1
|
Ji N, Wang X, Zeng X, Kang H. Pharmacological inhibition of KSper impairs flagellar pH homeostasis of human spermatozoa. Andrology 2024. [PMID: 39498893 DOI: 10.1111/andr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Sperm-specific potassium channel (KSper) comprised of pore-forming subunit SLO3 and auxiliary subunit LRRC52 is of importance for sperm fertility. The deficiency of KSper in both mice and humans resulted in severe impairments of sperm functions including sperm hyperactivity and acrosome reaction. Previous reports suggested that mouse KSper modulated sperm function possibly by affecting sperm intracellular pH (pHi). However, the precise signaling mechanism of human KSper (hKSper) on the regulation of sperm functions was largely unclear. OBJECTIVE To explore the regulatory role of hKSper on sperm flagellar pHi. MATERIALS AND METHODS More than 50 sperm donors were recruited during a period of 1 year. As reported in our previous work, we quantitatively measured flagellar pHi by employing a single-cell pH fluorescent recording on human spermatozoa loaded with pH indicator pHrodo Red. Three different hKSper antagonists including clofilium, quinidine, and a polyclonal antibody of LRRC52 (LID1) were utilized to evaluate the effect of hKSper inhibition on sperm flagellar pHi. RESULTS Given the predominant role of hKSper on the regulation of membrane potential (Em), we first detected a considerable depolarization (about 25-30 mV) of Em evoked by clofilium and quinidine. Subsequently, it was shown that flagellar pHi values of human spermatozoa were significantly decreased by the treatment of clofilium (50 µM, from 7.13 ± 0.11 to 6.43 ± 0.12), quinidine (500 µM, from 7.00 ± 0.11 to 6.64 ± 0.08) and LID1 (20 µg/mL, from 6.98 ± 0.16 to 6.67 ± 0.22). Moreover, we found that when human spermatozoa were pre-incubated with a high K+ solution (135 mM), both the depolarization of Em and the acidification of flagellar pHi evoked by clofilium and quinidine were abolished. In addition, we found that extracellular substitution of N-methyl-D-glucamine for Na+ abolished pHi acidification induced by hKSper inhibition. DISCUSSION AND CONCLUSION Our results demonstrate that hKSper inhibition evokes flagellar pHi acidification of human spermatozoa, suggesting that flagellar pHi maintenance is an important signaling mechanism of hKSper on the regulation of sperm functions.
Collapse
Affiliation(s)
- Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Lorenz J, Eisenhardt C, Mittermair T, Kulle AE, Holterhus PM, Fobker M, Boenigk W, Nordhoff V, Behre HM, Strünker T, Brenker C. The sperm-specific K + channel Slo3 is inhibited by albumin and steroids contained in reproductive fluids. Front Cell Dev Biol 2024; 12:1275116. [PMID: 39310227 PMCID: PMC11413451 DOI: 10.3389/fcell.2024.1275116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/19/2024] [Indexed: 09/25/2024] Open
Abstract
To locate and fertilize the egg, sperm probe the varying microenvironment prevailing at different stages during their journey across the female genital tract. To this end, they are equipped with a unique repertoire of mostly sperm-specific proteins. In particular, the flagellar Ca2+ channel CatSper has come into focus as a polymodal sensor used by human sperm to register ligands released into the female genital tract. Here, we provide the first comprehensive study on the pharmacology of the sperm-specific human Slo3 channel, shedding light on its modulation by reproductive fluids and their constituents. We show that seminal fluid and contained prostaglandins and Zn2+ do not affect the channel, whereas human Slo3 is inhibited in a non-genomic fashion by diverse steroids as well as by albumin, which are released into the oviduct along with the egg. This indicates that not only CatSper but also Slo3 harbours promiscuous ligand-binding sites that can accommodate structurally diverse molecules, suggesting that Slo3 is involved in chemosensory signalling in human sperm.
Collapse
Affiliation(s)
- Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Clara Eisenhardt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Teresa Mittermair
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alexandra E. Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Paul Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital, Münster, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behaviour—Caesar, Bonn, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Li Q, Chen G, Yan J. Transmembrane determinants of voltage-gating differences between BK (Slo1) and Slo3 channels. Biophys J 2024; 123:2154-2166. [PMID: 38637987 PMCID: PMC11309983 DOI: 10.1016/j.bpj.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Voltage-gated potassium channels are critical in modulating cellular excitability, with Slo (slowpoke) channels forming a unique family characterized by their large conductance and dual regulation by electrical signals and intracellular messengers. Despite their structural and evolutionary similarities, Slo1 and Slo3 channels exhibit significant differences in their voltage-gating properties. This study investigates the molecular determinants that differentiate the voltage-gating properties of human Slo1 and mouse Slo3 channels. Utilizing Slo1/Slo3 chimeras, we pinpointed the selectivity filter region as a key factor in the Slo3 channel's reduced conductance at negative voltages. The S6 transmembrane (TM) segment was identified as pivotal for the Slo3 channel's biphasic deactivation kinetics at these voltages. Additionally, the S4 and S6 TM segments were found to be responsible for the gradual slope in the Slo3 channel's conductance-voltage relationship, while multiple TM regions appear to be involved in the Slo3 channel's requirement of strong depolarization for activation. Mutations in the Slo1's S5 and S6 TM segments revealed three residues (I233, L302, and M304) that likely play a crucial role in the allosteric coupling between the voltage sensors and the pore gate.
Collapse
Affiliation(s)
- Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
4
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
5
|
Zhang J, Zheng L, Chen Y, Luo T, Zeng X, Kang H. LRRC52 is likely a functional component of human KSper†. Biol Reprod 2024; 110:711-721. [PMID: 38267364 DOI: 10.1093/biolre/ioae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Completion of fertilization is orchestrated by various ion channels in sperm membrane. Hyperpolarization of membrane potential, an indispensable event during the capacitation process, is dominated by sperm potassium channel (KSper). In addition to sperm-specific SLO3, which forms the channel pore, the auxiliary subunit leucine-rich-repeat-containing protein 52 (LRRC52) is required to form mKSper to function under physiological conditions. However, in human sperm, although most evidence supports that hSLO3 is the pore-forming subunit, whether hLRRC52 contributes to hKSper conductance and modulates sperm function remains to be understood. Here, using an extracellular segment that is homologous between mice and humans as an antigen, we developed a polyclonal antibody designed as LID1 that specifically detected mLRRC52 and performed co-immunoprecipitation with mSLO3. Additionally, patch-clamp recordings of mouse sperm showed that, physiological activation of mKSper and sperm functions were dramatically attenuated after treatment with LID1, indicating that LID1 functionally disrupted the regulation of mLRRC52 on mKSper. Next, LID1 was used to investigate the significance of hLRRC52 for hKSper activation. As a result, hLRRC52 was expressed in human sperm and might be assembled with hSLO3. More importantly, LID1 inhibited hKSper currents and depolarized sperm membrane potential, supporting essential modulation of hLRRC52 in hKSper. Ca2+ signaling of human sperm was also compromised in the presence of LID1, which impaired sperm motility and acrosome reaction. Because LID1 specifically inhibited both mKSper and hKSper but not mCatSper or hCatSper, our results suggest that hLRRC52 functions as an important component of hKSper and regulates sperm physiological functions.
Collapse
Affiliation(s)
- Jiali Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liping Zheng
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Chen
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hang Kang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
7
|
Yamanouchi D, Kasuya G, Nakajo K, Kise Y, Nureki O. Dual allosteric modulation of voltage and calcium sensitivities of the Slo1-LRRC channel complex. Mol Cell 2023; 83:4555-4569.e4. [PMID: 38035882 DOI: 10.1016/j.molcel.2023.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Modulation of large conductance intracellular ligand-activated potassium (BK) channel family (Slo1-3) by auxiliary subunits allows diverse physiological functions in excitable and non-excitable cells. Cryoelectron microscopy (cryo-EM) structures of voltage-gated potassium (Kv) channel complexes have provided insights into how voltage sensitivity is modulated by auxiliary subunits. However, the modulation mechanisms of BK channels, particularly as ligand-activated ion channels, remain unknown. Slo1 is a Ca2+-activated and voltage-gated BK channel and is expressed in neurons, muscle cells, and epithelial cells. Using cryo-EM and electrophysiology, we show that the LRRC26-γ1 subunit modulates not only voltage but also Ca2+ sensitivity of Homo sapiens Slo1. LRRC26 stabilizes the active conformation of voltage-senor domains of Slo1 by an extracellularly S4-locking mechanism. Furthermore, it also stabilizes the active conformation of Ca2+-sensor domains of Slo1 intracellularly, which is functionally equivalent to intracellular Ca2+ in the activation of Slo1. Such a dual allosteric modulatory mechanism may be general in regulating the intracellular ligand-activated BK channel complexes.
Collapse
Affiliation(s)
- Daichi Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Go Kasuya
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
| | - Koichi Nakajo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Kallure GS, Pal K, Zhou Y, Lingle CJ, Chowdhury S. High-resolution structures illuminate key principles underlying voltage and LRRC26 regulation of Slo1 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572542. [PMID: 38187713 PMCID: PMC10769243 DOI: 10.1101/2023.12.20.572542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multi-modal regulation of Slo1 channels by membrane voltage, intracellular calcium, and auxiliary subunits enables its pleiotropic physiological functions. Our understanding of how voltage impacts Slo1 conformational dynamics and the mechanisms by which auxiliary subunits, particularly of the LRRC (Leucine Rich Repeat containing) family of proteins, modulate its voltage gating remain unresolved. Here, we used single particle cryo-electron microscopy to determine structures of human Slo1 mutants which functionally stabilize the closed pore (F315A) or the activated voltage-sensor (R207A). Our structures, obtained under calcium-free conditions, reveal that a key step in voltage-sensing by Slo1 involves a rotameric flip of the voltage-sensing charges (R210 and R213) moving them by ∼6 Å across a hydrophobic gasket. Next we obtained reconstructions of a complex of human Slo1 with the human LRRC26 (γ1) subunit in absence of calcium. Together with extensive biochemical tests, we show that the extracellular domains of γ1 form a ring of interlocked dominos that stabilizes the quaternary assembly of the complex and biases Slo1:γ1 assembly towards high stoichiometric complexes. The transmembrane helix of γ1 is kinked and tightly packed against the Slo1 voltage-sensor. We hypothesize that γ1 subunits exert relatively small effects on early steps in voltage-gating but structurally stabilize non-S4 helices of Slo1 voltage-sensor which energetically facilitate conformational rearrangements that occur late in voltage stimulated transitions.
Collapse
|
9
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
10
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
11
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
14
|
Wang Y, Gao T, Shan L, Li K, Liang F, Yu J, Ni Y, Sun P. Iberiotoxin and clofilium regulate hyperactivation, acrosome reaction, and ion homeostasis synergistically during human sperm capacitation. Mol Reprod Dev 2023; 90:129-140. [PMID: 36682071 DOI: 10.1002/mrd.23671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.
Collapse
Affiliation(s)
- Yayan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
16
|
de Prelle B, Lybaert P, Gall D. A Minimal Model Shows that a Positive Feedback Loop Between sNHE and SLO3 can Control Mouse Sperm Capacitation. Front Cell Dev Biol 2022; 10:835594. [PMID: 35399518 PMCID: PMC8990769 DOI: 10.3389/fcell.2022.835594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
When mammalian spermatozoa are released in the female reproductive tract, they are incapable of fertilizing the oocyte. They need a prolonged exposure to the alkaline medium of the female genital tract before their flagellum gets hyperactivated and the acrosome reaction can take place, allowing the sperm to interact with the oocyte. Ionic fluxes across the sperm membrane are involved in two essential aspects of capacitation: the increase in intracellular pH and the membrane hyperpolarization. In particular, it has been shown that the SLO3 potassium channel and the sNHE sodium-proton exchanger, two sperm-specific transmembrane proteins, are necessary for the capacitation process to occur. As the SLO3 channel is activated by an increase in intracellular pH and sNHE is activated by hyperpolarization, they act together as a positive feedback system. Mathematical modeling provides a unique tool to capture the essence of a molecular mechanism and can be used to derive insight from the existing data. We have therefore developed a theoretical model formalizing the positive feedback loop between SLO3 and sHNE in mouse epididymal sperm to see if this non-linear interaction can provide the core mechanism explaining the existence of uncapacited and capacitated states. We show that the proposed model can fully explain the switch between the uncapacitated and capacited states and also predicts the existence of a bistable behaviour. Furthermore, our model indicates that SLO3 inhibition, above a certain threshold, can be effective to completely abolish capacitation.
Collapse
Affiliation(s)
- Bertrand de Prelle
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
CEP128 is involved in spermatogenesis in humans and mice. Nat Commun 2022; 13:1395. [PMID: 35296684 PMCID: PMC8927350 DOI: 10.1038/s41467-022-29109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Centrosomal proteins are necessary components of the centrosome, a conserved eukaryotic organelle essential to the reproductive process. However, few centrosomal proteins have been genetically linked to fertility. Herein we identify a homozygous missense variant of CEP128 (c.665 G > A [p.R222Q]) in two infertile males. Remarkably, male homozygous knock-in mice harboring the orthologous CEP128R222Q variant show anomalies in sperm morphology, count, and motility. Moreover, Cep128 knock-out mice manifest male infertility associated with disrupted sperm quality. We observe defective sperm flagella in both homozygous Cep128 KO and KI mice; the cilia development in other organs is normal—suggesting that CEP128 variants predominantly affected the ciliogenesis in the testes. Mechanistically, CEP128 is involved in male reproduction via regulating the expression of genes and/or the phosphorylation of TGF-β/BMP-signalling members during spermatogenesis. Altogether, our findings unveil a crucial role for CEP128 in male fertility and provide important insights into the functions of centrosomal proteins in reproductive biology. CEP128 is a centrosomal protein important for the organization of centriolar microtubules. Here, the authors show that a CEP128 variant observed in human male siblings causes reduced sperm counts and morphologically abnormal sperm when modeled in mice, suggesting a role for CEP128 in male fertility.
Collapse
|
18
|
Gonzalez-Perez V, Zhou Y, Ciorba MA, Lingle CJ. The LRRC family of BK channel regulatory subunits: potential roles in health and disease. J Physiol 2022; 600:1357-1371. [PMID: 35014034 PMCID: PMC8930516 DOI: 10.1113/jp281952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Large conductance K+ channels, termed BK channels, regulate a variety of cellular and physiological functions. Although universally activated by changes in voltage or [Ca2+ ]i , the threshold for BK channel activation varies among loci of expression, often arising from cell-specific regulatory subunits including a family of leucine rich repeat-containing (LRRC) γ subunits (LRRC26, LRRC52, LRRC55 and LRRC38). The 'founding' member of this family, LRRC26, was originally identified as a tumour suppressor in various cancers. An LRRC26 knockout (KO) mouse model recently revealed that LRRC26 is also highly expressed in secretory epithelial cells and partners with BK channels in the salivary gland and colonic goblet cells to promote sustained K+ fluxes likely essential for normal secretory function. To accomplish this, LRRC26 negatively shifts the range of BK channel activation such that channels contribute to K+ flux near typical epithelial cell resting conditions. In colon, the absence of LRRC26 increases vulnerability to colitis. LRRC26-containing BK channels are also likely important regulators of epithelial function in other loci, including airways, female reproductive tract and mammary gland. Based on an LRRC52 KO mouse model, LRRC52 regulation of large conductance K+ channels plays a role both in sperm function and in cochlear inner hair cells. Although our understanding of LRRC-containing BK channels remains rudimentary, KO mouse models may help define other organs in which LRRC-containing channels support normal function. A key topic for future work concerns identification of endogenous mechanisms, whether post-translational or via gene regulation, that may impact LRRC-dependent pathologies.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
19
|
Chen G, Li Q, Yan J. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions. J Biol Chem 2022; 298:101664. [PMID: 35104503 PMCID: PMC8892010 DOI: 10.1016/j.jbc.2022.101664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain-containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1-3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1-3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate Programs of Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
20
|
Lv M, Liu C, Ma C, Yu H, Shao Z, Gao Y, Liu Y, Wu H, Tang D, Tan Q, Zhang J, Li K, Xu C, Geng H, Zhang J, Li H, Mao X, Ge L, Fu F, Zhong K, Xu Y, Tao F, Zhou P, Wei Z, He X, Zhang F, Cao Y. Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations. Reprod Biol Endocrinol 2022; 20:5. [PMID: 34980136 PMCID: PMC8722334 DOI: 10.1186/s12958-021-00880-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Potassium channels are important for the structure and function of the spermatozoa. As a potassium transporter, the mSlo3 is essential for male fertility as Slo3 knockout male mice were infertile with the series of functional defects in sperm cells. However, no pathogenic variant has been detected in human SLO3 to date. Here we reported a human case with homozygous SLO3 mutation. The function of SLO3 in human sperm and the corresponding assisted reproductive strategy are also investigated. METHODS We performed whole-exome sequencing analysis from a large cohort of 105 patients with asthenoteratozoospermia. The effects of the variant were investigated by quantitative RT-PCR, western blotting, and immunofluorescence assays using the patient spermatozoa. Sperm morphological and ultrastructural studies were conducted using haematoxylin and eosin staining, scanning and transmission electron microscopy. RESULTS We identified a homozygous missense variant (c.1237A > T: p.Ile413Phe) in the sperm-specific SLO3 in one Chinese patient with male infertility. This SLO3 variant was rare in human control populations and predicted to be deleterious by multiple bioinformatic tools. Sperm from the individual harbouring the homozygous SLO3 variant exhibited severe morphological abnormalities, such as acrosome hypoplasia, disruption of the mitochondrial sheath, coiled tails, and motility defects. The levels of SLO3 mRNA and protein in spermatozoa from the affected individual were reduced. Furthermore, the acrosome reaction, mitochondrial membrane potential, and membrane potential during capacitation were also afflicted. The levels of acrosome marker glycoproteins and PLCζ1 as well as the mitochondrial sheath protein HSP60 and SLO3 auxiliary subunit LRRC52, were significantly reduced in the spermatozoa from the affected individual. The affected man was sterile due to acrosome and mitochondrial dysfunction; however, intra-cytoplasmic sperm injection successfully rescued this infertile condition. CONCLUSIONS SLO3 deficiency seriously impact acrosome formation, mitochondrial sheath assembly, and the function of K+ channels. Our findings provided clinical implications for the genetic and reproductive counselling of affected families.
Collapse
Affiliation(s)
- Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China
| | - Chunjie Ma
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhongmei Shao
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Yang Gao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junqiang Zhang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Hang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Mao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ge
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feifei Fu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kaixin Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
- Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200011, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
21
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
22
|
Chen L, Chou CL, Knepper MA. Targeted Single-Cell RNA-seq Identifies Minority Cell Types of Kidney Distal Nephron. J Am Soc Nephrol 2021; 32:886-896. [PMID: 33769948 PMCID: PMC8017539 DOI: 10.1681/asn.2020101407] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/03/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Proximal tubule cells dominate the kidney parenchyma numerically, although less abundant cell types of the distal nephron have disproportionate roles in water and electrolyte balance. METHODS Coupling of a FACS-based enrichment protocol with single-cell RNA-seq profiled the transcriptomes of 9099 cells from the thick ascending limb (CTAL)/distal convoluted tubule (DCT) region of the mouse nephron. RESULTS Unsupervised clustering revealed Slc12a3 +/Pvalb + and Slc12a3 +/Pvalb - cells, identified as DCT1 and DCT2 cells, respectively. DCT1 cells appear to be heterogeneous, with orthogonally variable expression of Slc8a1, Calb1, and Ckb. An additional DCT1 subcluster showed marked enrichment of cell cycle-/cell proliferation-associated mRNAs (e.g., Mki67, Stmn1, and Top2a), which fit with the known plasticity of DCT cells. No DCT2-specific transcripts were found. DCT2 cells contrast with DCT1 cells by expression of epithelial sodium channel β- and γ-subunits and much stronger expression of transcripts associated with calcium transport (Trpv5, Calb1, S100g, and Slc8a1). Additionally, scRNA-seq identified three distinct CTAL (Slc12a1 +) cell subtypes. One of these expressed Nos1 and Avpr1a, consistent with macula densa cells. The other two CTAL clusters were distinguished by Cldn10 and Ptger3 in one and Cldn16 and Foxq1 in the other. These two CTAL cell types were also distinguished by expression of alternative Iroquois homeobox transcription factors, with Irx1 and Irx2 in the Cldn10 + CTAL cells and Irx3 in the Cldn16 + CTAL cells. CONCLUSIONS Single-cell transcriptomics revealed unexpected diversity among the cells of the distal nephron in mouse. Web-based data resources are provided for the single-cell data.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
23
|
Chen L, Chou CL, Knepper MA. A Comprehensive Map of mRNAs and Their Isoforms across All 14 Renal Tubule Segments of Mouse. J Am Soc Nephrol 2021; 32:897-912. [PMID: 33769951 PMCID: PMC8017530 DOI: 10.1681/asn.2020101406] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/13/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The repertoire of protein expression along the renal tubule depends both on regulation of transcription and regulation of alternative splicing that can generate multiple proteins from a single gene. METHODS A full-length, small-sample RNA-seq protocol profiled transcriptomes for all 14 renal tubule segments microdissected from mouse kidneys. RESULTS This study identified >34,000 transcripts, including 3709 that were expressed in a segment-specific manner. All data are provided as an online resource (https://esbl.nhlbi.nih.gov/MRECA/Nephron/). Many of the genes expressed in unique patterns along the renal tubule were solute carriers, transcription factors, or G protein-coupled receptors that account for segment-specific function. Mapping the distribution of transcripts associated with Wnk-SPAK-PKA signaling, renin-angiotensin-aldosterone signaling, and cystic diseases of the kidney illustrated the applications of the online resource. The method allowed full-length mapping of RNA-seq reads, which facilitated comprehensive, unbiased characterization of alternative exon usage along the renal tubule, including known isoforms of Cldn10, Kcnj1 (ROMK), Slc12a1 (NKCC2), Wnk1, Stk39 (SPAK), and Slc14a2 (UT-A urea transporter). It also identified many novel isoforms with segment-specific distribution. These included variants associated with altered protein structure (Slc9a8, Khk, Tsc22d1, and Scoc), and variants that may affect untranslated, regulatory regions of transcripts (Pth1r, Pkar1a, and Dab2). CONCLUSIONS Full-length, unbiased sequencing of transcripts identified gene-expression patterns along the mouse renal tubule. The data, provided as an online resource, include both quantitative and qualitative differences in transcripts. Identification of alternative splicing along the renal tubule may prove critical to understanding renal physiology and pathophysiology.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
24
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
25
|
Kang H, Liu M, Zhang W, Huang RZ, Zhao N, Chen C, Zeng XH. Na +/H + Exchangers Involve in Regulating the pH-Sensitive Ion Channels in Mouse Sperm. Int J Mol Sci 2021; 22:ijms22041612. [PMID: 33562644 PMCID: PMC7914462 DOI: 10.3390/ijms22041612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N,N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.
Collapse
Affiliation(s)
- Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Min Liu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Wei Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Rong-Zu Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Na Zhao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Chen Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
- Correspondence: ; Tel.: +86-177-6196-0066
| |
Collapse
|
26
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
27
|
Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L, Han L, Florman HM, Kaupp UB, Strünker T, Wachten D. Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Front Cell Dev Biol 2020; 8:572735. [PMID: 32984353 PMCID: PMC7487327 DOI: 10.3389/fcell.2020.572735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pHi increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pHi increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pia Neugebauer
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Harvey M Florman
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School Worcester, Worcester, MA, United States
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany.,Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Luo T, Chen HY, Zou QX, Wang T, Cheng YM, Wang HF, Wang F, Jin ZL, Chen Y, Weng SQ, Zeng XH. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum Reprod 2020; 34:414-423. [PMID: 30629171 DOI: 10.1093/humrep/dey377] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Are genetic abnormalities in CATSPER (cation channel of sperm) genes associated with idiopathic male infertility with normal semen parameters and, if so, how do they affect male fertility? SUMMARY ANSWER A novel copy number variation (CNV) in CATSPER2 causes idiopathic male infertility with normal semen parameters by disrupting the ability of sperm to penetrate viscous media, undergo hyperactivation and respond to progesterone. WHAT IS KNOWN ALREADY CATSPER is the principle Ca2+ channel mediating extracellular Ca2+ influx into spermatozoa. Although several case reports have suggested a causal relationship between CATSPER disruption and human male infertility, whether genetic abnormalities in CATSPER genes are associated with idiopathic male infertility with normal semen parameters remains unclear. STUDY DESIGN, SIZE, DURATION Spermatozoa were obtained from men attending the reproductive medical center at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China between January 2014 and June 2016. In total, 120 men from infertile couples and 20 healthy male donors were selected to take part in the study, based on their normal semen parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS CATSPER and KSPER currents were assessed using the whole-cell patch-clamp technique. Whole-genome sequencing and TaqMan® CNV assays were performed to identify genetic variations. The expression levels of genes encoding the CATSPER complex were measured by quantitative real-time PCR and Western blot. Sperm motion characteristics and hyperactivation were examined with a computer-aided sperm analysis (CASA) system. Sperm responses to progesterone, assessed as increases in CATSPER current and intercellular Ca2+ concentrations ([Ca2+]i), as well as inducement of penetration ability and acrosome reaction, were examined by means of whole-cell patch-clamp technique, single-sperm [Ca2+]i imaging, penetration into methylcellulose assay and chlortetracycline staining, respectively. MAIN RESULTS AND THE ROLE OF CHANCE An infertile man with complete disruption of CATSPER current was identified. This individual has a novel CNV which disrupts one gene copy in the region 43894500-43950000 in chromosome 15 (GRCh37.p13 Primary Assembly, nsv3067119), containing the whole DNA sequence of CATSPER2. This CNV affected the expression of CATSPER2, resulting in dramatically reduced levels of CATSPER2 proteins in the individual's spermatozoa. Although this individual exhibited normal semen parameters, his spermatozoa showed impaired penetration ability, deficient hyperactivation, and did not respond to progesterone, in terms of monovalent current potentiation, [Ca2+]i increase, penetration ability enhancement and acrosome reaction inducement, which may explain the individual's idiopathic infertility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our novel findings require more cases to support the CATSPER2 CNV identified in this study as a common cause of idiopathic male infertility in patients with normal semen parameters. Therefore, caution must be taken when extrapolating the use of this CNV as a potential biomarker for idiopathic male infertility. WIDER IMPLICATIONS OF THE FINDINGS The findings from the unique human CATSPER 'knockout' model in this study not only confirm the essential roles of CATSPER in mediating progesterone response and regulating hyperactivation in human spermatozoa but also reveal that disruption of CATSPER current is a significant factor causing idiopathic male infertility. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by National Natural Science Foundation of China (81771644 and 31400996 to T.L.; 31230034 to X.Z.); National Basic Research Program of China (973 Program, 2015CB943003 to X.Z.); National Key Research and Development Program of China (2016YFC1000905 to T.L.); Natural Science Foundation of Jiangxi, China (20121BBG70021 and GJJ12015 to X.Z.; 20161BAB204167 and 20171ACB21006 to T.L.) and the open project of National Population and Family Planning Key Laboratory of Contraceptives and Devices Research (No. 2016KF07 to T.L.). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, PR China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, PR China
| | - Qian-Xing Zou
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Tao Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hua-Feng Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Zhong-Lin Jin
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, PR China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Shi-Qi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xu-Hui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, PR China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, Jiangxi, PR China
| |
Collapse
|
29
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
30
|
Wang GM, Zhong ZG, Du XR, Zhang FF, Guo Q, Liu Y, Tang QY, Zhang Z. Cloning and characterization of the rat Slo3 (K Ca 5.1) channel: From biophysics to pharmacology. Br J Pharmacol 2020; 177:3552-3567. [PMID: 32335912 DOI: 10.1111/bph.15078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The Slo3 potassium (KCa 5.1) channel, which is specifically expressed in the testis and sperm, is essential for mammalian male fertilization. The sequence divergence of the bovine, mouse and human Slo3 α-subunit revealed a rapid evolution rate across different species. The rat Slo3 (rSlo3) channel has not been cloned and characterized previously. EXPERIMENTAL APPROACH We used molecular cloning, electrophysiology (inside-out patches and outside-out patches) and mutagenesis to investigate the biophysical properties and pharmacological characteristics of the rSlo3 channel. KEY RESULTS The rat Slo3 channel (rSlo3) is gated by voltage and cytosolic pH rather than intracellular calcium. The characteristics of voltage-dependent, pH-sensitivity and activation kinetics of the rSlo3 channel differ from the characteristics of other Slo3 orthologues. In terms of pharmacology, the 4-AP blockade of the rSlo3 channel also shows properties distinct from its blockade of the mSlo3 channel. Iberiotoxin and progesterone weakly inhibit the rSlo3 channel. Finally, we found that propofol, one of the widely used general anaesthetics, blocks the rSlo3 channel from both intracellular and extracellular sides, whereas ketamine only blocks the rSlo3 channel at the extracellular side. CONCLUSION AND IMPLICATIONS Our findings suggest that the rSlo3 channel possesses unique biophysical and pharmacological properties. Our results provide new insights into the diversities of the Slo3 family of channels, which are valuable for estimating the effects of the use of these drugs to improve sperm quality.
Collapse
Affiliation(s)
- Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Gang Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Baro Graf C, Ritagliati C, Torres-Monserrat V, Stival C, Carizza C, Buffone MG, Krapf D. Membrane Potential Assessment by Fluorimetry as a Predictor Tool of Human Sperm Fertilizing Capacity. Front Cell Dev Biol 2020; 7:383. [PMID: 32010695 PMCID: PMC6979052 DOI: 10.3389/fcell.2019.00383] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm acquire the ability to fertilize eggs by undergoing a process known as capacitation. Capacitation is triggered as the sperm travels through the female reproductive tract. This process involves specific physiological changes such as rearrangement of the cell plasma membrane, post-translational modifications of certain proteins, and changes in the cellular permeability to ions - with the subsequent impact on the plasma membrane potential (Em). Capacitation-associated Em hyperpolarization has been well studied in mouse sperm, and shown to be both necessary and sufficient to promote the acrosome reaction (AR) and fertilize the egg. However, the relevance of the sperm Em upon capacitation on human fertility has not been thoroughly characterized. Here, we performed an extensive study of the Em change during capacitation in human sperm samples using a potentiometric dye in a fluorimetric assay. Normospermic donors showed significant Em hyperpolarization after capacitation. Em values from capacitated samples correlated significantly with the sperm ability to undergo induced AR, highlighting the role of hyperpolarization in acrosomal responsiveness, and with successful in vitro fertilization (IVF) rates. These results show that Em hyperpolarization could be an indicator of human sperm fertilizing capacity, setting the basis for the use of Em values as a robust predictor of the success rate of IVF.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | | | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | | | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
32
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
33
|
LRRC52 regulates BK channel function and localization in mouse cochlear inner hair cells. Proc Natl Acad Sci U S A 2019; 116:18397-18403. [PMID: 31451634 DOI: 10.1073/pnas.1907065116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+ channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (-60 mV) even in the absence of intracellular Ca2+ elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+ channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat-containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs from Lrrc26 knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs from Lrrc52 KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about -90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.
Collapse
|
34
|
Wijerathne TD, Kim JH, Kim MJ, Kim CY, Chae MR, Lee SW, Lee KP. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:381-392. [PMID: 31496875 PMCID: PMC6717788 DOI: 10.4196/kjpp.2019.23.5.381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
Sperm function and male fertility are closely related to pH dependent K+ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Min Ji Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
35
|
Lang I, Jung M, Niemeyer BA, Ruth P, Engel J. Expression of the LRRC52 γ subunit (γ2) may provide Ca 2+-independent activation of BK currents in mouse inner hair cells. FASEB J 2019; 33:11721-11734. [PMID: 31348683 DOI: 10.1096/fj.201900701rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mammalian inner hair cells (IHCs) transduce sound into depolarization and transmitter release. Big conductance and voltage- and Ca2+-activated K+ (BK) channels are responsible for fast membrane repolarization and small time constants of mature IHCs. For unknown reasons, they activate at around -75 mV with a voltage of half-maximum activation (Vhalf) of -50 mV although being largely insensitive to Ca2+ influx. Ca2+-independent activation of BK channels was observed by others in heterologous expression systems if γ subunits leucine-rich repeat-containing protein (LRRC)26 (γ1) and LRRC52 (γ2) were coexpressed with the pore-forming BKα subunit, which shifted Vhalf by -140 and -100 mV, respectively. Using nested PCR, we consistently detected transcripts for LRRC52 but not for LRRC26 in IHCs of 3-wk-old mice. Confocal immunohistochemistry showed synchronous up-regulation of LRRC52 protein with BKα at the onset of hearing. Colocalization of LRRC52 protein and BKα at the IHC neck within ≤40 nm was specified using an in situ proximity ligation assay. Mice deficient for the voltage-gated Cav1.3 Ca2+ channel encoded by Cacna1d do not express BKα protein. LRRC52 protein was neither expressed in IHCs of BKα nor in IHCs of Cav1.3 knockout mice. Together, LRRC52 is a γ2 subunit of BK channel complexes and is a strong candidate for causing the Ca2+-independent activation of BK currents at negative membrane potentials in mouse IHCs.-Lang, I., Jung, M., Niemeyer, B. A., Ruth, P., Engel, J. Expression of the LRRC52 γ subunit (γ2) may provide Ca2+-independent activation of BK currents in mouse inner hair cells.
Collapse
Affiliation(s)
- Isabelle Lang
- Hearing Research, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Martin Jung
- Department of Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Peter Ruth
- Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Hearing Research, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
36
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
37
|
Regulatory γ1 subunits defy symmetry in functional modulation of BK channels. Proc Natl Acad Sci U S A 2018; 115:9923-9928. [PMID: 30224470 DOI: 10.1073/pnas.1804560115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural symmetry is a hallmark of homomeric ion channels. Nonobligatory regulatory proteins can also critically define the precise functional role of such channels. For instance, the pore-forming subunit of the large conductance voltage and calcium-activated potassium (BK, Slo1, or KCa1.1) channels encoded by a single KCa1.1 gene assembles in a fourfold symmetric fashion. Functional diversity arises from two families of regulatory subunits, β and γ, which help define the range of voltages over which BK channels in a given cell are activated, thereby defining physiological roles. A BK channel can contain zero to four β subunits per channel, with each β subunit incrementally influencing channel gating behavior, consistent with symmetry expectations. In contrast, a γ1 subunit (or single type of γ1 subunit complex) produces a functionally all-or-none effect, but the underlying stoichiometry of γ1 assembly and function remains unknown. Here we utilize two distinct and independent methods, a Forster resonance energy transfer-based optical approach and a functional reporter in single-channel recordings, to reveal that a BK channel can contain up to four γ1 subunits, but a single γ1 subunit suffices to induce the full gating shift. This requires that the asymmetric association of a single regulatory protein can act in a highly concerted fashion to allosterically influence conformational equilibria in an otherwise symmetric K+ channel.
Collapse
|
38
|
Ritagliati C, Baro Graf C, Stival C, Krapf D. Regulation mechanisms and implications of sperm membrane hyperpolarization. Mech Dev 2018; 154:33-43. [PMID: 29694849 DOI: 10.1016/j.mod.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina.
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina; Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquimicas y Farmacéuticas, UNR, Rosario 2000, Argentina.
| |
Collapse
|
39
|
Abstract
Fertilization is exceptionally complex and, depending on the species, happens in entirely different environments. External fertilizers in aquatic habitats, like marine invertebrates or fish, release their gametes into the seawater or freshwater, whereas sperm from most internal fertilizers like mammals cross the female genital tract to make their way to the egg. Various chemical and physical cues guide sperm to the egg. Quite generally, these cues enable signaling pathways that ultimately evoke a cellular Ca2+ response that modulates the waveform of the flagellar beat and, hence, the swimming path. To cope with the panoply of challenges to reach and fertilize the egg, sperm from different species have developed their own unique repertoire of signaling molecules and mechanisms. Here, we review the differences and commonalities for sperm sensory signaling in marine invertebrates (sea urchin), fish (zebrafish), and mammals (mouse, human).
Collapse
Affiliation(s)
- Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U Benjamin Kaupp
- Department Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
40
|
Knockout of the LRRC26 subunit reveals a primary role of LRRC26-containing BK channels in secretory epithelial cells. Proc Natl Acad Sci U S A 2017; 114:E3739-E3747. [PMID: 28416688 DOI: 10.1073/pnas.1703081114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich-repeat-containing protein 26 (LRRC26) is the regulatory γ1 subunit of Ca2+- and voltage-dependent BK-type K+ channels. BK channels that contain LRRC26 subunits are active near normal resting potentials even without Ca2+, suggesting they play unique physiological roles, likely limited to very specific cell types and cellular functions. By using Lrrc26 KO mice with a β-gal reporter, Lrrc26 promoter activity is found in secretory epithelial cells, especially acinar epithelial cells in lacrimal and salivary glands, and also goblet and Paneth cells in intestine and colon, although absent from neurons. We establish the presence of LRRC26 protein in eight secretory tissues or tissues with significant secretory epithelium and show that LRRC26 protein coassembles with the pore-forming BK α-subunit in at least three tissues: lacrimal gland, parotid gland, and colon. In lacrimal, parotid, and submandibular gland acinar cells, LRRC26 KO shifts BK gating to be like α-subunit-only BK channels. Finally, LRRC26 KO mimics the effect of SLO1/BK KO in reducing [K+] in saliva. LRRC26-containing BK channels are competent to contribute to resting K+ efflux at normal cell membrane potentials with resting cytosolic Ca2+ concentrations and likely play a critical physiological role in supporting normal secretory function in all secretory epithelial cells.
Collapse
|
41
|
Wijerathne TD, Kim J, Yang D, Lee KP. Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BK Ca activator LDD175. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:241-249. [PMID: 28280418 PMCID: PMC5343058 DOI: 10.4196/kjpp.2017.21.2.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/15/2022]
Abstract
Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat–containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical BKCa activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting γ2 subunit, hLRRC52. As previously reported, Slo3 K+ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 K+ current, and internal alkalinization and Ca2+ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 K+ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular Ca2+. In contrast, elevation of intracellular Ca2+ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate Ca2+-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jihyun Kim
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - Kyu Pil Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
42
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
43
|
Lishko PV. Contraception: Search for an Ideal Unisex Mechanism by Targeting Ion Channels. Trends Biochem Sci 2016; 41:816-818. [PMID: 27545067 DOI: 10.1016/j.tibs.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 02/01/2023]
Abstract
Targeting sperm ion channels and other sperm-specific proteins is an effective way to develop unisex contraceptives, as they should have decreased side effects. This Science & Society summarizes the current advances in human sperm physiology in attempts to evaluate what would be appropriate targets for unisex contraceptives.
Collapse
Affiliation(s)
- Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Wang HF, Liu M, Li N, Luo T, Zheng LP, Zeng XH. Bisphenol A Impairs Mature Sperm Functions by a CatSper-Relevant Mechanism. Toxicol Sci 2016; 152:145-54. [DOI: 10.1093/toxsci/kfw070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:51-90. [PMID: 27238261 DOI: 10.1016/bs.irn.2016.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large-conductance, Ca(2+)- and voltage-activated K(+) (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1-β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings.
Collapse
|
46
|
Brown SG, Publicover SJ, Mansell SA, Lishko PV, Williams HL, Ramalingam M, Wilson SM, Barratt CLR, Sutton KA, Da Silva SM. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF. Hum Reprod 2016; 31:1147-57. [PMID: 27052499 PMCID: PMC4871192 DOI: 10.1093/humrep/dew056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from MRC project grants (#MR/K013343/1, MR/012492/1). Additional funding was provided by NHS Tayside, TENOVUS, Chief Scientist Office NRS Fellowship and University of Abertay. The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Sean G Brown
- School of Science, Engineering and Technology, Abertay University, Dundee DD11HG, UK
| | | | - Steven A Mansell
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hannah L Williams
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Mythili Ramalingam
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Stuart M Wilson
- Wolfson Research Institute, School of Medicine, Pharmacy and Health, University of Durham, Queen's Campus, Stockton on Tees TS17 6BH, UK
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Keith A Sutton
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
47
|
Syeda SS, Carlson EJ, Miller MR, Francis R, Clapham DE, Lishko PV, Hawkinson JE, Hook D, Georg GI. The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex. ACS Chem Biol 2016; 11:452-9. [PMID: 26674547 PMCID: PMC4761407 DOI: 10.1021/acschembio.5b00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal fungus Allomyces macrogynus (A. macrogynus) produces motile male gametes displaying well-studied chemotaxis toward their female counterparts. This chemotaxis is driven by sirenin, a sexual pheromone released by the female gametes. The pheromone evokes a large calcium influx in the motile gametes, which could proceed through the cation channel of sperm (CatSper) complex. Herein, we report the total synthesis of sirenin in 10 steps and 8% overall yield and show that the synthetic pheromone activates the CatSper channel complex, indicated by a concentration-dependent increase in intracellular calcium in human sperm. Sirenin activation of the CatSper channel was confirmed using whole-cell patch clamp electrophysiology with human sperm. Based on this proficient synthetic route and confirmed activation of CatSper, analogues of sirenin can be designed as blockers of the CatSper channel that could provide male contraceptive agents.
Collapse
Affiliation(s)
- Shameem Sultana Syeda
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Melissa R. Miller
- Department
of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Department
of Physiology, University of California, San Francisco, California 94158, United States
| | - Rawle Francis
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - David E. Clapham
- Department
of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Polina V. Lishko
- Department
of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jon E. Hawkinson
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Derek Hook
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Gunda I. Georg
- Department
of Medicinal Chemistry and Institute for Therapeutics Discovery and
Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
48
|
Beltrán C, Treviño CL, Mata-Martínez E, Chávez JC, Sánchez-Cárdenas C, Baker M, Darszon A. Role of Ion Channels in the Sperm Acrosome Reaction. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:35-69. [DOI: 10.1007/978-3-319-30567-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Cell Rep 2015; 14:129-139. [PMID: 26725113 DOI: 10.1016/j.celrep.2015.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023] Open
Abstract
Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Ran Wang
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
50
|
Wrighton DC, Muench SP, Lippiat JD. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol 2015; 172:4355-63. [PMID: 26045093 PMCID: PMC4556473 DOI: 10.1111/bph.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose The Slo3 (KCa5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Experimental Approach Mouse (m) Slo3 (KCa5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Key Results Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Conclusions and Implications Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter.
Collapse
Affiliation(s)
- David C Wrighton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|