022]
Abstract
Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Madison L. Doolittle
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Jennifer L. Rowsey
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Brittany Eckhardt
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Stephanie Vos
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sarah Grain
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Kveta Kroupova
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
- University Hospital Hradec Kralove and the Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Ming Ruan
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Megan Weivoda
- Robert and Arlene Kogod Center on Aging and Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN
| | - Merry Jo Oursler
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Joshua N. Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
20
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
21
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
22
|
Sclerostin: From Molecule to Clinical Biomarker. Int J Mol Sci 2022; 23:ijms23094751. [PMID: 35563144 PMCID: PMC9104784 DOI: 10.3390/ijms23094751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerostin, a glycoprotein encoded by the SOST gene, is mainly produced by mature osteocytes and is a critical regulator of bone formation through its inhibitory effect on Wnt signaling. Osteocytes are differentiated osteoblasts that form a vast and highly complex communication network and orchestrate osteogenesis in response to both mechanical and hormonal cues. The three most commonly described pathways of SOST gene regulation are mechanotransduction, Wnt/β-catenin, and steroid signaling. Downregulation of SOST and thereby upregulation of local Wnt signaling is required for the osteogenic response to mechanical loading. This review covers recent findings concerning the identification of SOST, in vitro regulation of SOST gene expression, structural and functional properties of sclerostin, pathophysiology, biological variability, and recent assay developments for measuring circulating sclerostin. The three-dimensional structure of human sclerostin was generated with the AlphaFold Protein Structure Database applying a novel deep learning algorithm based on the amino acid sequence. The functional properties of the 3-loop conformation within the tertiary structure of sclerostin and molecular interaction with low-density lipoprotein receptor-related protein 6 (LRP6) are also reviewed. Second-generation immunoassays for intact/biointact sclerostin have recently been developed, which might overcome some of the reported methodological obstacles. Sclerostin assay standardization would be a long-term objective to overcome some of the problems with assay discrepancies. Besides the use of age- and sex-specific reference intervals for sclerostin, it is also pivotal to use assay-specific reference intervals since available immunoassays vary widely in their methodological characteristics.
Collapse
|
23
|
Li Y, Zhang J, Yan C, Chen Q, Xiang C, Zhang Q, Wang X, Jiang K. Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro. J Microbiol Biotechnol 2022; 32:141-148. [PMID: 35001005 PMCID: PMC9628836 DOI: 10.4014/jmb.2109.09033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.
Collapse
Affiliation(s)
- Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Caiping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qian Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qingyan Zhang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Xingkuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China,Corresponding author Phone: +86-18382917277 E-mail:
| |
Collapse
|
24
|
Katchkovsky S, Chatterjee B, Abramovitch-Dahan CV, Papo N, Levaot N. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Cell Mol Life Sci 2022; 79:113. [PMID: 35099616 PMCID: PMC11073160 DOI: 10.1007/s00018-022-04127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl-LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl-LRP4 interactions offer a potential strategy to promote anabolic bone functions.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Biplab Chatterjee
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
25
|
Magalhães J, Quelhas-Santos J, Pereira L, Neto R, Castro-Ferreira I, Martins S, Frazão JM, Carvalho C. Could Bone Biomarkers Predict Bone Turnover after Kidney Transplantation?—A Proof-of-Concept Study. J Clin Med 2022; 11:jcm11020457. [PMID: 35054152 PMCID: PMC8780588 DOI: 10.3390/jcm11020457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Aim: Bone disease after kidney transplant (KT) results from multiple factors, including previous bone and mineral metabolism disturbances and effects of transplant-related medications. New biomolecules have been recently associated with the development and progression of the chronic kidney disease–associated bone and mineral disorder (CKD-MBD). These include sclerostin and the soluble receptor activator of nuclear factor-kB ligand (sRANKL). Methods: To better understand the role of biomarkers in post-transplant bone disease, this study was designed to prospectively evaluate and correlate results from the histomorphometric analysis of bone biopsies after KT with emerging serum biomarkers of the CKD-MBD: sclerostin, Dickkopf-related protein 1 (Dkk-1), sRANKL and osteo-protegerin (OPG). Results: Our data shows a significant increase in plasma levels of bioactive sclerostin after KT accompanied by a significant reduction in plasma levels of Dkk-1, suggesting a promotion of the inhibition of bone formation by osteoblasts through the activation of these inhibitors of the Wnt signaling pathway. In addition, we found a significant increase in plasma levels of free sRANKL after KT accompanied by a significant reduction in plasma levels of its decoy receptor OPG, suggesting an enhanced bone resorption by osteoclasts mediated by this mechanism. Conclusions: Taken together, these results suggest that the loss of bone volume observed after KT could be explain mainly by the inhibition of bone formation mediated by sclerostin accompanied by an enhanced bone resorption mediated by sRANKL.
Collapse
Affiliation(s)
- Juliana Magalhães
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal;
| | | | - Luciano Pereira
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Nephrology Department, Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal
| | - Ricardo Neto
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Nephrology Department, Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal
| | - Inês Castro-Ferreira
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Nephrology Department, Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal
| | - Sandra Martins
- Centro Hospitalar de São João and EPI Unit, Clinical Pathology Department, Institute of Public Health, University of Porto, 4200-319 Porto, Portugal;
| | - João Miguel Frazão
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Nephrology Department, Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal
| | - Catarina Carvalho
- Nephrology and Infectious Diseases Research Group, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal; (J.M.); (L.P.); (R.N.); (I.C.-F.); (J.M.F.)
- Correspondence: ; Tel.: +351-226-074900; Fax: +351-226-094567
| |
Collapse
|
26
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
27
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
28
|
Yu H, Zhang J, Liu X, Li Y. microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/β-catenin pathway. Bone Joint Res 2021; 10:744-758. [PMID: 34847690 PMCID: PMC8712601 DOI: 10.1302/2046-3758.1012.bjr-2020-0275.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. Methods A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively. Results miR-136-5p promoted fracture healing and osteoblast proliferation and differentiation. BMSC-derived exosomes exhibited an enriched miR-136-5p level, and were internalized by MC3T3-E1 cells. LRP4 was identified as a downstream target gene of miR-136-5p. Moreover, miR-136-5p or exosomes isolated from BMSCs (BMSC-Exos) containing miR-136-5p activated the Wnt/β-catenin pathway through the inhibition of LRP4 expression. Furthermore, BMSC-derived exosomes carrying miR-136-5p promoted osteoblast proliferation and differentiation, thereby promoting fracture healing. Conclusion BMSC-derived exosomes carrying miR-136-5p inhibited LRP4 and activated the Wnt/β-catenin pathway, thus facilitating fracture healing. Cite this article: Bone Joint Res 2021;10(12):744–758.
Collapse
Affiliation(s)
- Haichi Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoning Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yingzhi Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Kim SP, Da H, Wang L, Taketo MM, Wan M, Riddle RC. Bone-derived sclerostin and Wnt/β-catenin signaling regulate PDGFRα + adipoprogenitor cell differentiation. FASEB J 2021; 35:e21957. [PMID: 34606641 PMCID: PMC8496915 DOI: 10.1096/fj.202100691r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
The Wnt signaling antagonist, sclerostin, is a potent suppressor of bone acquisition that also mediates endocrine communication between bone and adipose. As a result, Sost-/- mice exhibit dramatic increases in bone formation but marked decreases in visceral and subcutaneous adipose that are secondary to alterations in lipid synthesis and utilization. While interrogating the mechanism by which sclerostin influences adipocyte metabolism, we observed paradoxical increases in the adipogenic potential and numbers of CD45- :Sca1+ :PDGFRα+ adipoprogenitors in the stromal vascular compartment of fat pads isolated from male Sost-/- mice. Lineage tracing studies indicated that sclerostin deficiency blocks the differentiation of PDGFRα+ adipoprogenitors to mature adipocytes in association with increased Wnt/β-catenin signaling. Importantly, osteoblast/osteocyte-specific Sost gene deletion mirrors the accumulation of PDGFRα+ adipoprogenitors, reduction in fat mass, and improved glucose metabolism evident in Sost-/- mice. These data indicate that bone-derived sclerostin regulates multiple facets of adipocyte physiology ranging from progenitor cell commitment to anabolic metabolism.
Collapse
Affiliation(s)
- Soohyun P Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Da
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Mao Z, Wang Z, Zhang S, Pu Y, Wang J, Zhang T, Long Y, Liu Y, Ma Y, Zhu J. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2021; 29:245-253. [PMID: 32675391 DOI: 10.3233/cbm-190571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 4 (LRP4) has been reported to be implicated in multiple types of cancers. However, the significance of LRP4 in gastric cancer (GC) remains poorly elucidated. Therefore, it's urgent to investigate the importance and underlying mechanisms of LRP4 in GC. OBJECTIVE To investigate the clinical roles of LRP4 in GC. METHODS The LRP4 mRNA and miR-140-5p was measured by qRT-PCR. The protein expression was determined Western blot. Kaplan-Meier survival curves and Cox proportional hazard regression models were performed to evaluate prognosis. RESULTS We demonstrated that LRP4 mRNA and protein was up-regulated in GC tissues for the first time. Its high expression was significantly correlated with malignant clinical features including TNM stage and lymph-node metastasis and poor prognosis for GC patients. LRP4 promotes migration, invasion and epithelial-mesenchymal transition (EMT) progress of GC cells. Mechanically, LRP4 regulated PI3K/AKT in GC cells. AKT inhibitors reversed the effects of LRP4. Finally, LRP4 was regulated by miR-140-5p in GC. CONCLUSIONS Our findings showed that LRP4 has an important function in GC progression and promotes GC migration, invasion and EMT by regulating PI3K/AKT under regulation of miR-140-5p, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhijun Mao
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yansong Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jianhua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Tao Zhang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanbin Long
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Adhikari M, Delgado-Calle J. Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease. Curr Osteoporos Rep 2021; 19:247-255. [PMID: 33818732 PMCID: PMC8486016 DOI: 10.1007/s11914-021-00679-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to review the current knowledge on the role of osteocytes in cancer in the bone, discuss the potential of osteocytes as a therapeutic target, and propose future research needed to understand the crosstalk between cancer cells and osteocytes in the tumor niche. RECENT FINDINGS Numerous studies have established that cancer cells manipulate osteocytes to facilitate invasion and tumor progression in bone. Moreover, cancer cells dysregulate osteocyte function to disrupt physiological bone remodeling, leading to the development of bone disease. Targeting osteocytes and their derived factors has proven to effectively interfere with the progression of cancer in the bone and the associated bone disease. Osteocytes communicate with cancer cells and are also part of the vicious cycle of cancer in the bone. Additional studies investigating the role of osteocytes on metastases to the bone and the development of drug resistance are needed.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jesús Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
32
|
Genetics and Genomics of SOST: Functional Analysis of Variants and Genomic Regulation in Osteoblasts. Int J Mol Sci 2021; 22:ijms22020489. [PMID: 33419004 PMCID: PMC7825314 DOI: 10.3390/ijms22020489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
SOST encodes the sclerostin protein, which acts as a key extracellular inhibitor of the canonical Wnt pathway in bone, playing a crucial role in skeletal development and bone homeostasis. The objective of this work was to assess the functionality of two variants previously identified (the rare variant rs570754792 and the missense variant p.Val10Ile) and to investigate the physical interactors of the SOST proximal promoter region in bone cells. Through a promoter luciferase reporter assay we show that the minor allele of rs570754792, a variant located in the extended TATA box motif, displays a significant decrease in promoter activity. Likewise, through western blot studies of extracellular and intracellular sclerostin, we observe a reduced expression of the p.Val10Ile mutant protein. Finally, using a circular chromosome conformation capture assay (4C-seq) in 3 bone cell types (MSC, hFOB, Saos-2), we have detected physical interactions between the SOST proximal promoter and the ECR5 enhancer, several additional enhancers located between EVT4 and MEOX1 and a distant region containing exon 18 of DHX8. In conclusion, SOST presents functional regulatory and missense variants that affect its expression and displays physical contacts with far reaching genomic sequences, which may play a role in its regulation within bone cells.
Collapse
|
33
|
Rummler M, Ziouti F, Bouchard AL, Brandl A, Duda GN, Bogen B, Beilhack A, Lynch ME, Jundt F, Willie BM. Mechanical loading prevents bone destruction and exerts anti-tumor effects in the MOPC315.BM.Luc model of myeloma bone disease. Acta Biomater 2021; 119:247-258. [PMID: 33130307 DOI: 10.1016/j.actbio.2020.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Bone continually adapts to changing external loading conditions via (re)modeling (modeling and remodeling) processes. While physical activity is known to beneficially enhance bone mass in healthy individuals, little is known in how physical stimuli affect osteolytic bone destruction in patients suffering from multiple myeloma bone disease. Multiple myeloma (MM) is caused by malignant plasma cells in the bone marrow, shifting the balance in bone remodeling towards massive resorption. We hypothesized that in vivo tibial mechanical loading has anabolic effects in mice with locally injected MOPC315.BM.Luc cells. Conventional microCT analysis revealed enhanced cortical bone mass and microstructure in loaded compared to nonloaded mice. State-of-the-art time-lapse microCT based image analysis demonstrated bone (re)modeling processes at the endosteal and periosteal surfaces as the underlying causes of increased bone mass. Loading prevented the progression and development of osteolytic destruction. Physical stimuli also diminished local MM cell growth and dissemination evidenced by quantification of MM cell-specific immunoglobulin A levels in the serum of mice and by bioluminescence analysis. These data indicate that mechanical loading not only rescues the bone phenotype, but also exerts cell-extrinsic anti-myeloma effects in the MOPC315.BM.Luc model. In conclusion, the use of physical stimuli should be further investigated as an anabolic treatment for osteolytic bone destruction in patients with MM.
Collapse
|
34
|
Wang JS, Mazur CM, Wein MN. Sclerostin and Osteocalcin: Candidate Bone-Produced Hormones. Front Endocrinol (Lausanne) 2021; 12:584147. [PMID: 33776907 PMCID: PMC7988212 DOI: 10.3389/fendo.2021.584147] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
In addition to its structural role, the skeleton serves as an endocrine organ that controls mineral metabolism and energy homeostasis. Three major cell types in bone - osteoblasts, osteoclasts, and osteocytes - dynamically form and maintain bone and secrete factors with systemic activity. Osteocalcin, an osteoblast-derived factor initially described as a matrix protein that regulates bone mineralization, has been suggested to be an osteoblast-derived endocrine hormone that regulates multiple target organs including pancreas, liver, muscle, adipose, testes, and the central and peripheral nervous system. Sclerostin is predominantly produced by osteocytes, and is best known as a paracrine-acting regulator of WNT signaling and activity of osteoblasts and osteoclasts on bone surfaces. In addition to this important paracrine role for sclerostin within bone, sclerostin protein has been noted to act at a distance to regulate adipocytes, energy homeostasis, and mineral metabolism in the kidney. In this article, we aim to bring together evidence supporting an endocrine function for sclerostin and osteocalcin, and discuss recent controversies regarding the proposed role of osteocalcin outside of bone. We summarize the current state of knowledge on animal models and human physiology related to the multiple functions of these bone-derived factors. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of osteocalcin and sclerostin.
Collapse
Affiliation(s)
- Jialiang S. Wang
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Courtney M. Mazur
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- *Correspondence: Marc N. Wein,
| |
Collapse
|
35
|
Yan M, Guo A, Chen P, Jing H, Ren D, Zhong Y, Wu Y, Fei E, Lai X, Zou S, Wang S. LRP4 LDLα repeats of astrocyte enhance dendrite arborization of the neuron. Mol Brain 2020; 13:166. [PMID: 33302985 PMCID: PMC7730773 DOI: 10.1186/s13041-020-00708-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The low-density lipoprotein receptor-related protein 4 (LRP4) is essential for inducing the neuromuscular junction (NMJ) formation in muscle fibers, and LRP4 plays a critical role in dendritic development and synaptogenesis in the central nervous system (CNS). As a single transmembrane protein, LRP4 contains an enormously sizeable extracellular domain (ECD), containing multiple LDLα repeats in the N-terminal of ECD. LRP4 only with extracellular domain acts as a similar mechanism of full-length LRP4 in muscles to stimulate acetylcholine receptor clustering. In this study, we elucidated that LDLα repeats of LRP4 maintained the body weight and survival rate. Dendritic branches of the pyramidal neurons in Lrp4-null mice with LRP4 LDLα repeats residue were more than in Lrp4-null mice without residual LRP4 domain. Supplement with conditioned medium from LRP4 LDLα overexpression cells, the primary culture pyramidal neurons achieved strong dendritic arborization ability. Besides, astrocytes with LRP4 LDLα repeats residue could promote pyramidal neuronal dendrite arborization in the primary co-cultured system. These observations signify that LRP4 LDLα repeats play a prominent underlying role in dendrite arborization.
Collapse
Affiliation(s)
- Min Yan
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Amin Guo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Peng Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyang Jing
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yanzi Zhong
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqiang Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Lai
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Suqi Zou
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China. .,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
36
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
37
|
Chen J, Yuan X, Pilawski I, Liu X, Delgado-Calle J, Bellido T, Turkkahraman H, Helms JA. Molecular Basis for Craniofacial Phenotypes Caused by Sclerostin Deletion. J Dent Res 2020; 100:310-317. [PMID: 33078679 DOI: 10.1177/0022034520963584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Some genetic disorders are associated with distinctive facial features, which can aid in diagnosis. While considerable advances have been made in identifying causal genes, relatively little progress has been made toward understanding how a particular genotype results in a characteristic craniofacial phenotype. An example is sclerosteosis/van Buchem disease, which is caused by mutations in the Wnt inhibitor sclerostin (SOST). Affected patients have a high bone mass coupled with a distinctive appearance where the mandible is enlarged and the maxilla is foreshortened. Here, mice carrying a null mutation in Sost were analyzed using quantitative micro-computed tomographic (µCT) imaging and histomorphometric analyses to determine the extent to which the size and shape of craniofacial skeleton were altered. Sost-/- mice exhibited a significant increase in appositional bone growth, which increased the height and width of the mandible and reduced the diameters of foramina. In vivo fluorochrome labeling, histology, and immunohistochemical analyses indicated that excessive bone deposition in the premaxillary suture mesenchyme curtailed overall growth, leading to midfacial hypoplasia. The amount of bone extracellular matrix produced by Sost-/- cells was significantly increased; as a consequence, osteoid seams were evident throughout the facial skeleton. Collectively, these analyses revealed a remarkable fidelity between human characteristics of sclerosteosis/van Buchem disease and the Sost-/- phenotype and provide clues into the conserved role for sclerostin signaling in modulating craniofacial morphology.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - X Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - I Pilawski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - X Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - J Delgado-Calle
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, and Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - T Bellido
- Department of Anatomy and Cell Biology, Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, and Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - H Turkkahraman
- Department of Orthodontics & Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
38
|
Al-Bari MAA, Hossain S, Mia U, Al Mamun MA. Therapeutic and Mechanistic Approaches of Tridax Procumbens Flavonoids for the Treatment of Osteoporosis. Curr Drug Targets 2020; 21:1687-1702. [PMID: 32682372 DOI: 10.2174/1389450121666200719012116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
Homeostasis of bone is closely regulated by the balanced activities between the bone resorbing activity of osteoclast cells and bone-forming ability of osteoblast cells. Multinucleated osteoclasts degrade bone matrix and involve in the dynamic bone remodelling in coordination with osteoblasts. Disruption of this regulatory balance between these cells or any imbalance in bone remodelling caused by a higher rate of resorption over construction of bone results in a decrease of bone matrix including bone mineral density (BMD). These osteoclast-dominant effects result in a higher risk of bone crack and joint demolition in several bone-related diseases, including osteoporosis and rheumatoid arthritis (RA). Tridax procumbens is a very interesting perennial plant and its secondary metabolites called here T. procumbens flavonoids (TPFs) are well-known phytochemical agents owing to various therapeutic practices such as anti-inflammatory, anti-anaemic and anti-diabetic actions. This review designed to focus the systematic convention concerning the medicinal property and mechanism of actions of TPFs for the management of bone-related diseases. Based on the current literature, the review offers evidence-based information of TPFs for basic researchers and clinicians for the prevention and treatment of bone related diseases, including osteoporosis. It also emphasizes the medical significance for more research to comprehend the cellular signalling pathways of TPFs for the regulation of bone remodelling and discusses the possible promising ethnobotanical resource that can convey the preclinical and clinical clues to develop the next generation therapeutic agents for the treatment of bonerelated disorders.
Collapse
Affiliation(s)
| | - Showna Hossain
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Ujjal Mia
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| |
Collapse
|
39
|
Sapunarova K, Goranova-Marinova V, Georgiev P, Deneva T, Tsvetkova S, Grudeva-Popova Z. Associations of serum sclerostin with bone mineral density, markers of bone metabolism and thalassaemia characteristics in adult patients with transfusion-dependent beta-thalassaemia. Ann Med 2020; 52:94-108. [PMID: 32212941 PMCID: PMC7877979 DOI: 10.1080/07853890.2020.1744708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022] Open
Abstract
Aim of the study: To assess serum sclerostin in transfusion-dependent beta-thalassaemia patients versus healthy controls and to examine its associations with bone mineral density, bone metabolism markers and beta thalassaemia alterations.Material and methods: Sixty-two transfusion-dependent beta-thalassaemia (TDßT) patients and 30 healthy controls were evaluated for serum sclerostin, osteocalcin, beta-cross laps, osteoprotegerin and serum level of receptor activator of nuclear factor kappa-Β ligand (sRANKL). Bone mineral density was measured at the lumbar spine and femoral neck. Thalassaemia characteristics were collected from the patients' medical records.Results: A significantly higher sclerostin level (median 565.50 pmol/L) was observed in the transfusion-dependent beta-thalassaemia patients vs. the healthy controls (median 48.65 pmol/L, p < .001). Sclerostin showed significant associations with the Z-scores at the lumbar spine and femoral neck, osteocalcin, beta-cross laps, osteoprotegerin, sRANKL, pretransfusion haemoglobin, liver iron concentration and female gonadal state. Significantly higher levels of sclerostin were observed in splenectomized TDßT patients and in those with fragility fractures. Age, sex, body mass index, disease severity, serum ferritin, cardiac T2* and male gonadal state did not show significant associations with sclerostin.Conclusion: Sclerostin may play a role in the bone pathophysiology of beta-thalassaemia patients and could serve as a marker of severe osteoporosis.KEY MЕSSAGESSerum sclerostin is more than 10-fold higher in adult patients with transfusion-dependent beta-thalassaemia compared to healthy controls.Serum sclerostin is negatively associated with bone mineral density and the bone synthesis markers and positively with the bone resorption indices.Serum sclerostin is significantly associated with pre-transfusion haemoglobin, liver iron concentration, splenectomy status and fragility fracture events in adult patients with transfusion-dependent beta-thalassaemia.Serum sclerostin could serve as a marker of severe osteoporosis in beta-thalassaemia patients.
Collapse
Affiliation(s)
- Katya Sapunarova
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Vesselina Goranova-Marinova
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Pencho Georgiev
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Tanya Deneva
- Department of Clinical Laboratory, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Silvia Tsvetkova
- Department of Imaging Diagnostics, Medical University, Plovdiv, Bulgaria
| | - Zhanet Grudeva-Popova
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
- Department of Medical Oncology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| |
Collapse
|
40
|
Abstract
The 11 existing FDA-approved osteoporosis drug treatments include hormone replacement therapy, 2 SERMs (raloxifene and bazedoxifene), 5 inhibitors of bone-resorbing osteoclasts (4 bisphosphonates and anti-RANKL denosumab), 2 parathyroid hormone analogues (teriparatide and abaloparatide), and 1 WNT signaling enhancer (romosozumab). These therapies are effective and provide multiple options for patients and physicians. As the genomic revolution continues, potential novel targets for future drug development are identified. This review takes a wide perspective to describe potentially rewarding topics to explore, including knowledge of genes and pathways involved in bone cell metabolism, the utility of animal models, targeting drugs to bone, and ongoing advances in drug design and delivery.
Collapse
|
41
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
42
|
Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin In Vivo. iScience 2019; 20:205-215. [PMID: 31585407 PMCID: PMC6817631 DOI: 10.1016/j.isci.2019.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Wnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse. Missense mutation in the third beta-propeller of Lrp4 improve bone properties The R1170W mutation in Lrp4 interferes with sclerostin inhibition in vivo The R1170W Lrp4 mutation alters the bone wasting effects of mechanical disuse
Collapse
|
43
|
Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. Int J Mol Sci 2019; 20:ijms20143576. [PMID: 31336616 PMCID: PMC6678498 DOI: 10.3390/ijms20143576] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) and free radicals are essential for transmission of cell signals and other physiological functions. However, excessive amounts of ROS can cause cellular imbalance in reduction–oxidation reactions and disrupt normal biological functions, leading to oxidative stress, a condition known to be responsible for the development of several diseases. The biphasic role of ROS in cellular functions has been a target of pharmacological research. Osteoclasts are derived from hematopoietic progenitors in the bone and are essential for skeletal growth and remodeling, for the maintenance of bone architecture throughout lifespan, and for calcium metabolism during bone homeostasis. ROS, including superoxide ion (O2−) and hydrogen peroxide (H2O2), are important components that regulate the differentiation of osteoclasts. Under normal physiological conditions, ROS produced by osteoclasts stimulate and facilitate resorption of bone tissue. Thus, elucidating the effects of ROS during osteoclast differentiation is important when studying diseases associated with bone resorption such as osteoporosis. This review examines the effect of ROS on osteoclast differentiation and the efficacy of novel chemical compounds with therapeutic potential for osteoclast related diseases.
Collapse
|
44
|
Reptiles in Space Missions: Results and Perspectives. Int J Mol Sci 2019; 20:ijms20123019. [PMID: 31226840 PMCID: PMC6627973 DOI: 10.3390/ijms20123019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. The description of the known reptile experiments using turtles and geckos in the space and parabolic flight experiments is provided. Behavior, skeletal bones (morphology, histology, and X-ray microtomography), internal organs, and the nervous system (morphology, histology, and immunohistochemistry) are studied in the spaceflight experiments to date, while molecular and physiological results are restricted. Therefore, the results are discussed in the scope of molecular data collected from mammalian (mainly rodents) specimens and cell cultures in the parabolic and orbital flights and simulated microgravity. The published data are compared with the results of the gecko model studies after the 12–44.5-day spaceflights with special reference to the unique peculiarities of the gecko model for the orbital experiments. The complex study of thick-toed geckos after three spaceflights, in which all geckos survived and demonstrated effective adaptation to spaceflight conditions, was performed. However, future investigations are needed to study molecular mechanisms of gecko adaptation in space.
Collapse
|
45
|
Saito H, Gasser A, Bolamperti S, Maeda M, Matthies L, Jähn K, Long CL, Schlüter H, Kwiatkowski M, Saini V, Pajevic PD, Bellido T, van Wijnen AJ, Mohammad KS, Guise TA, Taipaleenmäki H, Hesse E. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 2019; 10:1354. [PMID: 30902975 PMCID: PMC6430773 DOI: 10.1038/s41467-019-08778-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.
Collapse
Affiliation(s)
- Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Andreas Gasser
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Miki Maeda
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Levi Matthies
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Katharina Jähn
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Courtney L Long
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Marcel Kwiatkowski
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
| |
Collapse
|
46
|
Kim SP, Da H, Li Z, Kushwaha P, Beil C, Mei L, Xiong WC, Wolfgang MJ, Clemens TL, Riddle RC. Lrp4 expression by adipocytes and osteoblasts differentially impacts sclerostin's endocrine effects on body composition and glucose metabolism. J Biol Chem 2019; 294:6899-6911. [PMID: 30842262 DOI: 10.1074/jbc.ra118.006769] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/23/2019] [Indexed: 01/10/2023] Open
Abstract
Sclerostin exerts profound local control over bone acquisition and also mediates endocrine communication between fat and bone. In bone, sclerostin's anti-osteoanabolic activity is enhanced by low-density lipoprotein receptor-related protein 4 (Lrp4), which facilitates its interaction with the Lrp5 and Lrp6 Wnt co-receptors. To determine whether Lrp4 similarly affects sclerostin's endocrine function, we examined body composition as well as glucose and fatty acid metabolism in mice rendered deficient of Lrp4 in the adipocyte (AdΔLrp4) or the osteoblast (ObΔLrp4). AdΔLrp4 mice exhibit a reduction in adipocyte hypertrophy and improved glucose and lipid homeostasis, marked by increased glucose and insulin tolerance and reduced serum fatty acids, and mirror the effect of sclerostin deficiency on whole-body metabolism. Indeed, epistasis studies place adipocyte-expressed Lrp4 and sclerostin in the same genetic cascade that regulates adipocyte function. Intriguingly, ObΔLrp4 mice, which exhibit dramatic increases in serum sclerostin, accumulate body fat and develop impairments in glucose tolerance and insulin sensitivity despite development of a high bone mass phenotype. These data indicate that expression of Lrp4 by both the adipocyte and osteoblast is required for normal sclerostin endocrine function and that the impact of sclerostin deficiency on adipocyte physiology is distinct from the effect on osteoblast function.
Collapse
Affiliation(s)
| | - Hao Da
- From the Departments of Orthopedic Surgery and
| | - Zhu Li
- From the Departments of Orthopedic Surgery and
| | | | - Conor Beil
- From the Departments of Orthopedic Surgery and
| | - Lin Mei
- the Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio 44106, and
| | - Wen-Cheng Xiong
- the Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio 44106, and
| | - Michael J Wolfgang
- Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Thomas L Clemens
- From the Departments of Orthopedic Surgery and.,the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Ryan C Riddle
- From the Departments of Orthopedic Surgery and .,the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
47
|
Bone Measurements by Peripheral Quantitative Computed Tomography in Rodents. Methods Mol Biol 2019; 1914:533-558. [PMID: 30729485 DOI: 10.1007/978-1-4939-8997-3_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This chapter provides information for the in vivo use of peripheral quantitative computed tomography in rats and mice to determine bone density and cortical geometric data, including suggestions for study design, instrument setting, and data interpretation. This update also provides guidance for the use of pQCT to extract muscle and fat cross-sectional area information from the bone scans.
Collapse
|
48
|
Divieti Pajevic P, Krause DS. Osteocyte regulation of bone and blood. Bone 2019; 119:13-18. [PMID: 29458123 PMCID: PMC6095825 DOI: 10.1016/j.bone.2018.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
This past decade has witnessed a renewed interest in the function and biology of matrix-embedded osteocytes and these cells have emerged as master regulators of bone homeostasis. They secrete two very powerful proteins, sclerostin, a Wnt-inhibitor, that suppresses bone formation, and receptor-activator of NF-kB ligand (RANKL), a cytokine required for osteoclastogenesis. Neutralizing antibodies against these proteins are currently used for the treatment of osteoporosis. Recent studies however, ascribed yet another function to osteocytes: the control of hematopoiesis and the HSPC niche, directly and through secreted factors. In the absence of osteocytes there is an increase in HSC mobilization and abnormal lymphopoiesis whereas in the absence of Gsα signaling in these cells there is an increase of myeloid cells. How exactly osteocytes control hematopoiesis or the HSPC niche is still not completely understood. In this review we summarize the actions of osteocytes in bone and then analyze the effects of these cells on hematopoiesis. Future directions and gaps in current knowledge are further discussed.
Collapse
Affiliation(s)
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| |
Collapse
|
49
|
Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 2019; 62:R167-R185. [PMID: 30532996 DOI: 10.1530/jme-18-0176] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.
Collapse
Affiliation(s)
| | | | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
50
|
Wang J, Qiu X, Xu T, Sheng Z, Yao L. Sclerostin/Receptor Related Protein 4 and Ginkgo Biloba Extract Alleviates β-Glycerophosphate-Induced Vascular Smooth Muscle Cell Calcification By Inhibiting Wnt/β-Catenin Pathway. Blood Purif 2019; 47 Suppl 1:17-23. [PMID: 30699436 DOI: 10.1159/000496219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Abnormal mineral metabolism in patients with chronic kidney disease (CKD) may lead to vascular calcification, which is markedly associated with adverse events, including ischemic cardiac diseases and all-cause cardiovascular mortality. Thus, preventing and treating vascular calcification play an important role in improving the prognosis of CKD patients. OBJECTIVES To investigate the potential functions of sclerostin and low-density lipoprotein receptor-related protein 4 (Lrp4) in alleviating the β-glycerophosphate (β-GP)-induced vascular smooth muscle cell (VSMC) calcification, and the protective effect of Ginkgo biloba extract (GBE). METHODS VSMC were extracted from Sprague-Dawley rat aorta and cultured in medium. The VSMCs were divided into 3 groups: (1) Negative control group, (2) β-GP group, in which the VSMCs were treated with β-GP, and (3) GBE and β-GP group, where the VSMCs were treated with both β-GP and GBE. The calcium nodules within the cells were examined by using Alizarin red S staining. The mRNA expression levels of β-catenin and bone gamma-carboxyglutamic-acid-containing proteins (BGP) were detected by real-time PCR. The protein levels of sclerostin and Lrp4 were determined by Western blot. RESULTS Alizarin red S staining showed that the VSMCs in β-GP group had a distinct orange-red precipitate when compared with VSMCs in the negative control group, while the orange-red precipitate of the GBE and β-GP group was significantly reduced compared to the β-GP group. Real-time PCR showed that the mRNA levels of β-catenin and BGP in VSMCs of β-GP group were significantly higher than those of the negative control group (p < 0.05); while they were significantly reduced in VSMCs of the GBE and β-GP group (p < 0.05). Western blot results showed that the expression of sclerostin in the β-GP group was significantly higher than that in the control group (p < 0.05), whereas Lrp4 was significantly lower than in control group (p < 0.05). Sclerostin in GBE and β-GP group was significantly reduced (p < 0.05), but Lrp4 was significantly elevated when compared with that of the β-GP group (p < 0.05). CONCLUSION β-GP induced VSMC calcification by activating the Wnt/β-catenin signaling pathway. Sclerostin and Lrp4 were involved in β-GP-induced VSMC calcification and play an important role. GBE could alleviate VSMC calcification induced by β-GP through inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaobo Qiu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Zitong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China,
| |
Collapse
|