1
|
Majumdar J, Mandal S, Govind Rajan A, Maiti PK. Similar structure but different thermodynamic, dielectric, and frictional properties of confined water in twisted 2D materials: MoS 2vs. graphene. NANOSCALE 2024. [PMID: 39688132 DOI: 10.1039/d4nr03821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Water-based nanofluidic devices, where water is confined in Angstrom scale nanochannels, are widely encountered in nanotechnology. Although it is known that the material of confinement has a significant influence on the properties of confined water, much less is known of the relationship between the structure of nanoconfined water and its properties, impacting the design of nanofluidic devices. We explore the behavior of a confined water monolayer within a bilayer molybdenum disulfide (MoS2) structure, comparing its behavior with that within bilayer graphene. We find that only ∼2% of the entire structure has nearly perfect square order and the rest is filled with rhombus ordering. Surprisingly, we find that although the structure of monolayer confined water remains the same in both the 2D materials, thermodynamic analysis shows that confined water has a more favorable potential environment in MoS2 than graphene for all twists explored here. However, with increasing twist angle, the encapsulating effect of water diminishes slightly in the case of graphene than MoS2. Interestingly, the dielectric constant is anomalously lower in MoS2 by ∼22% compared to the confined water dielectric constant in a graphene nanochannel. Finally, we show that the static friction coefficient of confined water in bilayer MoS2 does not change with twist. However, unlike graphene, it does not show an order of magnitude reduction due to this extreme confinement. Overall, we show, counter-intuitively, that although confined water structures are similar in different 2D materials considered here, there exist differences in other properties of this structured water.
Collapse
Affiliation(s)
- Jeet Majumdar
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Soham Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Khabibrakhmanov A, Fedorov DV, Tkatchenko A. Universal Pairwise Interatomic van der Waals Potentials Based on Quantum Drude Oscillators. J Chem Theory Comput 2023; 19:7895-7907. [PMID: 37875419 PMCID: PMC10653113 DOI: 10.1021/acs.jctc.3c00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Repulsive short-range and attractive long-range van der Waals (vdW) forces play an appreciable role in the behavior of extended molecular systems. When using empirical force fields, the most popular computational methods applied to such systems, vdW forces are typically described by Lennard-Jones-like potentials, which unfortunately have a limited predictive power. Here, we present a universal parameterization of a quantum-mechanical vdW potential, which requires only two free-atom properties─the static dipole polarizability α1 and the dipole-dipole C6 dispersion coefficient. This is achieved by deriving the functional form of the potential from the quantum Drude oscillator (QDO) model, employing scaling laws for the equilibrium distance and the binding energy, and applying the microscopic law of corresponding states. The vdW-QDO potential is shown to be accurate for vdW binding energy curves, as demonstrated by comparing to the ab initio binding curves of 21 noble-gas dimers. The functional form of the vdW-QDO potential has the correct asymptotic behavior at both zero and infinite distances. In addition, it is shown that the damped vdW-QDO potential can accurately describe vdW interactions in dimers consisting of group II elements. Finally, we demonstrate the applicability of the atom-in-molecule vdW-QDO model for predicting accurate dispersion energies for molecular systems. The present work makes an important step toward constructing universal vdW potentials, which could benefit (bio)molecular computational studies.
Collapse
Affiliation(s)
- Almaz Khabibrakhmanov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Dmitry V. Fedorov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| |
Collapse
|
4
|
Góger S, Khabibrakhmanov A, Vaccarelli O, Fedorov DV, Tkatchenko A. Optimized Quantum Drude Oscillators for Atomic and Molecular Response Properties. J Phys Chem Lett 2023:6217-6223. [PMID: 37385598 DOI: 10.1021/acs.jpclett.3c01221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The quantum Drude oscillator (QDO) is an efficient yet accurate coarse-grained approach that has been widely used to model electronic and optical response properties of atoms and molecules as well as polarization and dispersion interactions between them. Three effective parameters (frequency, mass, and charge) fully characterize the QDO Hamiltonian and are adjusted to reproduce response properties. However, the soaring success of coupled QDOs for many-atom systems remains fundamentally unexplained, and the optimal mapping between atoms/molecules and oscillators has not been established. Here we present an optimized parametrization (OQDO) where the parameters are fixed by using only dipolar properties. For the periodic table of elements as well as small molecules, our model accurately reproduces atomic (spatial) polarization potentials and multipolar dispersion coefficients, elucidating the high promise of the presented model in the development of next-generation quantum-mechanical force fields for (bio)molecular simulations.
Collapse
Affiliation(s)
- Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Almaz Khabibrakhmanov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Ornella Vaccarelli
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Dmitry V Fedorov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
5
|
Volkov AA, Chuchupal SV. Dielectric spectra of liquid water: Ultrabroadband modeling and interpretation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Noetzel J, Schienbein P, Forbert H, Marx D. Solvation of Small Gold Clusters in Supercritical Water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Vasin AA, Volkov AA. The Current Understanding of the Properties of Liquid Water: A Possible Alternative Solution. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Biswas A, Dasari S, Mallik BS. Cohesiveness and Nondiffusive Rotational Jump Dynamics of Protic Ionic Liquid from Dispersion-Corrected FPMD Simulations. J Phys Chem B 2020; 124:10752-10765. [DOI: 10.1021/acs.jpcb.0c05866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Sathish Dasari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
9
|
Abstract
Thinking about water is inextricably linked to hydrogen bonds, which are highly directional in character and determine the unique structure of water, in particular its tetrahedral H-bond network. Here, we assess if this common connotation also holds for supercritical water. We employ extensive ab initio molecular dynamics simulations to systematically monitor the evolution of the H-bond network mode of water from room temperature, where it is the hallmark of its fluctuating three-dimensional network structure, to supercritical conditions. Our simulations reveal that the oscillation period required for H-bond vibrations to occur exceeds the lifetime of H-bonds in supercritical water by far. Instead, the corresponding low-frequency intermolecular vibrations of water pairs as seen in supercritical water are found to be well represented by isotropic van-der-Waals interactions only. Based on these findings, we conclude that water in its supercritical phase is not a H-bonded fluid.
Collapse
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| | - Dominik Marx
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| |
Collapse
|
10
|
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
11
|
|
12
|
Lambros E, Paesani F. How good are polarizable and flexible models for water: Insights from a many-body perspective. J Chem Phys 2020; 153:060901. [DOI: 10.1063/5.0017590] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Fiedler J, Boström M, Persson C, Brevik I, Corkery R, Buhmann SY, Parsons DF. Full-Spectrum High-Resolution Modeling of the Dielectric Function of Water. J Phys Chem B 2020; 124:3103-3113. [DOI: 10.1021/acs.jpcb.0c00410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes Fiedler
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Mathias Boström
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Clas Persson
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robert Corkery
- Applied Physical Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Stefan Yoshi Buhmann
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Drew F. Parsons
- Discipline of Chemistry & Physics, Murdoch University, 90 South St, Murdoch, WA 6150, Australia
| |
Collapse
|
14
|
Hughes ZE, Ren E, Thacker JCR, Symons BCB, Silva AF, Popelier PLA. A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics. J Comput Chem 2020; 41:619-628. [PMID: 31747059 PMCID: PMC7004022 DOI: 10.1002/jcc.26111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Key to progress in molecular simulation is the development of advanced models that go beyond the limitations of traditional force fields that employ a fixed, point charge-based description of electrostatics. Taking water as an example system, the FFLUX framework is shown capable of producing models that are flexible, polarizable and have a multipolar description of the electrostatics. The kriging machine-learning methods used in FFLUX are able to reproduce the intramolecular potential energy surface and multipole moments of a single water molecule with chemical accuracy using as few as 50 training configurations. Molecular dynamics simulations of water clusters (25-216 molecules) using the new FFLUX model reveal that incorporating charge-quadrupole, dipole-dipole, and quadrupole-charge interactions into the description of the electrostatics results in significant changes to the intermolecular structuring of the water molecules. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zak E. Hughes
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
- School of Chemistry and Biosciences, University of BradfordBradfordBD7 1DPUnited Kingdom
| | - Emmanuel Ren
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Joseph C. R. Thacker
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Benjamin C. B. Symons
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Arnaldo F. Silva
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Paul L. A. Popelier
- Manchester Institute of Biotechnology, The University of ManchesterManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUnited Kingdom
| |
Collapse
|
15
|
Priyadarshini A, Biswas A, Chakraborty D, Mallik BS. Structural and Thermophysical Anomalies of Liquid Water: A Tale of Molecules in the Instantaneous Low- and High-Density Regions. J Phys Chem B 2020; 124:1071-1081. [DOI: 10.1021/acs.jpcb.9b11596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adyasa Priyadarshini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285 Sangareddy, Telangana, India
| | - Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285 Sangareddy, Telangana, India
| | - Debashree Chakraborty
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, 575025 Mangalore, Karnataka, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285 Sangareddy, Telangana, India
| |
Collapse
|
16
|
Schienbein P, Marx D. Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Phys Chem Chem Phys 2020; 22:10462-10479. [DOI: 10.1039/c9cp05610f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evolution of water's structural dynamics from ambient liquid to supercritical dense liquid-like and dilute gas-like conditions.
Collapse
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
17
|
Stöhr M, Tkatchenko A. Quantum mechanics of proteins in explicit water: The role of plasmon-like solute-solvent interactions. SCIENCE ADVANCES 2019; 5:eaax0024. [PMID: 31853494 PMCID: PMC6910842 DOI: 10.1126/sciadv.aax0024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/18/2019] [Indexed: 05/05/2023]
Abstract
Quantum-mechanical van der Waals dispersion interactions play an essential role in intraprotein and protein-water interactions-the two main factors affecting the structure and dynamics of proteins in water. Typically, these interactions are only treated phenomenologically, via pairwise potential terms in classical force fields. Here, we use an explicit quantum-mechanical approach of density-functional tight-binding combined with the many-body dispersion formalism and demonstrate the relevance of many-body van der Waals forces both to protein energetics and to protein-water interactions. In contrast to commonly used pairwise approaches, many-body effects substantially decrease the relative stability of native states in the absence of water. Upon solvation, the protein-water dispersion interaction counteracts this effect and stabilizes native conformations and transition states. These observations arise from the highly delocalized and collective character of the interactions, suggesting a remarkable persistence of electron correlation through aqueous environments and providing the basis for long-range interaction mechanisms in biomolecular systems.
Collapse
|
18
|
Stöhr M, Van Voorhis T, Tkatchenko A. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. Chem Soc Rev 2019; 48:4118-4154. [PMID: 31190037 DOI: 10.1039/c9cs00060g] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accurate description of long-range electron correlation, most prominently including van der Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic charge density. Within (semi-)local density functional approximations or Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and play a key role for the understanding and accurate description of the stability, dynamics, structure, and response properties in a plethora of systems. During the last decade, many promising methods have been developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-inclusive Density Functional Theory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the framework of Density Functional Theory, including non-local van der Waals density functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase approximation-based approaches. This review aims to guide the reader through the theoretical foundations of these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview of complementary experimental approaches, and discuss tools for the qualitative understanding of non-covalent interactions as well as energy decomposition techniques. Besides representing a reference for the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to vdW-inclusive electronic structure calculations for a general and broad audience.
Collapse
Affiliation(s)
- Martin Stöhr
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
19
|
Milne AW, Jorge M. Polarization Corrections and the Hydration Free Energy of Water. J Chem Theory Comput 2018; 15:1065-1078. [DOI: 10.1021/acs.jctc.8b01115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Andrew W. Milne
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| |
Collapse
|
20
|
Observation of the thermal influenced quantum behaviour of water near a solid interface. Sci Rep 2018; 8:7016. [PMID: 29725015 PMCID: PMC5934364 DOI: 10.1038/s41598-018-24886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Water is essential for life. However, the structure and properties of water are still not well understood. It has been introduced that anomalies are in vicinal water near solid interfaces. We performed capillary flow experiments on water with a silica colloid sample using a high-performance liquid chromatography (HPLC) system by accurately varying the temperature and analysed the peak shape rigorously. We obtained a novel anomalous temperature spectrum from the peak-shape analysis. Here we report the observed distinct specific anomalous temperature (SAT) behaviour in vicinal water at silica interface. The anomaly appeared in the viscous force that was derived from a relationship between the shape of the HPLC peak and the velocity profile for the capillary flow. The observations were highly reproducible, and we conclude that the SAT is related to the quantum mechanical behaviour of water, in agreement of the characteristic acceptance of thermal displacement according to the Franck-Condon principle. We performed the same experiments using heavy water and water mixed with a small amount of methanol, and the results support the quantum phenomenological origin.
Collapse
|
21
|
Dharmawardhana CC, Ichiye T. Building better water models using the shape of the charge distribution of a water molecule. J Chem Phys 2018; 147:194103. [PMID: 29166096 DOI: 10.1063/1.4986070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.
Collapse
Affiliation(s)
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
22
|
Cipcigan F, Sokhan V, Martyna G, Crain J. Structure and hydrogen bonding at the limits of liquid water stability. Sci Rep 2018; 8:1718. [PMID: 29379039 PMCID: PMC5789020 DOI: 10.1038/s41598-017-18975-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 11/14/2022] Open
Abstract
Liquid water exhibits unconventional behaviour across its wide range of stability - from its unusually high liquid-vapour critical point down to its melting point and below where it reaches a density maximum and exhibits negative thermal expansion allowing ice to float. Understanding the molecular underpinnings of these anomalies presents a challenge motivating the study of water for well over a century. Here we examine the molecular structure of liquid water across its range of stability, from mild supercooling to the negative pressure and high temperature regimes. We use a recently-developed, electronically-responsive model of water, constructed from gas-phase molecular properties and incorporating many-body, long-range interactions to all orders; as a result the model has been shown to have high transferability from ice to the supercritical regime. We report a link between the anomalous thermal expansion of water and the behaviour of its second coordination shell and an anomaly in hydrogen bonding, which persists throughout liquid water's range of stability - from the high temperature limit of liquid water to its supercooled regime.
Collapse
Affiliation(s)
- Flaviu Cipcigan
- IBM Research UK, Hartree Centre, Daresbury, WA4 4AD, United Kingdom.
| | - Vlad Sokhan
- STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom
| | - Glenn Martyna
- IBM T. J. Watson Research Center, Yorktown Heights, New York, 10598, USA
| | - Jason Crain
- IBM Research UK, Hartree Centre, Daresbury, WA4 4AD, United Kingdom
| |
Collapse
|
23
|
Volkov A, Artemov V, Volkov A, Sysoev N. Possible mechanism of molecular motion in liquid water from dielectric spectroscopy data. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Schienbein P, Marx D. Liquid–Vapor Phase Diagram of RPBE-D3 Water: Electronic Properties along the Coexistence Curve and in the Supercritical Phase. J Phys Chem B 2017; 122:3318-3329. [DOI: 10.1021/acs.jpcb.7b09761] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
25
|
Sadhukhan M, Tkatchenko A. Long-Range Repulsion Between Spatially Confined van der Waals Dimers. PHYSICAL REVIEW LETTERS 2017; 118:210402. [PMID: 28598658 DOI: 10.1103/physrevlett.118.210402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Indexed: 06/07/2023]
Abstract
It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.
Collapse
Affiliation(s)
- Mainak Sadhukhan
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg L-1511, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg L-1511, Luxembourg
| |
Collapse
|
26
|
Hermann J, DiStasio RA, Tkatchenko A. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem Rev 2017; 117:4714-4758. [PMID: 28272886 DOI: 10.1021/acs.chemrev.6b00446] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.
Collapse
Affiliation(s)
- Jan Hermann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany.,Physics and Materials Science Research Unit, University of Luxembourg , L-1511 Luxembourg, Luxembourg
| |
Collapse
|
27
|
Martin JM, Li W, Delaney KT, Fredrickson GH. Statistical field theory description of inhomogeneous polarizable soft matter. J Chem Phys 2016; 145:154104. [DOI: 10.1063/1.4964680] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan M. Martin
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Wei Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
28
|
Tran KN, Tan ML, Ichiye T. A single-site multipole model for liquid water. J Chem Phys 2016; 145:034501. [DOI: 10.1063/1.4958621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kelly N. Tran
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Ming-Liang Tan
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
29
|
Cisneros G, Wikfeldt KT, Ojamäe L, Lu J, Xu Y, Torabifard H, Bartók AP, Csányi G, Molinero V, Paesani F. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions. Chem Rev 2016; 116:7501-28. [PMID: 27186804 PMCID: PMC5450669 DOI: 10.1021/acs.chemrev.5b00644] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 12/17/2022]
Abstract
Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought "universal model" capable of describing the behavior of water under different conditions and in different environments.
Collapse
Affiliation(s)
| | - Kjartan Thor Wikfeldt
- Science
Institute, University of Iceland, VR-III, 107, Reykjavik, Iceland
- Department
of Physics, Albanova, Stockholm University, S-106 91 Stockholm, Sweden
| | - Lars Ojamäe
- Department
of Chemistry, Linköping University, SE-581 83 Linköping, Sweden
| | - Jibao Lu
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Yao Xu
- Lehrstuhl
Physikalische Chemie II, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Hedieh Torabifard
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Albert P. Bartók
- Engineering
Laboratory, University of Cambridge, Trumpington Street, Cambridge CB21PZ, United Kingdom
| | - Gábor Csányi
- Engineering
Laboratory, University of Cambridge, Trumpington Street, Cambridge CB21PZ, United Kingdom
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Francesco Paesani
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Abstract
Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum.
Collapse
|
31
|
Margul DT, Tuckerman ME. A Stochastic, Resonance-Free Multiple Time-Step Algorithm for Polarizable Models That Permits Very Large Time Steps. J Chem Theory Comput 2016; 12:2170-80. [PMID: 27054809 DOI: 10.1021/acs.jctc.6b00188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics remains one of the most widely used computational tools in the theoretical molecular sciences to sample an equilibrium ensemble distribution and/or to study the dynamical properties of a system. The efficiency of a molecular dynamics calculation is limited by the size of the time step that can be employed, which is dictated by the highest frequencies in the system. However, many properties of interest are connected to low-frequency, long time-scale phenomena, requiring many small time steps to capture. This ubiquitous problem can be ameliorated by employing multiple time-step algorithms, which assign different time steps to forces acting on different time scales. In such a scheme, fast forces are evaluated more frequently than slow forces, and as the former are often computationally much cheaper to evaluate, the savings can be significant. Standard multiple time-step approaches are limited, however, by resonance phenomena, wherein motion on the fastest time scales limits the step sizes that can be chosen for the slower time scales. In atomistic models of biomolecular systems, for example, the largest time step is typically limited to around 5 fs. Previously, we introduced an isokinetic extended phase-space algorithm (Minary et al. Phys. Rev. Lett. 2004, 93, 150201) and its stochastic analog (Leimkuhler et al. Mol. Phys. 2013, 111, 3579) that eliminate resonance phenomena through a set of kinetic energy constraints. In simulations of a fixed-charge flexible model of liquid water, for example, the time step that could be assigned to the slow forces approached 100 fs. In this paper, we develop a stochastic isokinetic algorithm for multiple time-step molecular dynamics calculations using a polarizable model based on fluctuating dipoles. The scheme developed here employs two sets of induced dipole moments, specifically, those associated with short-range interactions and those associated with a full set of interactions. The scheme is demonstrated on the polarizable AMOEBA water model. As was seen with fixed-charge models, we are able to obtain large time steps exceeding 100 fs, allowing calculations to be performed 10 to 20 times faster than standard thermostated molecular dynamics.
Collapse
Affiliation(s)
- Daniel T Margul
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University , New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University , New York, New York 10003, United States.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
32
|
Sokhan VP, Jones A, Cipcigan FS, Crain J, Martyna GJ. Molecular-scale remnants of the liquid-gas transition in supercritical polar fluids. PHYSICAL REVIEW LETTERS 2015; 115:117801. [PMID: 26406855 DOI: 10.1103/physrevlett.115.117801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Indexed: 06/05/2023]
Abstract
An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase.
Collapse
Affiliation(s)
- V P Sokhan
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - A Jones
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - F S Cipcigan
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - J Crain
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - G J Martyna
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
33
|
Daskalakis V, Charalambous F, Demetriou C, Georgiou G. Surface-active organic matter induces salt morphology transitions during new atmospheric particle formation and growth. RSC Adv 2015. [DOI: 10.1039/c5ra09187j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The salt within an aerosol nucleus assumes a brine morphology in increasing presence of organic matter on the surface. This affects, in turn, the water uptake dynamics.
Collapse
Affiliation(s)
- Vangelis Daskalakis
- Cyprus University of Technology
- Department of Environmental Science and Technology
- 3603 Limassol
- Cyprus
| | - Fevronia Charalambous
- Cyprus University of Technology
- Department of Environmental Science and Technology
- 3603 Limassol
- Cyprus
| | - Constantinos Demetriou
- Cyprus University of Technology
- Department of Environmental Science and Technology
- 3603 Limassol
- Cyprus
| | - Georgia Georgiou
- Cyprus University of Technology
- Department of Environmental Science and Technology
- 3603 Limassol
- Cyprus
| |
Collapse
|
34
|
Kosower EM, Borz G. Low polarity water, a novel transition species at the polyethylene–water interface. Phys Chem Chem Phys 2015; 17:24895-900. [DOI: 10.1039/c5cp04439a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyethylene sandwich or a single window cell: dark bars represent polyethylene (PE) windows (double or single) of a cell. Wavy lines are water (W) and low polarity water (LPW). Subtraction of the single window spectrum from the double window spectrum leaves the LPW spectrum as illustrated in the figure.
Collapse
Affiliation(s)
| | - Galina Borz
- School of Chemistry
- Tel Aviv University
- Tel Aviv
- 69978 Israel
| |
Collapse
|