1
|
Nepal B, Barnett J, Bearoff F, Kortagere S. Biased Signaling Agonists Promote Distinct Phosphorylation and Conformational States of the Dopamine D3 Receptor. Int J Mol Sci 2024; 25:10470. [PMID: 39408798 PMCID: PMC11476979 DOI: 10.3390/ijms251910470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Biased agonists of G-protein-coupled receptors (GPCRs) have emerged as promising selective modulators of signaling pathways by offering therapeutic advantages over unbiased agonists to minimize side effects. The dopamine D3 receptor (D3R), a pivotal GPCR in the central nervous system, has gained significant attention as a therapeutic target for neurological diseases, including Parkinson's disease (PD), addiction, psychosis, depression, and anxiety. We have recently designed and tested SK609, a G-protein biased D3R selective agonist, and demonstrated its efficacy in reducing motor impairment and improving cognitive effects in a rodent model of PD. The molecular mechanism by which SK609 recruits G-protein but not β-arrestin pathways is poorly understood. Utilizing all-atom molecular dynamics simulations, we investigated the distinct conformational dynamics imparted by SK609 and the reference unbiased agonist Pramipexole (PRX). Results from these studies show that the flexibility of transmembrane 3 is key to unbiased signaling, with a ~30° and ~17° shift in tilt angle in the D3R-Gi and D3R-βarrestin2 complexes, respectively. Additionally, untargeted phosphoproteomics analysis reveals unique phosphorylation sites by SK609 and PRX in D3R. These results suggest that SK609 induces conformational changes and unique phosphorylation patterns that promote interactions with G-proteins and are not conducive for β-arrestin2 recruitment and signaling.
Collapse
Affiliation(s)
| | | | | | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (B.N.); (J.B.); (F.B.)
| |
Collapse
|
2
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
3
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Pair FS, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral sensitization. Cell Rep Med 2024; 5:101623. [PMID: 38936368 PMCID: PMC11293330 DOI: 10.1016/j.xcrm.2024.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
In rodents with unilateral ablation of neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA induces a progressive increase of behavioral responses, a process known as behavioral sensitization. This sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of these mice, we find that the restoration of arrestin-3 fully rescues behavioral sensitization, whereas its mutant defective in c-Jun N-terminal kinase (JNK) activation does not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in direct pathway striatal neurons, also fully rescues sensitization, whereas an inactive homologous arrestin-2-derived peptide does not. Behavioral rescue is accompanied by the restoration of JNK3 activity, as reflected by JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-assisted JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization upon dopamine depletion and chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Mohamed R Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA; University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Jeffery L Dunning
- Contet Laboratory, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Mohamed S Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Connie Ge
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - F Sanders Pair
- The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Pogorelov VM, Martini ML, Jin J, Wetsel WC, Caron MG. Dopamine-Depleted Dopamine Transporter Knockout (DDD) Mice: Dyskinesia with L-DOPA and Dopamine D1 Agonists. Biomolecules 2023; 13:1658. [PMID: 38002340 PMCID: PMC10669682 DOI: 10.3390/biom13111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
L-DOPA is the mainstay of treatment for Parkinson's disease (PD). However, over time this drug can produce dyskinesia. A useful acute PD model for screening novel compounds for anti-parkinsonian and L-DOPA-induced dyskinesia (LID) are dopamine-depleted dopamine-transporter KO (DDD) mice. Treatment with α-methyl-para-tyrosine rapidly depletes their brain stores of DA and renders them akinetic. During sensitization in the open field (OF), their locomotion declines as vertical activities increase and upon encountering a wall they stand on one leg or tail and engage in climbing behavior termed "three-paw dyskinesia". We have hypothesized that L-DOPA induces a stereotypic activation of locomotion in DDD mice, where they are unable to alter the course of their locomotion, and upon encountering walls engage in "three-paw dyskinesia" as reflected in vertical counts or beam-breaks. The purpose of our studies was to identify a valid index of LID in DDD mice that met three criteria: (a) sensitization with repeated L-DOPA administration, (b) insensitivity to a change in the test context, and (c) stimulatory or inhibitory responses to dopamine D1 receptor agonists (5 mg/kg SKF81297; 5 and 10 mg/kg MLM55-38, a novel compound) and amantadine (45 mg/kg), respectively. Responses were compared between the OF and a circular maze (CM) that did not hinder locomotion. We found vertical counts and climbing were specific for testing in the OF, while oral stereotypies were sensitized to L-DOPA in both the OF and CM and responded to D1R agonists and amantadine. Hence, in DDD mice oral stereotypies should be used as an index of LID in screening compounds for PD.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
6
|
Milekovic T, Moraud EM, Macellari N, Moerman C, Raschellà F, Sun S, Perich MG, Varescon C, Demesmaeker R, Bruel A, Bole-Feysot LN, Schiavone G, Pirondini E, YunLong C, Hao L, Galvez A, Hernandez-Charpak SD, Dumont G, Ravier J, Le Goff-Mignardot CG, Mignardot JB, Carparelli G, Harte C, Hankov N, Aureli V, Watrin A, Lambert H, Borton D, Laurens J, Vollenweider I, Borgognon S, Bourre F, Goillandeau M, Ko WKD, Petit L, Li Q, Buschman R, Buse N, Yaroshinsky M, Ledoux JB, Becce F, Jimenez MC, Bally JF, Denison T, Guehl D, Ijspeert A, Capogrosso M, Squair JW, Asboth L, Starr PA, Wang DD, Lacour SP, Micera S, Qin C, Bloch J, Bezard E, Courtine G. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease. Nat Med 2023; 29:2854-2865. [PMID: 37932548 DOI: 10.1038/s41591-023-02584-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/08/2023] [Indexed: 11/08/2023]
Abstract
People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.
Collapse
Affiliation(s)
- Tomislav Milekovic
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Nicolo Macellari
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Charlotte Moerman
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Flavio Raschellà
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
| | - Shiqi Sun
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Varescon
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Robin Demesmaeker
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Alice Bruel
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Léa N Bole-Feysot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Giuseppe Schiavone
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Laboratory for Soft Bioelectronic Interfaces (LSBI), NeuroX Institute, EPFL, Lausanne, Switzerland
| | - Elvira Pirondini
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng YunLong
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Li Hao
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Andrea Galvez
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Sergio Daniel Hernandez-Charpak
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Gregory Dumont
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Jimmy Ravier
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Camille G Le Goff-Mignardot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Jean-Baptiste Mignardot
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Gaia Carparelli
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Cathal Harte
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Nicolas Hankov
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Viviana Aureli
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | | | | | - David Borton
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- School of Engineering, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Laurens
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle Vollenweider
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Simon Borgognon
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - François Bourre
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Michel Goillandeau
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Wai Kin D Ko
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | - Laurent Petit
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, UK-M15 6WE, Manchester, UK
- China Academy of Medical Sciences, Beijing, China
- Institute of Laboratory Animal Sciences, Beijing, China
| | | | | | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, CHUV/UNIL, Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, CHUV/UNIL, Lausanne, Switzerland
| | | | - Julien F Bally
- Department of Neurology, CHUV/UNIL, Lausanne, Switzerland
| | | | - Dominique Guehl
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Auke Ijspeert
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Marco Capogrosso
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jordan W Squair
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Leonie Asboth
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Stéphanie P Lacour
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
- Laboratory for Soft Bioelectronic Interfaces (LSBI), NeuroX Institute, EPFL, Lausanne, Switzerland
| | - Silvestro Micera
- NeuroX Institute, School of Bioengineering, EPFL, Lausanne, Switzerland
- Department of Excellence in Robotics and AI, Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chuan Qin
- China Academy of Medical Sciences, Beijing, China
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland.
- Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| | - Erwan Bezard
- Motac Neuroscience, UK-M15 6WE, Manchester, UK.
- China Academy of Medical Sciences, Beijing, China.
- Institute of Laboratory Animal Sciences, Beijing, China.
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - G Courtine
- NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland.
- Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| |
Collapse
|
7
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Sanders Pair F, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral and signaling plasticity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564447. [PMID: 37961199 PMCID: PMC10634923 DOI: 10.1101/2023.10.27.564447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in the direct pathway striatal neurons, fully rescued sensitization, whereas an inactive homologous arrestin-2-derived peptide did not. Behavioral rescue was accompanied by the restoration of JNK3 activity and of JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-dependent JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization.
Collapse
Affiliation(s)
- Mohamed R. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Mohamed S. Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
8
|
Serra M, Di Maio A, Bassareo V, Nuzzo T, Errico F, Servillo F, Capasso M, Parekh P, Li Q, Thiolat ML, Bezard E, Calabresi P, Sulzer D, Carta M, Morelli M, Usiello A. Perturbation of serine enantiomers homeostasis in the striatum of MPTP-lesioned monkeys and mice reflects the extent of dopaminergic midbrain degeneration. Neurobiol Dis 2023; 184:106226. [PMID: 37451474 DOI: 10.1016/j.nbd.2023.106226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Di Maio
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Federica Servillo
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy
| | - Mario Capasso
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini, 5, Napoli 80131, Italy
| | - Pathik Parekh
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Qin Li
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Marie-Laure Thiolat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China; Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Paolo Calabresi
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy; Neurologia, Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
9
|
Li H, Urs NM, Horenstein N. Computational insights into ligand-induced G protein and β-arrestin signaling of the dopamine D1 receptor. J Comput Aided Mol Des 2023; 37:227-244. [PMID: 37060492 DOI: 10.1007/s10822-023-00503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson's disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the β-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the β-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and β-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of β-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential β-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.
Collapse
Affiliation(s)
- Haoxi Li
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Moritz AE, Madaras NS, Rankin ML, Inbody LR, Sibley DR. Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D 1 Dopamine Receptor and Their Roles in Modulating β-Arrestin Binding and Activation. Int J Mol Sci 2023; 24:6599. [PMID: 37047571 PMCID: PMC10095280 DOI: 10.3390/ijms24076599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein β-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting β-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using β-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive β-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for β-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in β-arrestin binding and activation.
Collapse
Affiliation(s)
| | | | | | | | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Szénási T, Turu G, Hunyady L. Interactions between β-arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders. Front Endocrinol (Lausanne) 2023; 14:957981. [PMID: 36843600 PMCID: PMC9947276 DOI: 10.3389/fendo.2023.957981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
β-arrestins, which have multiple cellular functions, were initially described as proteins that desensitize rhodopsin and other G protein-coupled receptors. The cytoskeletal system plays a role in various cellular processes, including intracellular transport, cell division, organization of organelles, and cell cycle. The interactome of β-arrestins includes the major proteins of the three main cytoskeletal systems: tubulins for microtubules, actins for the actin filaments, and vimentin for intermediate filaments. β-arrestins bind to microtubules and regulate their activity by recruiting signaling proteins and interacting with assembly proteins that regulate the actin cytoskeleton and the intermediate filaments. Altered regulation of the cytoskeletal system plays an essential role in the development of Alzheimer's, Parkinson's and other neurodegenerative diseases. Thus, β-arrestins, which interact with the cytoskeleton, were implicated in the pathogenesis progression of these diseases and are potential targets for the treatment of neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Tibor Szénási
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Turu
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Enzymology, Research Center for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: László Hunyady,
| |
Collapse
|
12
|
Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV. Cholecalciferol (VD3) Attenuates L-DOPA-Induced Dyskinesia in Parkinsonian Mice Via Modulation of Microglia and Oxido-Inflammatory Mechanisms. Niger J Physiol Sci 2022; 37:175-183. [PMID: 38243560 PMCID: PMC10800002 DOI: 10.54548/njps.v37i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 01/21/2024]
Abstract
L-DOPA, the gold standard for managing Parkinson's disease (PD) is fraught by motor fluctuations termed L-Dopa-Induced Dyskinesia (LID). LID has very few therapeutic options. Hence, the need for preclinical screening of new interventions. Cholecalciferol (VD3) treatment reportedly improves motor deficit in experimental Parkinsonism. Therefore, the novel anti-dyskinetic effect of VD3 and its underlying mechanisms in LID was investigated. Dyskinesia was induced by chronic L-DOPA administration in parkinsonian (6-OHDA- lesioned) mice. The experimental groups: Control, Dyskinesia, Dyskinesia/VD3, and Dyskinesia/Amantadine were challenged with L-DOPA to determine the abnormal involuntary movements (AIMs) score during 14 days of VD3 (30 mg/kg) or Amantadine (40 mg/kg) treatment. Behavioral Axial, Limb & Orolingual (ALO) AIMs were scored for 1 min at every 20 mins interval, over a duration of 100 mins on days 1,3,7,11 and 14. Using western blot, striatum was assessed for expression of dopamine metabolic enzymes: Tyrosine Hydroxylase (TH) and Monoamine Oxidase-B (MAO-B); CD11b, BAX, P47phox, and IL-1β. Cholecalciferol significantly attenuated AIMs only on days 11 & 14 with maximal reduction of 32.7%. Expression of TH and MAO-B was not altered in VD3 compared with dyskinetic mice. VD3 significantly inhibited oxidative stress (P47phox), apoptosis (BAX), inflammation (IL-1β) and microglial activation (CD11b). VD3 showed anti-dyskinetic effects behaviorally by attenuating abnormal involuntary movements, modulation of striatal oxidative stress, microglial responses, inflammation, and apoptotic signaling; without affecting dopamine metabolic enzymes. Its use in the management of dyskinesia is promising. More studies are required to further evaluate these findings. Keywords: Cholecalciferol; L-DOPA-Induced Dyskinesia; Parkinson's Disease; Microglial; Oxidative stress; Inflammation.
Collapse
Affiliation(s)
| | - AbdulRazaq Bidemi Nafiu
- Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University Dutse, 720223, Dutse, Nigeria .
| | - Abdulbasit Amin
- Neuroscience & Inflammation unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, 240003, Ilorin, Nigeria.
| | - Olalekan Michael Ogundele
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | - Charles C Lee
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | - Bamidele Victor Owoyele
- Neuroscience & Inflammation unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, 240003, Ilorin, Nigeria.
| |
Collapse
|
13
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
14
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
15
|
Moreno E, Casajuana-Martin N, Coyle M, Campos BC, Galaj E, Del Torrent CL, Seyedian A, Rea W, Cai NS, Bonifazi A, Florán B, Xi ZX, Guitart X, Casadó V, Newman AH, Bishop C, Pardo L, Ferré S. Pharmacological targeting of G protein-coupled receptor heteromers. Pharmacol Res 2022; 185:106476. [PMID: 36182040 PMCID: PMC9645299 DOI: 10.1016/j.phrs.2022.106476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Collapse
Affiliation(s)
- Estefanía Moreno
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA
| | - Baruc Campos Campos
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Ewa Galaj
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Claudia Llinas Del Torrent
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Benjamín Florán
- Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Zheng-Xiong Xi
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Yang Y, Kocher SD, Lewis MM, Mailman RB. Dose-Dependent Regulation on Prefrontal Neuronal Working Memory by Dopamine D1 Agonists: Evidence of Receptor Functional Selectivity-Related Mechanisms. Front Neurosci 2022; 16:898051. [PMID: 35784852 PMCID: PMC9244699 DOI: 10.3389/fnins.2022.898051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Low doses of dopamine D1 agonists improve working memory-related behavior, but high doses eliminate the improvement, thus yielding an ‘inverted-U’ dose-response curve. This dose-dependency also occurs at the single neuron level in the prefrontal cortex where the cellular basis of working memory is represented. Because signaling mechanisms are unclear, we examined this process at the neuron population level. Two D1 agonists (2-methyldihydrexidine and CY208,243) having different signaling bias were tested in rats performing a spatial working memory-related T-maze task. 2-Methyldihydrexidine is slightly bias toward D1-mediated β-arrestin-related signaling as it is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 is slightly bias toward D1-mediated cAMP signaling as it has relatively high intrinsic activity at adenylate cyclase, but is a partial agonist at β-arrestin recruitment. Both compounds had the expected inverted U dose-dependency in modulating prefrontal neuronal activities, albeit with important differences. Although CY208,243 was superior in improving the strength of neuronal outcome sensitivity to the working memory-related choice behavior in the T-maze, 2-methyldihydrexidine better reduced neuron-to-neuron variation. Interestingly, at the neuron population level, both drugs affected the percentage, uniformity, and ensemble strength of neuronal sensitivity in a complicated dose-dependent fashion, but the overall effect suggested higher efficiency and potency of 2-methyldihydrexidine compared to CY208,243. The differences between 2-methyldihydrexidine and CY208,243 may be related to their specific D1 signaling. These results suggest that D1-related dose-dependent regulation of working memory can be modified differentially by functionally selective ligands, theoretically increasing the balance between desired and undesired effects.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- *Correspondence: Yang Yang,
| | - Susan D. Kocher
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Mechelle M. Lewis
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Richard B. Mailman
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Richard B. Mailman,
| |
Collapse
|
17
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
18
|
Ferraiolo M, Atik H, Ponthot R, Koener B, Hanson J, Hermans E. Dopamine D 2L receptor density influences the recruitment of β-arrestin2 and G i1 induced by antiparkinsonian drugs. Neuropharmacology 2022; 207:108942. [PMID: 35026287 DOI: 10.1016/j.neuropharm.2022.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain imaging studies have highlighted that the density of dopamine D2 receptors markedly fluctuates across the stages of Parkinson's disease and in response to pharmacological treatment. Moreover, receptor density constitutes a molecular determinant for the signaling profile of D2 receptor ligands. We therefore hypothesized that variations in receptor expression could influence D2 receptor response to antiparkinsonian drugs, most notably with respect to the recruitment bias between Gi1 and β-arrestin2. METHODS The recruitment bias of dopamine, pramipexole, ropinirole, and rotigotine was examined using a nanoluciferase-based biosensor for probing the interactions of the D2L receptor with either Gi1 or β-arrestin2. The characterization of the functional selectivity of these D2 receptor agonists was performed at two distinct D2L receptor densities by taking advantage of a cell model carrying an inducible system that enables the overexpression of the D2L receptor when exposed to doxycycline. RESULTS A high receptor density oriented the balanced signaling profile of dopamine towards a preferential recruitment of Gi1. It also moderated the marked Gi1 and β-arrestin2 biases of pramipexole and rotigotine, respectively. At variance, the Gi1 bias of ropinirole appeared as not being influenced by D2L receptor density. CONCLUSIONS Taken together, these observations highlight receptor density as a key driver of the signaling transducer recruitment triggered by antiparkinsonian agents. Moreover, given the putative beneficial properties of β-arrestin2 in promoting locomotion, this study provides molecular insights that position the arrestin-biased ligand rotigotine as a putatively more beneficial D2 receptor agonist for the treatment of early and late Parkinson's disease.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Hicham Atik
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Romane Ponthot
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Beryl Koener
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology - GIGA-Molecular Biology of Disease - ULiège, Liège, Belgium; Laboratory of Medicinal Chemistry - CIRM - ULiège, Liège, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium.
| |
Collapse
|
19
|
Yang Y. Functional Selectivity of Dopamine D 1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci 2021; 22:ijms222111914. [PMID: 34769344 PMCID: PMC8584964 DOI: 10.3390/ijms222111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
20
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
21
|
Dagra A, Miller DR, Lin M, Gopinath A, Shaerzadeh F, Harris S, Sorrentino ZA, Støier JF, Velasco S, Azar J, Alonge AR, Lebowitz JJ, Ulm B, Bu M, Hansen CA, Urs N, Giasson BI, Khoshbouei H. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. NPJ Parkinsons Dis 2021; 7:76. [PMID: 34408150 PMCID: PMC8373893 DOI: 10.1038/s41531-021-00210-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.
Collapse
Affiliation(s)
- Abeer Dagra
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Douglas R. Miller
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Min Lin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adithya Gopinath
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Fatemeh Shaerzadeh
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Sharonda Harris
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Zachary A. Sorrentino
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Jonatan Fullerton Støier
- grid.5254.60000 0001 0674 042XMolecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Velasco
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Janelle Azar
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adetola R. Alonge
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Joseph J. Lebowitz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Brittany Ulm
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Mengfei Bu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Carissa A. Hansen
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Nikhil Urs
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Habibeh Khoshbouei
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| |
Collapse
|
22
|
Sanchez JE, Kc GB, Franco J, Allen WJ, Garcia JD, Sirimulla S. BiasNet: A Model to Predict Ligand Bias Toward GPCR Signaling. J Chem Inf Model 2021; 61:4190-4199. [PMID: 34397210 DOI: 10.1021/acs.jcim.1c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling bias is a feature of many G protein-coupled receptor (GPCR) targeting drugs with potential clinical implications. Whether it is therapeutically advantageous for a drug to be G protein biased or β-arrestin biased depends on the context of the signaling pathway. Here, we explored GPCR ligands that exhibit biased signaling to gain insights into scaffolds and pharmacophores that lead to bias. More specifically, we considered BiasDB, a database containing information about GPCR biased ligands, and focused our analysis on ligands which show either a G protein or β-arrestin bias. Five different machine learning models were trained on these ligands using 15 different sets of features. Molecular fragments which were important for training the models were analyzed. Two of these fragments (number of secondary amines and number of aromatic amines) were more prevalent in β-arrestin biased ligands. After training a random forest model on HierS scaffolds, we found five scaffolds, which demonstrated G protein or β-arrestin bias. We also conducted t-SNE clustering, observing correspondence between unsupervised and supervised machine learning methods. To increase the applicability of our work, we developed a web implementation of our models, which can predict bias based on user-provided SMILES, drug names, or PubChem CID. Our web implementation is available at: drugdiscovery.utep.edu/biasnet.
Collapse
Affiliation(s)
- Jason E Sanchez
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Govinda B Kc
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Julian Franco
- Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - William J Allen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Jesus David Garcia
- Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Suman Sirimulla
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Computer Science, The University of Texas at El Paso, El Paso, Texas 79968, United States.,Department of Pharmaceutical Science, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
23
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
24
|
Rodriguez-Contreras D, Condon AF, Buck DC, Asad N, Dore TM, Verbeek DS, Tijssen MAJ, Shinde U, Williams JT, Neve KA. Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. ACS Chem Neurosci 2021; 12:1873-1884. [PMID: 33974399 DOI: 10.1021/acschemneuro.0c00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-I212F activates a Gαi1β1γ2 heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment. The relative efficacy of quinpirole for arrestin recruitment to D2-I212F compared to D2-WT was considerably lower without overexpressed GRK2 than with added GRK2. D2-I212F exhibited higher basal activation of GαoA than Gαi1 but little or no increase in the potency of quinpirole relative to D2-WT. Other signs of D2-I212F constitutive activity for G protein-mediated signaling, in addition to basal activation of Gαi/o, were enhanced basal inhibition of forskolin-stimulated cyclic AMP accumulation that was reversed by the inverse agonists sulpiride and spiperone and a ∼4-fold increase in the apparent affinity of D2-I212F for quinpirole, determined from competition binding assays. In mouse midbrain slices, inhibition of tonic current by the inverse agonist sulpiride in dopamine neurons expressing D2-I212F was consistent with our hypothesis of enhanced constitutive activity and sensitivity to dopamine relative to D2-WT. Molecular dynamics simulations with D2 receptor models suggested that an ionic lock between the cytoplasmic ends of the third and sixth α-helices that constrains many G protein-coupled receptors in an inactive conformation spontaneously breaks in D2-I212F. Overall, these results confirm that D2-I212F is a constitutively active and signaling-biased D2 receptor mutant and also suggest that the effect of the likely pathogenic variant in a given brain region will depend on the nature of G protein and GRK expression.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alec F. Condon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David C. Buck
- Research Service, VA Portland Health Care System, Portland, Oregon 97239, United States
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders and Department of Genetics, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Marina A. J. Tijssen
- Expertise Center Movement Disorders and Department of Neurology, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - John T. Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kim A. Neve
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
25
|
Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, Ding X, Liu J, Chen M, Song M, Ding J, Lu M, Wu G, Hu G. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ 2021; 28:1822-1836. [PMID: 33686256 PMCID: PMC8184754 DOI: 10.1038/s41418-020-00704-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/14/2023] Open
Abstract
Although β-arrestins (ARRBs) regulate diverse physiological and pathophysiological processes, their functions and regulation in Parkinson's disease (PD) remain poorly defined. In this study, we show that the expression of β-arrestin 1 (ARRB1) and β-arrestin 2 (ARRB2) is reciprocally regulated in PD mouse models, particularly in microglia. ARRB1 ablation ameliorates, whereas ARRB2 knockout aggravates, the pathological features of PD, including dopaminergic neuron loss, neuroinflammation and microglia activation in vivo, and microglia-mediated neuron damage in vitro. We also demonstrate that ARRB1 and ARRB2 produce adverse effects on inflammation and activation of the inflammatory STAT1 and NF-κB pathways in primary cultures of microglia and macrophages and that two ARRBs competitively interact with the activated form of p65, a component of the NF-κB pathway. We further find that ARRB1 and ARRB2 differentially regulate the expression of nitrogen permease regulator-like 3 (Nprl3), a functionally poorly characterized protein, as revealed by RNA sequencing, and that in the gain- and loss-of-function studies, Nprl3 mediates the functions of both ARRBs in microglia inflammatory responses. Collectively, these data demonstrate that two closely related ARRBs exert opposite functions in microglia-mediated inflammation and the pathogenesis of PD which are mediated at least in part through Nprl3 and provide novel insights into the understanding of the functional divergence of ARRBs in PD.
Collapse
Affiliation(s)
- Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Shanshan Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Xiao Ding
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Mengmeng Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
26
|
Harris SS, Urs NM. Targeting β-Arrestins in the Treatment of Psychiatric and Neurological Disorders. CNS Drugs 2021; 35:253-264. [PMID: 33651366 DOI: 10.1007/s40263-021-00796-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Therapies for psychiatric and neurological disorders have been in the development and refinement process for the past 5 decades. Yet, most of these therapies lack optimal therapeutic efficacy and have multiple debilitating side effects. Recent advances in understanding the pathophysiological processes of psychiatric and neurological disorders have revealed an important role for β-arrestins, which are important regulators of G-protein-coupled receptor (GPCR) function, including desensitization and intracellular signaling. These findings have pushed β-arrestins to the forefront as potential therapeutic targets. Here, we highlight current knowledge on β-arrestin functions in certain psychiatric and neurological disorders (schizophrenia, Parkinson's disease, and substance abuse disorders), and how this has been leveraged to develop new therapeutic strategies. Furthermore, we discuss the obstacles impacting the field of β-arrestin-based therapeutic development and future approaches that might help advance strategies to develop optimal β-arrestin-based therapies.
Collapse
Affiliation(s)
- Sharonda S Harris
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Dr, ARB-R5-140, Gainesville, FL, 32610, USA
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Dr, ARB-R5-140, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
van der Weijden MC, Rodriguez‐Contreras D, Delnooz CC, Robinson BG, Condon AF, Kielhold ML, Stormezand GN, Ma KY, Dufke C, Williams JT, Neve KA, Tijssen MA, Verbeek DS. A Gain-of-Function Variant in Dopamine D2 Receptor and Progressive Chorea and Dystonia Phenotype. Mov Disord 2021; 36:729-739. [PMID: 33200438 PMCID: PMC8049080 DOI: 10.1002/mds.28385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/03/2020] [Accepted: 10/26/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND We describe a 4-generation Dutch pedigree with a unique dominantly inherited clinical phenotype of a combined progressive chorea and cervical dystonia carrying a novel heterozygous dopamine D2 receptor (DRD2) variant. OBJECTIVES The objective of this study was to identify the genetic cause of the disease and to further investigate the functional consequences of the genetic variant. METHODS After detailed clinical and neurological examination, whole-exome sequencing was performed. Because a novel variant in the DRD2 gene was found as the likely causative gene defect in our pedigree, we sequenced the DRD2 gene in a cohort of 121 Huntington-like cases with unknown genetic cause (Germany). Moreover, functional characterization of the DRD2 variant included arrestin recruitment, G protein activation, and G protein-mediated inhibition of adenylyl cyclase determined in a cell model, and G protein-regulated inward-rectifying potassium channels measured in midbrain slices of mice. RESULT We identified a novel heterozygous variant c.634A > T, p.Ile212Phe in exon 5 of DRD2 that cosegregated with the clinical phenotype. Screening of the German cohort did not reveal additional putative disease-causing variants. We demonstrated that the D2S/L -I212 F receptor exhibited increased agonist potency and constitutive activation of G proteins in human embryonic kidney 239 cells as well as significantly reduced arrestin3 recruitment. We further showed that the D2S -I212 F receptor exhibited aberrant receptor function in mouse midbrain slices. CONCLUSIONS Our results support an association between the novel p.Ile212Phe variant in DRD2, its modified D2 receptor activity, and the hyperkinetic movement disorder reported in the 4-generation pedigree. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marlous C.M. van der Weijden
- Department of GeneticsUniversity Medical Center GroningenGroningenthe Netherlands
- Expertise Center Movement Disorders GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | | | | | | | - Alec F. Condon
- Vollum InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Michelle L. Kielhold
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Gilles N. Stormezand
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenGroningenthe Netherlands
| | - Kai Yu Ma
- Department of GeneticsUniversity Medical Center GroningenGroningenthe Netherlands
| | - Claudia Dufke
- Institute of Medical Genetics and Applied GenomicsUniversity Hospital TuebingenTuebingenGermany
| | - John T. Williams
- Vollum InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Kim A. Neve
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
- Research ServiceVirginia Portland Health Care SystemPortlandOregonUSA
| | - Marina A.J. Tijssen
- Expertise Center Movement Disorders GroningenUniversity Medical Center GroningenGroningenthe Netherlands
- Department of NeurologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Dineke S. Verbeek
- Department of GeneticsUniversity Medical Center GroningenGroningenthe Netherlands
- Expertise Center Movement Disorders GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
28
|
Wenk D, Ignatchenko V, Macklin A, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Functionally selective activation of the dopamine receptor D 2 is mirrored by the protein expression profiles. Sci Rep 2021; 11:3501. [PMID: 33568753 PMCID: PMC7875989 DOI: 10.1038/s41598-021-83038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The development of functionally selective or biased ligands is a promising approach towards drugs with less side effects. Biased ligands for G protein-coupled receptors can selectively induce G protein activation or β-arrestin recruitment. The consequences of this selective action on cellular functions, however, are not fully understood. Here, we investigated the impact of five biased and balanced dopamine D2 receptor agonists and antagonists on the global protein expression in HEK293T cells by untargeted nanoscale liquid chromatography-tandem mass spectrometry. The proteome analysis detected 5290 protein groups. Hierarchical clustering and principal component analysis based on the expression levels of 1462 differential proteins led to a separation of antagonists and balanced agonist from the control treatment, while the biased ligands demonstrated larger similarities to the control. Functional analysis of affected proteins revealed that the antagonists haloperidol and sulpiride regulated exocytosis and peroxisome function. The balanced agonist quinpirole, but not the functionally selective agonists induced a downregulation of proteins involved in synaptic signaling. The β-arrestin-preferring agonist BM138, however, regulated several proteins related to neuron function and the dopamine receptor-mediated signaling pathway itself. The G protein-selective partial agonist MS308 influenced rather broad functional terms such as DNA processing and mitochondrial translation.
Collapse
Affiliation(s)
- Deborah Wenk
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Dorothée Weikert
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
29
|
Yang Y, Lee SM, Imamura F, Gowda K, Amin S, Mailman RB. D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 2021; 26:645-655. [PMID: 30532019 PMCID: PMC9710464 DOI: 10.1038/s41380-018-0312-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or β-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at β-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high β-arrestin activity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sang-Min Lee
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Krishne Gowda
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033.,Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033.,Correspondence to: ,
| |
Collapse
|
30
|
Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Barroso-Chinea P, Afonso-Oramas D, Febles-Casquero A, Cruz-Muros I, Salas-Hernandez J, Mesa-Infante V, Rodriguez-Nuñez J, Gonzalez-Hernandez T. Prolonged dopamine D 3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. Pharmacol Res 2021; 165:105434. [PMID: 33484816 DOI: 10.1016/j.phrs.2021.105434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The dopamine transporter (DAT) is a membrane glycoprotein in dopaminergic neurons, which modulates extracellular and intracellular dopamine levels. DAT is regulated by different presynaptic proteins, including dopamine D2 (D2R) and D3 (D3R) receptors. While D2R signalling enhances DAT activity, some data suggest that D3R has a biphasic effect. However, despite the extensive therapeutic use of D2R/D3R agonists in neuropsychiatric disorders, this phenomenon has been little studied. In order to shed light on this issue, DAT activity, expression and posttranslational modifications were studied in mice and DAT-D3R-transfected HEK cells. Consistent with previous reports, acute treatment with D2R/D3R agonists promoted DAT recruitment to the plasma membrane and an increase in DA uptake. However, when the treatment was prolonged, DA uptake and total striatal DAT protein declined below basal levels. These effects were inhibited in mice by genetic and pharmacological inactivation of D3R, but not D2R, indicating that they are D3R-dependent. No changes were detected in mesostriatal tyrosine hydroxylase (TH) protein expression and midbrain TH and DAT mRNAs, suggesting that the dopaminergic system is intact and DAT is posttranslationally regulated. The use of immunoprecipitation and cell surface biotinylation revealed that DAT is phosphorylated at serine residues, ubiquitinated and released into late endosomes through a PKCβ-dependent mechanism. In sum, the results indicate that long-term D3R activation promotes DAT down-regulation, an effect that may underlie neuroprotective and antidepressant actions described for some D2R/D3R agonists.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Javier Castro-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Febles-Casquero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Julia Rodriguez-Nuñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
31
|
Feyder M, Plewnia C, Lieberman OJ, Spigolon G, Piccin A, Urbina L, Dehay B, Li Q, Nilsson P, Altun M, Santini E, Sulzer D, Bezard E, Borgkvist A, Fisone G. Involvement of Autophagy in Levodopa-Induced Dyskinesia. Mov Disord 2021; 36:1137-1146. [PMID: 33460487 PMCID: PMC8248404 DOI: 10.1002/mds.28480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l‐dopa)‐induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. Methods We used mouse and non‐human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l‐dopa administration and to establish a causative link between impaired autophagy and dyskinesia. Results We found that l‐dopa‐induced dyskinesia is associated with accumulation of the autophagy‐specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l‐dopa‐mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l‐dopa, and reduced dyskinesia. The anti‐dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor‐expressing striatal neurons, through inactivation of the autophagy‐related gene protein 7. Conclusions These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l‐dopa‐induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ori J Lieberman
- Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Giada Spigolon
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Piccin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Urbina
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France
| | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences & China Academy of Medical Sciences, Beijing, China
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Altun
- Science for Life Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - David Sulzer
- Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France.,Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, Thiolat ML, Tasselli M, Aubert P, Kruse N, Mollenhauer B, Trigo Damas I, Estrada C, Garcia-Carrillo N, Vaikath NN, El-Agnaf OMA, Herrero MT, Vila M, Obeso JA, Derkinderen P, Dehay B, Bezard E. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 2020; 143:1462-1475. [PMID: 32380543 DOI: 10.1093/brain/awaa096] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandra Dovero
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Alice Prigent
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Mathieu Bourdenx
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Sandrine Camus
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Gregory Porras
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Thiolat
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Maddalena Tasselli
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Philippe Aubert
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Niels Kruse
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Ines Trigo Damas
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.,CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain.,Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), University of Murcia, Murcia, Spain
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain.,Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Obeso
- HM CINAC, HM Puerta del Sur, San Pablo University Madrid, E-28938 Mostoles, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.,CEU, San Pablo University Madrid, E-28938 Mostoles, Spain
| | - Pascal Derkinderen
- Inserm, U1235, Nantes F-44035, France.,Nantes University, Nantes F-44035, France.,CHU Nantes, Department of Neurology, Nantes F-44093, France
| | - Benjamin Dehay
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France.,CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
34
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
35
|
Delamarre A, MacSweeney C, Suzuki R, Brown AJH, Li Q, Pioli EY, Bezard E. Gastrointestinal and metabolic function in the MPTP-treated macaque model of Parkinson's disease. Heliyon 2020; 6:e05771. [PMID: 33385085 PMCID: PMC7772551 DOI: 10.1016/j.heliyon.2020.e05771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Background Gastrointestinal (GI) and metabolic function are frequently altered in Parkinson's disease (PD). Although enteric nervous system anatomopathological alterations have previously been reported in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of PD, the resulting gastric emptying and intestinal permeability functional parameters are unknown. The current exploratory study was, thus, designed to investigate these GI functional factors and insulin resistance in the MPTP-treated monkey. Methods Eight rhesus macaque monkeys (4 controls and 4 MPTP-treated) received the oral acetaminophen absorption test to measure gastric emptying, the oral FITC-dextran absorption test to investigate intestinal permeability, and the intravenous glucose tolerance test to assess insulin resistance. Constipation was evaluated using the Bristol stool scale. Results None of the tests, acetaminophen absorption, FITC-dextran absorption or glucose tolerance, showed a difference between control and MPTP-treated monkeys. MPTP-treated monkeys did present signs of transit acceleration. Conclusion While the MPTP monkey model reliably displays motor and certain non-motor symptoms of PD, the current study did not demonstrate the GI symptoms associated with PD.
Collapse
|
36
|
Blosser JA, Podolsky E, Lee D. L-DOPA-Induced Dyskinesia in a Genetic Drosophila Model of Parkinson's Disease. Exp Neurobiol 2020; 29:273-284. [PMID: 32921640 PMCID: PMC7492844 DOI: 10.5607/en20028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Motor symptoms in Parkinson’s disease (PD) are directly related to the reduction of a neurotransmitter dopamine. Therefore, its precursor L-DOPA became the gold standard for PD treatment. However, chronic use of L-DOPA causes uncontrollable, involuntary movements, called L-DOPA-induced dyskinesia (LID) in the majority of PD patients. LID is complicated and very difficult to manage. Current rodent and non-human primate models have been developed to study LID mainly using neurotoxins. Therefore, it is necessary to develop a LID animal model with defects in genetic factors causing PD in order to study the relation between LID and PD genes such as α-synuclein. In this study, we first showed that a low concentration of L-DOPA (100 µM) rescues locomotion defects (i.e., speed, angular velocity, pause time) in Drosophila larvae expressing human mutant α-synuclein (A53T). This A53T larval model of PD was used to further examine dyskinetic behaviors. High concentrations of L-DOPA (5 or 10 mM) causes hyperactivity such as body bending behavior (BBB) in A53T larva, which resembles axial dyskinesia in rodents. Using ImageJ plugins and other third party software, dyskinetic BBB has been accurately and efficiently quantified. Further, we showed that a dopamine agonist pramipexole (PRX) partially rescues BBB caused by high L-DOPA. Our Drosophila genetic LID model will provide an important experimental platform to examine molecular and cellular mechanisms underlying LID, to study the role of PD causing genes in the development of LID, and to identify potential targets to slow/reverse LID pathology.
Collapse
Affiliation(s)
- Joshua A Blosser
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Eric Podolsky
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
37
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
µ Opioid Receptor Agonism for L-DOPA-Induced Dyskinesia in Parkinson's Disease. J Neurosci 2020; 40:6812-6819. [PMID: 32690616 DOI: 10.1523/jneurosci.0610-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine precursor L-DOPA, but its prolonged usage causes dyskinesias referred to as L-DOPA-induced dyskinesia (LID). Several studies in animal models of PD have suggested that dyskinesias are associated with a heightened opioid cotransmitter tone, observations that have led to the notion of a LID-related hyperactive opioid transmission that should be corrected by µ opioid receptor antagonists. Reports that both antagonists and agonists of the µ opioid receptor may alleviate LID severity in primate models of PD and LID, together with the failure of nonspecific antagonist to improve LID in pilot clinical trials in patients, raises doubt about the reliability of the available data on the opioid system in PD and LID. After in vitro characterization of the functional activity at the µ opioid receptor, we selected prototypical agonists, antagonists, and partial agonists at the µ opioid receptor. We then showed that both oral and discrete intracerebral administration of a µ receptor agonist, but not of an antagonist as long thought, ameliorated LIDs in the gold-standard bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned female macaque model of PD and LID. The results call for a reappraisal of opioid pharmacology in the basal ganglia as well as for the development of brain nucleus-targeted µ opioid receptor agonists.SIGNIFICANCE STATEMENT µ opioid receptors have long been considered as a viable target for alleviating the severity of L-DOPA-induced hyperkinetic side effects, induced by the chronic treatment of Parkinson's disease motor symptoms with L-DOPA. Conflicting results between experimental parkinsonism and Parkinson's disease patients, however, dampened the enthusiasm for the target. Here we reappraise the pharmacology and then demonstrate that both oral and discrete intracerebral administration of a µ receptor agonist, but not of an antagonist as long thought, ameliorates LIDs in the gold-standard bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease, calling for a reappraisal of the opioid pharmacology as well as for the development of brain nucleus-targeted µ receptor agonists.
Collapse
|
39
|
Slosky LM, Bai Y, Toth K, Ray C, Rochelle LK, Badea A, Chandrasekhar R, Pogorelov VM, Abraham DM, Atluri N, Peddibhotla S, Hedrick MP, Hershberger P, Maloney P, Yuan H, Li Z, Wetsel WC, Pinkerton AB, Barak LS, Caron MG. β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell 2020; 181:1364-1379.e14. [PMID: 32470395 PMCID: PMC7466280 DOI: 10.1016/j.cell.2020.04.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages β-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a β-arrestin-biased agonist but also extends profound β-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and β-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Krisztian Toth
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Caroline Ray
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Alexandra Badea
- Departments of Radiology and Neurology, Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | | | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University, Durham, NC 27710, USA
| | - Namratha Atluri
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Linebarger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Rosenblad C, Li Q, Pioli EY, Dovero S, Antunes AS, Agúndez L, Bardelli M, Linden RM, Henckaerts E, Björklund A, Bezard E, Björklund T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain 2020; 142:2402-2416. [PMID: 31243443 PMCID: PMC6658866 DOI: 10.1093/brain/awz176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.
Collapse
Affiliation(s)
- Carl Rosenblad
- Division of Neurology, Department of Clinical Sciences, Lund University, Skane University Hospital, 221 84 Lund, Sweden.,Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, UK
| | | | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - André Slm Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Tomas Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
41
|
Maxan A, Sciacca G, Alpaugh M, Tao Z, Breger L, Dehay B, Ling Z, Chuan Q, Cisbani G, Masnata M, Salem S, Lacroix S, Oueslati A, Bezard E, Cicchetti F. Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiol Dis 2020; 141:104951. [PMID: 32439599 DOI: 10.1016/j.nbd.2020.104951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 01/27/2023] Open
Abstract
In order to model various aspects of Huntington's disease (HD) pathology, in particular protein spread, we administered adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or GFP coupled to HTT-Exon1 (19Q or 103Q) to the central nervous system of adult wild-type (WT) mice and non-human primates. All animals underwent behavioral testing and post-mortem analyses to determine the long-term consequences of AAV injection. Both mice and non-human primates demonstrated behavioral changes at 2-3 weeks post-surgery. In mice, these changes were absent after 3 months while in non-human primates, they persisted in the majority of tested animals. Post-mortem analysis revealed that spreading of the aggregates was limited, although the virus did spread between synaptically-connected brain regions. Despite circumscribed spreading, the presence of mHTT generated changes in endogenous huntingtin (HTT) levels in both models. Together, these results suggest that viral expression of mHTTExon1 can induce spreading and seeding of HTT in both mice and non-human primates.
Collapse
Affiliation(s)
- Alexander Maxan
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Giacomo Sciacca
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Zhu Tao
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Ludivine Breger
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Zhang Ling
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Qin Chuan
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China.
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto, ON M5S 1A8, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Abid Oueslati
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China; Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
42
|
Hedegaard MA, Holst B. The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology 2020; 161:5734640. [PMID: 32049280 DOI: 10.1210/endocr/bqaa020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin receptor (GhrR) is known for its strong orexigenic effects in pharmacological doses and has long been considered as a promising target for the treatment of obesity. Several antagonists have been developed to decrease the orexigenic signaling, but none of these have been approved for the treatment of obesity because of adverse effects and lack of efficacy. Heterodimerization and biased signaling are important concepts for G-protein coupled receptor (GPCR) signaling, and the influence of these aspects on the GhrR may be important for feeding behavior and obesity. GhrR has been described to heterodimerize with other GPCRs, such as the dopamine receptors 1 and 2, leading to a modulation of the signaling properties of both dimerization partners. Another complicating factor of GhrR-mediated signaling is its ability to activate several different signaling pathways on ligand stimulation. Importantly, some ligands have shown to be "biased" or "functionally selective," implying that the ligand favors a particular signaling pathway. These unique signaling properties could have a sizeable impact on the physiological functions of the GhrR system. Importantly, heterodimerization may explain why the GhrR is expressed in areas of the brain that are difficult for peptide ligands to access. One possibility is that the purpose of GhrR expression is to modulate the function of other receptors in addition to merely being independently activated. We suggest that a deeper understanding of the signaling properties of the GhrR will facilitate future drug discovery in the areas of obesity and weight management.
Collapse
Affiliation(s)
- Morten Adler Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
44
|
Park H, Urs AN, Zimmerman J, Liu C, Wang Q, Urs NM. Structure-Functional-Selectivity Relationship Studies of Novel Apomorphine Analogs to Develop D1R/D2R Biased Ligands. ACS Med Chem Lett 2020; 11:385-392. [PMID: 32184974 DOI: 10.1021/acsmedchemlett.9b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of dopamine neurons is central to the manifestation of Parkinson's disease motor symptoms. The dopamine precursor L-DOPA, the most commonly used therapeutic agent for Parkinson's disease, can restore normal movement yet cause side-effects such as dyskinesias upon prolonged administration. Dopamine D1 and D2 receptors activate G-protein- and arrestin-dependent signaling pathways that regulate various dopamine-dependent functions including locomotion. Studies have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing dyskinesias. However, simultaneous activation of both D1 and D2Rs is required for robust locomotor activity. Thus, it is desirable to develop ligands targeting both D1 and D2Rs and their functional selectivity. Here, we report structure-functional-selectivity relationship (SFSR) studies of novel apomorphine analogs to identify structural motifs responsible for biased activity at both D1 and D2Rs.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Aarti N. Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville Florida 32610, United States
| | - Joseph Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville Florida 32610, United States
| | - Chuan Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nikhil M. Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville Florida 32610, United States
| |
Collapse
|
45
|
Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell Mol Neurobiol 2020; 40:191-201. [PMID: 31836967 DOI: 10.1007/s10571-019-00772-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Dulce Pamela González
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Neva Olliffe
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Haley Oller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Rachel Hoffing
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Marissa Puzan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
46
|
Zhang B, Zhao S, Yang D, Wu Y, Xin Y, Cao H, Huang XP, Cai X, Sun W, Ye N, Xu Y, Peng Y, Zhao S, Liu ZJ, Zhong G, Wang MW, Shui W. A Novel G Protein-Biased and Subtype-Selective Agonist for a G Protein-Coupled Receptor Discovered from Screening Herbal Extracts. ACS CENTRAL SCIENCE 2020; 6:213-225. [PMID: 32123739 PMCID: PMC7047268 DOI: 10.1021/acscentsci.9b01125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/14/2023]
Abstract
Subtype selectivity and functional bias are vital in current drug discovery for G protein-coupled receptors (GPCRs) as selective and biased ligands are expected to yield drug leads with optimal on-target benefits and minimal side-effects. However, structure-based design and medicinal chemistry exploration remain challenging in part because of highly conserved binding pockets within subfamilies. Herein, we present an affinity mass spectrometry approach for screening herbal extracts to identify active ligands of a GPCR, the 5-HT2C receptor. Using this method, we discovered a naturally occurring aporphine 1857 that displayed strong selectivity for activating 5-HT2C without activating the 5-HT2A or 5-HT2B receptors. Remarkably, this novel ligand exhibited exclusive bias toward G protein signaling for which key residues were identified, and it showed comparable in vivo efficacy for food intake suppression and weight loss as the antiobesity drug, lorcaserin. Our study establishes an efficient approach to discovering novel GPCR ligands by exploring the largely untapped chemical space of natural products.
Collapse
Affiliation(s)
- Bingjie Zhang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Simeng Zhao
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dehua Yang
- The
National Center for Drug Screening and the CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiran Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ye Xin
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Haijie Cao
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xi-Ping Huang
- Department
of Pharmacology, NIMH Psychoactive Drug Screening Program, School
of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xiaoqing Cai
- The
National Center for Drug Screening and the CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Sun
- The
National Center for Drug Screening and the CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Ye
- Jiangsu
Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical
Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yueming Xu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yao Peng
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- E-mail:
| | - Ming-Wei Wang
- The
National Center for Drug Screening and the CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- School
of Pharmacy, Fudan University, Shanghai 201203, China
- E-mail:
| | - Wenqing Shui
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of
Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- E-mail:
| |
Collapse
|
47
|
β-arrestin2 alleviates L-dopa-induced dyskinesia via lower D1R activity in Parkinson's rats. Aging (Albany NY) 2019; 11:12315-12327. [PMID: 31891566 PMCID: PMC6949085 DOI: 10.18632/aging.102574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
The cause of the L-dopa–induced dyskinesia (LID) has been ascribed to G-protein coupled receptor (GPCR) supersensitivity and uncontrolled downstream signaling. It is now supposed that β-arrestin2 affects GPCR signaling through its ability to scaffold various intracellular molecules. We used the rAAV (recombinant adeno-associated virus) vectors to overexpress and ablation of β-arrestin2. L-dopa-induced changes in expression of signaling molecules and other proteins in the striatum were examined by western blot and immunohistochemically. Our data demonstrated that via AAV-mediated overexpression of β-arrestin2 attenuated LID performance in 6-OHDA-lesioned rodent models. β-arrestin2 suppressed LID behavior without compromising the antiparkinsonian effects of L-dopa. Moreover, we also found that the anti-dyskinetic effect of β-arrestin2 was reversed by SKF38393, a D1R agonist. On the contrary, the rat knockdown study demonstrated that reduced availability of β-arrestin2 deteriorated LID performance, which was counteracted by SCH23390, a D1R antagonist. These data not only demonstrate a central role for β-arrestin2/GPCR signaling in LID, but also show the D1R signal pathway changes occurring in response to dopaminergic denervation and pulsatile administration of L-dopa.
Collapse
|
48
|
Striatal overexpression of β-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's disease rats. Neurochem Int 2019; 131:104543. [DOI: 10.1016/j.neuint.2019.104543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
|
49
|
Martini ML, Neifert SN, Mocco J, Panov F, Tse W, Walker RH, Jin J, Gupta F. Recent Advances in the Development of Experimental Therapeutics for Levodopa-Induced Dyskinesia. J Mov Disord 2019; 12:161-165. [PMID: 31556261 PMCID: PMC6763722 DOI: 10.14802/jmd.19029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michael L Martini
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean N Neifert
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Winona Tse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Gupta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Martini ML, Ray C, Yu X, Liu J, Pogorelov VM, Wetsel WC, Huang XP, McCorvy JD, Caron MG, Jin J. Designing Functionally Selective Noncatechol Dopamine D 1 Receptor Agonists with Potent In Vivo Antiparkinsonian Activity. ACS Chem Neurosci 2019; 10:4160-4182. [PMID: 31387346 DOI: 10.1021/acschemneuro.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine receptors are important G protein-coupled receptors (GPCRs) with therapeutic opportunities for treating Parkinson's Disease (PD) motor and cognitive deficits. Biased D1 dopamine ligands that differentially activate G protein over β-arrestin recruitment pathways are valuable chemical tools for dissecting positive versus negative effects in drugs for PD. Here, we reveal an iterative approach toward modification of a D1-selective noncatechol scaffold critical for G protein-biased agonism. This approach provided enhanced understanding of the structural components critical for activity and signaling bias and led to the discovery of several novel compounds with useful pharmacological properties, including three highly GS-biased partial agonists. Administration of a potent, balanced, and brain-penetrant lead compound from this series results in robust antiparkinsonian effects in a rodent model of PD. This study suggests that the noncatechol ligands developed through this approach are valuable tools for probing D1 receptor signaling biology and biased agonism in models of neurologic disease.
Collapse
Affiliation(s)
- Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Caroline Ray
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Vladimir M. Pogorelov
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - William C. Wetsel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Xi-Ping Huang
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|