1
|
Ji X, Liu W, Zhang F, Su Y, Ding Y, Li H. H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. J Genet Genomics 2024; 51:1135-1138. [PMID: 37302474 DOI: 10.1016/j.jgg.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoru Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenqian Liu
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Yabe K, Kamio A, Oya S, Kakutani T, Hirayama M, Tanaka Y, Inagaki S. H3K9 methylation regulates heterochromatin silencing through incoherent feedforward loops. SCIENCE ADVANCES 2024; 10:eadn4149. [PMID: 38924413 PMCID: PMC11204290 DOI: 10.1126/sciadv.adn4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using Arabidopsis genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3. ASHH3-induced H3K36me3 confers anti-silencing by preventing the demethylation of H3K4me1 by LDL2, which mediates transcriptional silencing downstream of H3K9me2. These results demonstrate that H3K9me2 not only facilitates but orchestrates silencing by actuating antagonistic silencing and anti-silencing pathways, providing insights into the molecular basis underlying proper partitioning of chromatin domains and the creation of metastable epigenetic variation.
Collapse
Affiliation(s)
| | | | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Mami Hirayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuriko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
4
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
6
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
7
|
Li Y, Sun W, Wang Z, Wan C, Zhang J, Qi X, Zhang J. SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize ( Zea mays L.). Int J Mol Sci 2022; 23:ijms23137458. [PMID: 35806471 PMCID: PMC9267571 DOI: 10.3390/ijms23137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.
Collapse
Affiliation(s)
- Yongjian Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Chang Wan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Correspondence: (X.Q.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Correspondence: (X.Q.); (J.Z.)
| |
Collapse
|
8
|
Jeong G, Jeon M, Shin J, Lee I. HEAT SHOCK TRANSCRIPTION FACTOR B2b acts as a transcriptional repressor of VIN3, a gene induced by long-term cold for flowering. Sci Rep 2022; 12:10963. [PMID: 35768490 PMCID: PMC9243095 DOI: 10.1038/s41598-022-15052-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Vernalization, an acceleration of flowering after long-term winter cold, is an intensively studied flowering mechanism in winter annual plants. In Arabidopsis, Polycomb Repressive Complex 2 (PRC2)-mediated suppression of the strong floral repressor, FLOWERING LOCUS C (FLC), is critical for vernalization and a PHD finger domain protein, VERNALIZATION INSENSITIVE 3 (VIN3), recruits PRC2 on FLC chromatin. The level of VIN3 was found to gradually increase in proportion to the length of cold period during vernalization. However, how plants finely regulate VIN3 expression according to the cold environment has not been completely elucidated. As a result, we performed EMS mutagenesis using a transgenic line with a minimal promoter of VIN3 fused to the GUS reporter gene, and isolated a mutant, hyperactivation of VIN3 1 (hov1), which showed increased GUS signal and endogenous VIN3 transcript levels. Using positional cloning combined with whole-genome resequencing, we found that hov1 carries a nonsense mutation, leading to a premature stop codon on the HEAT SHOCK TRANSCRIPTION FACTOR B2b (HsfB2b), which encodes a repressive heat shock transcription factor. HsfB2b directly binds to the VIN3 promoter, and HsfB2b overexpression leads to reduced acceleration of flowering after vernalization. Collectively, our findings reveal a novel fine-tuning mechanism to regulate VIN3 for proper vernalization response.
Collapse
Affiliation(s)
- Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Jinwoo Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
9
|
Brightbill CM, Sung S. Temperature-mediated regulation of flowering time in Arabidopsis thaliana. ABIOTECH 2022; 3:78-84. [PMID: 36304200 PMCID: PMC9590518 DOI: 10.1007/s42994-022-00069-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Throughout a plant's life cycle, temperature plays a major role in development. Regulatory modules use temperature cues to control gene expression, facilitating physiological change from germination to flowering. These regulatory modules control morphological and molecular responses to temperature changes caused by seasonal changes or by temporary fluctuations, providing a versatile plasticity of plants. In this review, we outline how temperature changes affect the regulatory modules that induce and repress flowering, in addition to general temperature regulation. Recent studies have identified several regulatory modules by which floral transition and growth responses are controlled in a temperature-dependent manner. This review will report on recent studies related to floral transition and ambient temperature response.
Collapse
Affiliation(s)
- C. Maddie Brightbill
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
10
|
Meng S, Liu Z, Shi H, Wu Z, Qiu J, Wen H, Lin F, Tao Z, Luo C, Kou Y. UvKmt6-mediated H3K27 trimethylation is required for development, pathogenicity, and stress response in Ustilaginoidea virens. Virulence 2021; 12:2972-2988. [PMID: 34895056 PMCID: PMC8667953 DOI: 10.1080/21505594.2021.2008150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is responsible for the trimethylation of lysine 27 of histone H3 (H3K27me3)-mediated transcriptional silencing. At present, its biological roles in the devastating rice pathogenic fungus Ustilaginoidea virens remain unclear. In this study, we analyzed the function of a putative PRC2 catalytic subunit UvKmt6. The results showed that disruption of UvKMT6 resulted in reduced growth, conidiation and pathogenicity in U. virens. Furthermore, UvKmt6 is essential for establishment of H3K27me3 modification, which covers 321 genes in the genome. Deletion of UvKMT6 led to transcriptional derepression of 629 genes, 140 of which were occupied with H3K27me3 modification. Consistent with RNA-seq and ChIP-seq analysis, UvKmt6 was further confirmed to participate in the transcriptional repression of genes encoding effectors and genes associated with secondary metabolites production, such as PKSs, NRPSs and Cytochrome P450s. Notably, we found that UvKmt6 is involved in transcriptional repression of oxidative, osmotic, cell wall and nutrient starvation stresses response-related genes. From the perspective of gene expression and phenotype, in addition to the relatively conservative role in fungal development, virulence and production of secondary metabolites, we further reported that UvKmt6-mdediated H3K27me3 plays a critical role in the response to various stresses in U. virens.
Collapse
Affiliation(s)
- Shuai Meng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,Hubei Key Laboratory of Plant Pathology, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiquan Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhongling Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hui Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
11
|
Yang Q, Nong X, Xu J, Huang F, Wang F, Wu J, Zhang C, Liu C. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:721980. [PMID: 34531887 PMCID: PMC8438535 DOI: 10.3389/fpls.2021.721980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Crosses that lead to heterosis have been widely used in the rapeseed (Brassica napus L.) industry. Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) systems represent one of the most useful tools for rapeseed production. Several CMS types and their restorer lines have been identified in rapeseed, but there are few studies on the mechanisms underlying fertility restoration. Here, we performed morphological observation, map-based cloning, and transcriptomic analysis of the F2 population developed by crossing the CMS line WNJ01A with its restorer line Hui01. Paraffin-embedded sections showed that the sporogenous cell stage was the critical pollen degeneration period, with major sporogenous cells displaying loose and irregular arrangement in sterile anthers. Most mitochondrial electron transport chain (mtETC) complex genes were upregulated in fertile compared to sterile buds. Using bulked segregant analysis (BSA)-seq to analyze mixed DNA pools from sterile and fertile F2 buds, respectively, we identified a 6.25 Mb candidate interval where Rfw is located. Using map-based cloning experiments combined with bacterial artificial chromosome (BAC) clone sequencing, the candidate interval was reduced to 99.75 kb and two pentatricopeptide repeat (PPR) genes were found among 28 predicted genes in this interval. Transcriptome sequencing showed that there were 1679 DEGs (1023 upregulated and 656 downregulated) in fertile compared to sterile F2 buds. The upregulated differentially expressed genes (DEGs) were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) lysine degradation pathway and phenylalanine metabolism, and the downregulated DEGs were enriched in cutin, suberine, and wax biosynthesis. Furthermore, 44 DEGs were involved in pollen and anther development, such as tapetum, microspores, and pollen wall development. All of them were upregulated except a few such as POE1 genes (which encode Pollen Ole e I allergen and extensin family proteins). There were 261 specifically expressed DEGs (9 and 252 in sterile and fertile buds, respectively). Regarding the fertile bud-specific upregulated DEGs, the ubiquitin-proteasome pathway was enriched. The top four hub genes in the protein-protein interaction network (BnaA09g56400D, BnaA10g18210D, BnaA10g18220D, and BnaC09g41740D) encode RAD23d proteins, which deliver ubiquitinated substrates to the 26S proteasome. These findings provide evidence on the pathways regulated by Rfw and improve our understanding of fertility restoration.
Collapse
|
12
|
Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C. A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1217-1231. [PMID: 33471161 PMCID: PMC7973412 DOI: 10.1007/s00122-021-03768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 05/05/2023]
Abstract
A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.
Collapse
Affiliation(s)
- Paul Vollrath
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Harmeet S Chawla
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Iulian Gabur
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | |
Collapse
|
13
|
Antoniou-Kourounioti RL, Zhao Y, Dean C, Howard M. Feeling Every Bit of Winter - Distributed Temperature Sensitivity in Vernalization. FRONTIERS IN PLANT SCIENCE 2021; 12:628726. [PMID: 33584778 PMCID: PMC7873433 DOI: 10.3389/fpls.2021.628726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 06/01/2023]
Abstract
Temperature intrinsically influences all aspects of biochemical and biophysical processes. Organisms have therefore evolved strategies to buffer themselves against thermal perturbations. Many organisms also use temperature signals as cues to align behavior and development with certain seasons. These developmentally important thermosensory mechanisms have generally been studied in constant temperature conditions. However, environmental temperature is an inherently noisy signal, and it has been unclear how organisms reliably extract specific temperature cues from fluctuating temperature profiles. In this context, we discuss plant thermosensory responses, focusing on temperature sensing throughout vernalization in Arabidopsis. We highlight many different timescales of sensing, which has led to the proposal of a distributed thermosensing paradigm. Within this paradigm, we suggest a classification system for thermosensors. Finally, we focus on the longest timescale, which is most important for sensing winter, and examine the different mechanisms in which memory of cold exposure can be achieved.
Collapse
Affiliation(s)
| | - Yusheng Zhao
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
15
|
Cheng K, Xu Y, Yang C, Ouellette L, Niu L, Zhou X, Chu L, Zhuang F, Liu J, Wu H, Charron JB, Luo M. Histone tales: lysine methylation, a protagonist in Arabidopsis development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:793-807. [PMID: 31560751 DOI: 10.1093/jxb/erz435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Histone methylation plays a fundamental role in the epigenetic regulation of gene expression driven by developmental and environmental cues in plants, including Arabidopsis. Histone methyltransferases and demethylases act as 'writers' and 'erasers' of methylation at lysine and/or arginine residues of core histones, respectively. A third group of proteins, the 'readers', recognize and interpret the methylation marks. Emerging evidence confirms the crucial roles of histone methylation in multiple biological processes throughout the plant life cycle. In this review, we summarize the regulatory mechanisms of lysine methylation, especially at histone H3 tails, and focus on the recent advances regarding the roles of lysine methylation in Arabidopsis development, from seed performance to reproductive development, and in callus formation.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Luc Ouellette
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Longjian Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liutian Chu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhuang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Jean-Benoit Charron
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Fedorenko OM, Topchieva LV, Zaretskaya MV, Lebedeva ON. Changes in FLC and VIN3 Expression during Vernalization of Arabidopsisthaliana Plants from Northern Natural Populations. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Lincoln G. A brief history of circannual time. J Neuroendocrinol 2019; 31:e12694. [PMID: 30739343 DOI: 10.1111/jne.12694] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
Innate circannual timing is an ancestral trait that first evolved in free-living eukaryotic cells some 2000 million years ago, with marine algae of the genus Allexandrium providing a living unicellular model. This species shows the primitive trait of 'alternation of generations', where the organism alternates between fast replicating vegetative cells in the summer and a dormant cystic cell over the winter. The resistant cysts sink into the cold ocean sediments. Remarkably, excystment in spring is governed by an endogenous circannual timing mechanism. Thus, a tiny, short-lived unicell can utilise a circannual clock as part of the life-history programme of the species. Innate timing allows for major adjustments in physiology and behaviour in anticipation of the seasons, and provides an internalised sense of seasonal time for the many species where standard environmental cues are weak or ambiguous. This is a highly adaptive strategy irrespective of the size and longevity of an organism. Circannual rhythms are expressed by a diverse range of organisms, from flowering plants to mammals, interwoven into the life-history programme of each species, being a consequence of forever living in a periodic world. In complex vertebrates, the early division of the zygote potentially carries circannual timer genes into all progeny cells and tissues. This supports the concept of a 'clock-shop' where cell-autonomous long-term rhythms are generated in each tissue, orchestrated by a central circannual pacemaker system. This is analogous to the organisation of the circadian timing system. For the circannual time-scale, specialised thyrotroph cells located in the pars tuberalis of the pituitary gland and adjacent tanycyte cells located in the ependymal wall of the third cerebral ventricle of the brain act as putative central circannual pacemakers. At a molecular level, epigenetically regulated, cyclical remodelling of chromatin, which determines whether specific circannual timer genes are transcriptionally active, or not, is considered to drive the oscillation between the summer and winter phenotypes.
Collapse
|
18
|
Park EY, Tsuyuki KM, Hu F, Lee J, Jeong J. PRC2-Mediated H3K27me3 Contributes to Transcriptional Regulation of FIT-Dependent Iron Deficiency Response. FRONTIERS IN PLANT SCIENCE 2019; 10:627. [PMID: 31156682 PMCID: PMC6532572 DOI: 10.3389/fpls.2019.00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
Iron is an essential micronutrient for nearly all organisms, but excessive iron can lead to the formation of cytotoxic reactive oxygen species. Therefore, iron acquisition and homeostasis must be tightly regulated. Plants have evolved complex mechanisms to optimize their use of iron, which is one of the most limiting nutrients in the soil. In particular, transcriptional regulation is vital for regulating iron in plants, and much work has revealed the role of transcription factors on this front. Our study adds novel insights to the transcriptional regulation of iron homeostasis in plants by showing that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency. We provide evidence that FIT-dependent iron acquisition genes, IRT1 and FRO2, as well as FIT itself are direct targets of PRC2-mediated H3K27me3. In the clf mutant, which lacks the predominant H3K27 tri-methyltransferase, induction of FIT, FRO2, IRT1, and other FIT-regulated genes in roots is significantly higher under iron deficient conditions than in wild type. Furthermore, we observe that clf mutants are more tolerant to iron deficiency than wild type, indicating that gene expression levels appear to be limiting the plants ability to access iron. We propose that H3K27me3 attenuates the induction of FIT-target genes under iron deficiency and hypothesize that this may serve as a mechanism to restrict the maximum level of induction of iron acquisition genes to prevent iron overload.
Collapse
Affiliation(s)
- Emily Y. Park
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
| | - Kaitlyn M. Tsuyuki
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Fengling Hu
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Joohyun Lee
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
| | - Jeeyon Jeong
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA, United States
- Department of Biology, Amherst College, Amherst, MA, United States
- *Correspondence: Jeeyon Jeong,
| |
Collapse
|
19
|
Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M. Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst 2018; 7:643-655.e9. [PMID: 30503646 PMCID: PMC6310686 DOI: 10.1016/j.cels.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.
Collapse
Affiliation(s)
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amélie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julia Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall 851 70, Sweden
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
20
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Beine-Golovchuk O, Firmino AAP, Dąbrowska A, Schmidt S, Erban A, Walther D, Zuther E, Hincha DK, Kopka J. Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. PLANT PHYSIOLOGY 2018; 176:2251-2276. [PMID: 29382692 PMCID: PMC5841729 DOI: 10.1104/pp.17.01448] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 05/21/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) REI1-LIKE (REIL) proteins, REIL1 and REIL2, are homologs of a yeast ribosome biogenesis factor that participates in late cytoplasmic 60S ribosomal subunit maturation. Here, we report that the inhibited growth of the reil1-1 reil2-1 mutant at 10°C can be rescued by the expression of amino-terminal FLUORESCENT PROTEIN (FP)-REIL fusions driven by the UBIQUITIN10 promoter, allowing the analysis of REIL function in planta. Arabidopsis REIL1 appears to be functionally conserved, based on the cytosolic localization of FP-REIL1 and the interaction of native REIL1 with the 60S subunit in wild-type plants. In contrast to its yeast homologs, REIL1 also was present in translating ribosome fractions. Systems analysis revealed that wild-type Arabidopsis remodels the cytosolic translation machinery when grown at 10°C by accumulating cytosolic ribosome subunits and inducing the expression of cytosolic ribosomal RNA, ribosomal genes, ribosome biogenesis factors, and translation initiation or elongation factors. In the reil1-1 reil2-1 mutant, all processes associated with inhibited growth were delayed, although the plants maintained cellular integrity or acquired freezing tolerance. REIL proteins also were implicated in plant-specific processes: nonacclimated reil1-1 reil2-1 exhibited cold-acclimation responses, including activation of the DREB/CBF regulon. In addition, acclimated reil1-1 reil2-1 plants failed to activate FLOWERING LOCUS T expression in mature leaves. Therefore, in the wild type, REIL function may contribute to temperature perception by suppressing premature cold responses during growth at nonstressful temperatures. In conclusion, we suggest that Arabidopsis REIL proteins influence cold-induced plant ribosome remodeling and enhance the accumulation of cytosolic ribosome subunits after cold shift either by de novo synthesis or by recycling them from the translating ribosome fraction.
Collapse
Affiliation(s)
- Olga Beine-Golovchuk
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | - Adrianna Dąbrowska
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Schwartz CJ, Lee J, Amasino R. Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS One 2017; 12:e0187768. [PMID: 29117199 PMCID: PMC5695581 DOI: 10.1371/journal.pone.0187768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Plants have evolved developmental mechanisms to ensure reproduction when in sub-optimal local environments. The shade-avoidance syndrome is one such mechanism that causes plants to elongate and accelerate flowering. Plants sense shade via the decreased red:far-red (R:FR) ratio that occurs in shade. We explored natural variation in flowering behavior caused by a decrease in the R:FR ratio of Arabidopsis thaliana accessions. A survey of accessions revealed that most exhibit a vigorous rapid-flowering response in a FR-enriched environment. However, a subset of accessions appeared to be compromised in the accelerated-flowering component of the shade-avoidance response. The genetic basis of the muted response to FR enrichment was studied in three accessions (Fl-1, Hau-0, and Mir-0). For all three accessions, the reduced FR flowering-time effect mapped to the FLOWERING LOCUS T (FT) region, and the FT alleles from these accessions are expressed at a lower level in FR-enriched light compared to alleles from accessions that respond robustly to FR enrichment. In the Mir-0 accession, a second genomic region, which includes CONSTANTS (CO), also influenced flowering in FR-enriched conditions. We have demonstrated that variation in the degree of precocious flowering in shaded conditions (low R:FR ratio) results from allelic variation at FT.
Collapse
Affiliation(s)
- C. J. Schwartz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CS); (RA)
| | - Joohyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard Amasino
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CS); (RA)
| |
Collapse
|
23
|
Satish M, Nivya MA, Abhishek S, Nakarakanti NK, Shivani D, Vani MV, Rajakumara E. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Proteins 2017; 86:21-34. [PMID: 29024026 DOI: 10.1002/prot.25399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax-like protein (ATX), Su(var)3-9 homologs protein (SUVH), Su(var)3-9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S-adenosylmethionine (SAM) binding pocket and a post-SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein-protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre-SET and post-SET domains in HKMTs of the aforementioned plant species lead to variations in class-specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.
Collapse
Affiliation(s)
- Mutyala Satish
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - M Angel Nivya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Naveen Kumar Nakarakanti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Dixit Shivani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Madishetti Vinuthna Vani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
24
|
Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. PLANT, CELL & ENVIRONMENT 2017; 40:1263-1280. [PMID: 28103403 DOI: 10.1111/pce.12922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/09/2023]
Abstract
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors.
Collapse
Affiliation(s)
- Amnon Haberman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Sergio Cerezo-Medina
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Judith Paltiel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Chen Adler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Jose Angel Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Shimon Lavee
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
25
|
Berr A, Zhang X, Shen WH. [Reciprocity between active transcription and histone methylation]. Biol Aujourdhui 2017; 210:269-282. [PMID: 28327284 DOI: 10.1051/jbio/2017004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/08/2023]
Abstract
In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.
Collapse
|
26
|
Kim DH, Sung S. The Binding Specificity of the PHD-Finger Domain of VIN3 Moderates Vernalization Response. PLANT PHYSIOLOGY 2017; 173:1258-1268. [PMID: 27999085 PMCID: PMC5291027 DOI: 10.1104/pp.16.01320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/17/2016] [Indexed: 05/03/2023]
Abstract
Vernalization is a response to winter cold to initiate flowering in spring. VERNALIZATION INSENSITIVE3 (VIN3) is induced by winter cold and is essential to vernalization response in Arabidopsis (Arabidopsis thaliana). VIN3 encodes a PHD-finger domain that binds to modified histones in vitro. An alteration in the binding specificity of the PHD-finger domain of VIN3 results in a hypervernalization response. The hypervernalization response is achieved by increased enrichments of VIN3 and trimethylation of Histone H3 Lys 27 at the FLC locus without invoking the increased enrichment of Polycomb Repressive Complex 2. Our result shows that the binding specificity of the PHD-finger domain of VIN3 plays a role in mediating a proper vernalization response in Arabidopsis.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
27
|
Banerjee A, Wani SH, Roychoudhury A. Epigenetic Control of Plant Cold Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1643. [PMID: 28983309 PMCID: PMC5613158 DOI: 10.3389/fpls.2017.01643] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 05/19/2023]
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College-AutonomousKolkata, India
| | - Shabir H. Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagar, India
- Department of Plant Soil and Microbial Sciences, Michigan State UniversityEast Lansing, MI, United States
- *Correspondence: Shabir H. Wani
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College-AutonomousKolkata, India
- Aryadeep Roychoudhury
| |
Collapse
|
28
|
Hepworth J, Dean C. Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation. PLANT PHYSIOLOGY 2015; 168:1237-45. [PMID: 26149571 PMCID: PMC4528751 DOI: 10.1104/pp.15.00496] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/03/2015] [Indexed: 05/18/2023]
Abstract
Analysis of how seasonal cues influence the timing of the floral transition has revealed many important principles for how epigenetic regulation can integrate a variety of environmental cues with developmental signals. The study of the pathways that necessitate overwintering in plants and their ability to respond to prolonged cold (the vernalization requirement and response pathways) has elaborated different chromatin regulatory pathways and the involvement of noncoding RNAs. The major target of these vernalization pathways in Arabidopsis (Arabidopsis thaliana) is Flowering Locus C (FLC). A relatively simple picture of FLC regulation is emerging of a few core complexes and mechanisms that antagonize each other's actions. This balance provides a fine degree of control that has nevertheless permitted evolution of a wide range of natural variation in vernalization in Arabidopsis. Similar simple routes of adaptation may underlie life history variation between species.
Collapse
Affiliation(s)
- Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
29
|
Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:133-48. [PMID: 25929799 PMCID: PMC4691321 DOI: 10.1111/tpj.12869] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
- * For correspondence (e-mail )
| |
Collapse
|
30
|
Functions of plants long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:155-62. [PMID: 26112461 DOI: 10.1016/j.bbagrm.2015.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|