1
|
Xu J, Yao Y, Zhuang Q, Li Z, Zhang M, Wang S, Hu H, Ye J. Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice. Parasit Vectors 2025; 18:6. [PMID: 39806495 PMCID: PMC11730484 DOI: 10.1186/s13071-024-06656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation. METHODS Recombinant Trichinella spiralis chitinase (rTs-chit) was expressed in Escherichia coli BL21, and its structural homology to murine acidic mammalian chitinase (AMCase) was comprehensively analyzed. The expression of Ts-chit was examined across all T. spiralis life stages. To explore its immunomodulatory potential, a murine model of allergen-induced airway inflammation was established. The effects of rTs-chit were evaluated by assessing airway hyperresponsiveness and cytokine profiles in bronchoalveolar lavage fluid and performing detailed histopathological and immunohistochemical analyses. RESULTS Recombinant Ts-chit (rTs-chit) was successfully expressed in E. coli BL21, showing strong structural similarity to murine acidic mammalian chitinase (AMCase). Expression profiling revealed that Ts-chit is present throughout all stages of the T. spiralis life cycle. In an allergic airway inflammation model, rTs-chit reduced weight loss and lung inflammation, lowering inflammatory cell infiltration and Th2 cytokines (IL-4, IL-5, IL-13) while increasing the immunosuppressive cytokine IL-10. Additionally, rTs-chit treatment decreased the expression of GATA3, arginase-1, MCP-1, CCL-11, and AMCase, along with reducing OVA-specific IgE, IgG, and IgG1 levels, suggesting its potential as an immunomodulatory agent. CONCLUSIONS This study highlights rTs-chit's potential as a therapeutic agent for allergic airway diseases, leveraging its structural similarity to host chitinases to regulate Th2 responses and inflammatory pathways. The findings provide new insights into helminth-derived proteins as promising candidates for immune-based therapies.
Collapse
Affiliation(s)
- Jia Xu
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Ye Yao
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Qisheng Zhuang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Zixuan Li
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Min Zhang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Shouan Wang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Hongxin Hu
- The Affiliated Hospital of Putian University, Putian City, 351100, Fujian Province, China.
| | - Jianbin Ye
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
- School of Pharmacy, Fujian Medical University, Fuzhou City, 350004, Fujian Province, China.
- School of Pharmacy, Putian University, Putian City, 351100, Fujian Province, China.
| |
Collapse
|
2
|
Okawa K, Kijima M, Ishii M, Maeda N, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2024; 301:108100. [PMID: 39706263 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Nanako Maeda
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
3
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
5
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Pratama YA, Marhaeny HD, Rohmah L, Kasatu SM, Nurhan AD, Rahmadi M, Khotib J. Allergic rhinitis behavioral changes after Indonesian house dust mites allergenic extract administration as immunotherapy. J Public Health Afr 2023. [PMID: 37492532 PMCID: PMC10365652 DOI: 10.4081/jphia.2023.2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Allergy is a hypersensitivity reaction that is generally mediated by Immunoglobulin E (IgE). More than 25% of the world’s population is suspected of having these various diseases, and the prevalence and progression of these diseases have continued to increase significantly in recent years. Among these allergy-related diseases, allergic rhinitis and food allergy are the types of allergies with the highest prevalence. Clinical manifestations of allergic rhinitis include sneezing, rhinorrhea, nasal itching, and nasal congestion.
Objective: This study aimed to determine the behavioral changes of allergic rhinitis after Indonesian House Dust Mites (IHDM) allergenic extract administration as an immunotherapy.
Methods: Eight male BALB/c mice aged 6-8 weeks in each group were treated for seven groups. The sensitization phase is given intraperitoneal, the desensitization phase is given by subcutaneous, and the challenge phase is given intranasal. The allergic parameters were observed, such as nose rubbing and sneezing. The parameters were observed for 15 minutes after the challenge administration.
Results: The results showed that the administration of Indonesian House Dust Mites as immunotherapy decreased the frequency of nose rubbing and sneezing after the administration of immunotherapy compared to the allergic rhinitis model.
Conclusions: The administration of the Indonesia House Dust Mites as immunotherapy decreased the allergic rhinitis immune response by altering the behavioral parameter.
Collapse
|
7
|
Jacquet A. The HDM allergen orchestra and its cysteine protease maestro: Stimulators of kaleidoscopic innate immune responses. Mol Immunol 2023; 156:48-60. [PMID: 36889186 DOI: 10.1016/j.molimm.2023.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
House dust mite (HDM) encloses an explosive cocktail of allergenic proteins sensitizing hundreds of millions of people worldwide. To date, the innate cellular and molecular mechanism(s) orchestrating the HDM-induced allergic inflammation remains partially deciphered. Understanding the kaleidoscope of HDM-induced innate immune responses is hampered by (1) the large complexity of the HDM allergome with very diverse functional bioreactivities, (2) the perpetual presence of microbial compounds (at least LPS, β-glucan, chitin) promoting as well pro-Th2 innate signaling pathways and (3) multiple cross-talks involving structural, neuronal and immune cells. The present review provides an update on the innate immune properties, identified so far, of multiple HDM allergen groups. Experimental evidence highlights the importance of HDM allergens displaying protease or lipid-binding activities on the initiation of the allergic responses. Specifically, group 1 HDM cysteine proteases are considered as the key initiators of the allergic response through their capacities to impair the epithelial barrier integrity, to stimulate the release of pro-Th2 danger-associated molecular patterns (DAMPs) in epithelial cells, to produce super-active forms of IL-33 alarmin and to mature thrombin leading to Toll-like receptor 4 (TLR4) activation. Remarkably, the recently evidenced primary sensing of cysteine protease allergens by nociceptive neurons confirms the critical role of this HDM allergen group in the early events leading to Th2 differentiation.
Collapse
Affiliation(s)
- Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Wang D, Li W, Albasha N, Griffin L, Chang H, Amaya L, Ganguly S, Zeng L, Keum B, González-Navajas JM, Levin M, AkhavanAghdam Z, Snyder H, Schwartz D, Tao A, Boosherhri LM, Hoffman HM, Rose M, Estrada MV, Varki N, Herdman S, Corr M, Webster NJG, Raz E, Bertin S. Long-term exposure to house dust mites accelerates lung cancer development in mice. J Exp Clin Cancer Res 2023; 42:26. [PMID: 36670473 PMCID: PMC9863279 DOI: 10.1186/s13046-022-02587-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI). METHODS: The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1β (IL-1β), and C-C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM. RESULTS: Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1β signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1β, and CCL2 neutralization, or ICS treatment. CONCLUSIONS Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).
Collapse
Affiliation(s)
- Dongjie Wang
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Li
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Natalie Albasha
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Lindsey Griffin
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Han Chang
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Lauren Amaya
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Sneha Ganguly
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Liping Zeng
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General Universitario de Alicante, Alicante, Spain
- Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | | | | | | | | | - Ailin Tao
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Laela M Boosherhri
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California San Diego, La Jolla, CA, USA
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California San Diego, La Jolla, CA, USA
| | - Michael Rose
- Tissue Technology Shared Resource, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Monica Valeria Estrada
- Tissue Technology Shared Resource, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Nissi Varki
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Scott Herdman
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Nicholas J G Webster
- Division of Endocrinology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Medical Research Service, Veteran Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eyal Raz
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| | - Samuel Bertin
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
9
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
10
|
Mazur M, Włodarczyk J, Świerczyński M, Kordek R, Grzybowski MM, Olczak J, Fichna J. The Anti-Inflammatory Effect of Acidic Mammalian Chitinase Inhibitor OAT-177 in DSS-Induced Mouse Model of Colitis. Int J Mol Sci 2022; 23:ijms23042159. [PMID: 35216274 PMCID: PMC8875595 DOI: 10.3390/ijms23042159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and relapsing gastrointestinal disorders, where a significant proportion of patients are unresponsive or lose response to traditional and currently used therapies. In the current study, we propose a new concept for anti-inflammatory treatment based on a selective acidic mammalian chitinase (AMCase) inhibitor. The functions of chitinases remain unclear, but they have been shown to be implicated in the pathology of various inflammatory disorders regarding the lung (asthma, idiopathic pulmonary fibrosis) and gastrointestinal tract (IBD and colon cancer). The aim of the study is to investigate the impact of AMCase inhibitor (OAT-177) on the dextran sulfate sodium (DSS)-induced models of colitis. In the short-term therapeutic protocol, OAT-177 given intragastrically in a 30 mg/kg dose, twice daily, produced a significant (p < 0.001) anti-inflammatory effect, as shown by the macroscopic score. Additionally, OAT-177 significantly decreased TNF-α mRNA levels and MPO activity compared to DSS-only treated mice. Intraperitoneal administration of OAT-177 at a dose of 50 mg/kg caused statistically relevant reduction of the colon length. In the long-term therapeutic protocol, OAT-177 given intragastrically in a dose of 30 mg/kg, twice daily, significantly improved colon length and body weight compared to DSS-induced colitis. This is the first study proving that AMCase inhibitors may have therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Marzena Mazur
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Marcin M. Grzybowski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jacek Olczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
- Correspondence: ; Tel.: +48-42-272-57-07
| |
Collapse
|
11
|
Elmonem MA, Veys KRP, Prencipe G. Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies. Cells 2022; 11:cells11020190. [PMID: 35053306 PMCID: PMC8773784 DOI: 10.3390/cells11020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.
Collapse
Affiliation(s)
- Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
- Correspondence:
| | - Koenraad R. P. Veys
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Pediatrics, AZ Delta Campus, 8820 Torhout, Belgium
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
12
|
Agache I, Palmer E, Sanver D, Kirtland M, Shamji MH. Molecular allergology approach to allergic asthma. Mol Aspects Med 2021; 85:101027. [PMID: 34579961 DOI: 10.1016/j.mam.2021.101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Allergic asthma is a frequently encountered and well described asthma phenotype. However, its precise mechanisms are less known. The tools for targeted selection of patients for an optimal response to intervention (prevention or treatment) are also lacking. Here we explore the potential of the molecular allergology approach to achieve a better understanding of allergic asthma mechanisms, a precise diagnosis and an optimal management of these patients.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Elizabeth Palmer
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Didem Sanver
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK; Necmettin Erbakan University, Engineering & Architecture Faculty, Department of Food Engineering, Konya, Turkey
| | - Max Kirtland
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Mohamed H Shamji
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| |
Collapse
|
13
|
He X, Howard BA, Liu Y, Neumann AK, Li L, Menon N, Roach T, Kale SD, Samuels DC, Li H, Kite T, Kita H, Hu TY, Luo M, Jones CN, Okaa UJ, Squillace DL, Klein BS, Lawrence CB. LYSMD3: A mammalian pattern recognition receptor for chitin. Cell Rep 2021; 36:109392. [PMID: 34289364 PMCID: PMC8344708 DOI: 10.1016/j.celrep.2021.109392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as β-glucan, on the cell walls of fungi. Knockdown or knockout of LYSMD3 also sharply blunts the production of inflammatory cytokines by epithelial cells in response to chitin and fungal spores. Competitive inhibition of the LYSMD3 ectodomain by soluble LYSMD3 protein, multiple ligands, or antibody against LYSMD3 also blocks chitin signaling. Our study reveals LYSMD3 as a mammalian pattern recognition receptor (PRR) for chitin and establishes its role in epithelial cell inflammatory responses to chitin and fungi.
Collapse
Affiliation(s)
- Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Brad A Howard
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nidhi Menon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tiffany Roach
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shiv D Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, VA 24060, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Trenton Kite
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Tony Y Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mengyao Luo
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline N Jones
- Department of Bioengineering, University of Texas, Dallas, TX 75080, USA
| | - Uju Joy Okaa
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diane L Squillace
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
14
|
Chitin induces steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Allergol Int 2021; 70:343-350. [PMID: 33640239 DOI: 10.1016/j.alit.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/17/2020] [Accepted: 12/27/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous reports have shown that pathogen-associated patterns (PAMPs) induce the production of interleukin (IL)-1β in macrophages. Moreover, studies using mouse models also suggest that chitin, which acts as a PAMP, induces adjuvant effects and eosinophilic infiltration in the lung. Thus, we investigated the effects of inhaled chitin in mouse models. METHODS We developed mouse models of inhaled chitin particle-induced airway inflammation and steroid-resistant ovalbumin (OVA)-induced airway inflammation. Some experimental groups of mice were treated additionally with dexamethasone (DEX). Murine alveolar macrophages (AMs), which were purified from bronchoalveolar lavage (BAL) fluids, were incubated with chitin, and treated with or without DEX. RESULTS The numbers of total cells, AMs, lymphocytes, eosinophils, and neutrophils among BAL-derived cells, as well as the IL-1β levels in BAL fluids and the numbers of IL-1β-positive cells in lung, were significantly increased by chitin stimulation. Airway hyperresponsiveness (AHR) was aggravated in mice of the chitin inflammation model compared to control animals. The production of IL-1β was significantly increased in murine AMs by chitin treatment, but DEX administration did not inhibit this chitin-induced IL-1β production. Furthermore, in mouse models, DEX treatment inhibited the OVA-induced airway inflammation and AHR but not the airway inflammation and AHR induced by chitin or the combination of OVA and chitin. CONCLUSIONS These results suggest that inhaled chitin induces airway inflammation, AHR, and the production of IL-1β. Furthermore, our findings demonstrate for the first time that inhaled chitin induces steroid-resistant airway inflammation and AHR. Inhaled chitin may contribute to features of steroid-resistant asthma.
Collapse
|
15
|
Chenery AL, Rosini S, Parkinson JE, Ajendra J, Herrera JA, Lawless C, Chan BHK, Loke P, MacDonald AS, Kadler KE, Sutherland TE, Allen JE. IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection. Life Sci Alliance 2021; 4:4/8/e202001000. [PMID: 34127548 PMCID: PMC8321663 DOI: 10.26508/lsa.202001000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.
Collapse
Affiliation(s)
- Alistair L Chenery
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Silvia Rosini
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James E Parkinson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jesuthas Ajendra
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy A Herrera
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Brian HK Chan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - P’ng Loke
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Andrew S MacDonald
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK .,Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem 2021; 35:1937-1943. [PMID: 33167737 PMCID: PMC7655067 DOI: 10.1080/14756366.2020.1837123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate Ki values ranging between 20 and 70 μM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with Ki values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
17
|
Hu C, Ma Z, Zhu J, Fan Y, Tuo B, Li T, Liu X. Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother 2021; 138:111465. [PMID: 34311522 DOI: 10.1016/j.biopha.2021.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acidic mammalian chitinase (CHIA) belongs to the 18-glycosidase family and is expressed in epithelial cells and certain immune cells (such as neutrophils and macrophages) in various organs. Under physiological conditions, as a hydrolase, CHIA can degrade chitin-containing pathogens, participate in Type 2 helper T (Th2)-mediated inflammation, and enhance innate and adaptive immunity to pathogen invasion. Under pathological conditions, such as rhinitis, ocular conjunctivitis, asthma, chronic atrophic gastritis, type 2 diabetes, and pulmonary interstitial fibrosis, CHIA expression is significantly changed. In addition, studies have shown that CHIA has an anti-apoptotic effect, promotes epithelial cell proliferation and maintains organ integrity, and these effects are not related to chitinase degradation. CHIA can also be used as a biomolecular marker in diseases such as chronic atrophic gastritis, dry eye, and acute kidney damage caused by sepsis. Analysis of the authoritative TCGA database shows that CHIA expression in gastric adenocarcinoma, liver cancer, renal clear cell carcinoma and other tumors is significantly downregulated compared with that in normal tissues, but the specific mechanism is unclear. This review is based on all surveys conducted to date and summarizes the expression patterns and functional diversity of CHIA in various organs. Understanding the physiological and pathophysiological relevance of CHIA in multiple organs opens new possibilities for disease treatment.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Yi Fan
- Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Taolang Li
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| |
Collapse
|
18
|
Mackel JJ, Garth JM, Jones M, Ellis DA, Blackburn JP, Yu Z, Matalon S, Curtiss M, Lund FE, Hastie AT, Meyers DA, Steele C. Chitinase 3-like-1 protects airway function despite promoting type 2 inflammation during fungal-associated allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 320:L615-L626. [PMID: 33533316 DOI: 10.1152/ajplung.00528.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Diandra A Ellis
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | | | - Zhihong Yu
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Miranda Curtiss
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Frances E Lund
- Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
19
|
Villoria Recio M, Lee BH, Lillebæk EMS, Kallipolitis BH, Gahan CGM, Ingmer H, Larsen MH. Chitin Attenuates Expression of Listeria monocytogenes Virulence Genes in vitro. Front Microbiol 2020; 11:588906. [PMID: 33343529 PMCID: PMC7744463 DOI: 10.3389/fmicb.2020.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
External signals are crucial for bacteria to sense their immediate environment and fine-tune gene expression accordingly. The foodborne pathogen Listeria monocytogenes senses a range of environmental cues in order to activate or deactivate the virulence-inducing transcriptional factor PrfA during transition between infectious and saprophytic lifecycles. Chitin is an abundant biopolymer formed from linked β-(1-4)-N-acetyl-D-glucosamine residues associated with fungi, the exoskeleton of insects and often incorporated into foods as a thickener or stabilizer. L. monocytogenes evolved to hydrolyse chitin, presumably, to facilitate nutrient acquisition from competitive environments such as soil where the polymer is abundant. Since mammals do not produce chitin, we reasoned that the polymer could serve as an environmental signal contributing to repression of L. monocytogenes PrfA-dependent expression. This study shows a significant downregulation of the core PrfA-regulon during virulence-inducing conditions in vitro in the presence of chitin. Our data suggest this phenomenon occurs through a mechanism that differs from PTS-transport of oligosaccharides generated from either degradation or chitinase-mediated hydrolysis of the polymer. Importantly, an indication that chitin can repress virulence expression of a constitutively active PrfA∗ mutant is shown, possibly mediated via a post-translational modification inhibiting PrfA∗ activity. To our knowledge, this is the first time that chitin is reported as a molecule with anti-virulence properties against a pathogenic bacterium. Thus, our findings identify chitin as a signal which may downregulate the virulence potential of the pathogen and may provide an alternative approach toward reducing disease risk.
Collapse
Affiliation(s)
- Miguel Villoria Recio
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark.,Alimentary Pharmabotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Cormac G M Gahan
- Alimentary Pharmabotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Halberg Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Niu S, Yang L, Geng R, Zuo H, Guo Z, Weng S, He J, Xu X. A double chitin catalytic domain-containing chitinase targeted by c-Jun is involved in immune responses in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103808. [PMID: 32738335 DOI: 10.1016/j.dci.2020.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Chitinases are a group of chitin-degrading enzymes widely distributed in organisms. Chitinases containing two chitin catalytic domains have been widely found in arthropods but their functions remain unclear. In this study, a member of these chitinases from Litopenaeus vannamei (dChi) was identified and functionally studied in the context of immunity. The promoter of dChi contained activator protein 1 (AP-1) binding sites and could be regulated by c-Jun. The recombinant dChi protein showed no bacteriostatic activity in vitro but knockdown of dChi in vivo increased the mortality of shrimp and the bacterial load in tissues after Vibrio parahaemolyticus infection, suggesting that dChi could play a positive role in antibacterial responses. However, silencing of dChi expression significantly decreased the mortality of WSSV-infected shrimp and down-regulated the viral load in tissues, indicating that dChi could facilitate WSSV infection. We further demonstrated that dChi was involved in regulation of the bacterial phagocytosis of hemocytes and expression of a series of immune related transcription factors and antimicrobial peptides. These indicated that the roles of dChi in antibacterial responses and anti-WSSV responses in vivo could result from its regulatory effects on the immune system. Taken together, the current study suggests that double chitin catalytic domain-containing chitinases could be important players in immune regulation in crustaceans.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Linwei Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Ran Geng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Hongliang Zuo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaopeng Xu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
21
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
22
|
Koralewski R, Dymek B, Mazur M, Sklepkiewicz P, Olejniczak S, Czestkowski W, Matyszewski K, Andryianau G, Niedziejko P, Kowalski M, Gruza M, Borek B, Jedrzejczak K, Bartoszewicz A, Pluta E, Rymaszewska A, Kania M, Rejczak T, Piasecka S, Mlacki M, Mazurkiewicz M, Piotrowicz M, Salamon M, Zagozdzon A, Napiorkowska-Gromadzka A, Bartlomiejczak A, Mozga W, Dobrzański P, Dzwonek K, Golab J, Nowotny M, Olczak J, Golebiowski A. Discovery of OATD-01, a First-in-Class Chitinase Inhibitor as Potential New Therapeutics for Idiopathic Pulmonary Fibrosis. J Med Chem 2020; 63:15527-15540. [PMID: 33078933 DOI: 10.1021/acs.jmedchem.0c01179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are the enzymatically active chitinases that have been implicated in the pathology of chronic lung diseases such as asthma and interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis. The clinical and preclinical data suggest that pharmacological inhibition of CHIT1 might represent a novel therapeutic approach in IPF. Structural modification of an advanced lead molecule 3 led to the identification of compound 9 (OATD-01), a highly active CHIT1 inhibitor with both an excellent PK profile in multiple species and selectivity against a panel of other off-targets. OATD-01 given orally once daily in a range of doses between 30 and 100 mg/kg showed significant antifibrotic efficacy in an animal model of bleomycin-induced pulmonary fibrosis. OATD-01 is the first-in-class CHIT1 inhibitor, currently completed phase 1b of clinical trials, to be a potential treatment for IPF.
Collapse
Affiliation(s)
- Robert Koralewski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Barbara Dymek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Marzena Mazur
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Sylwia Olejniczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | | - Gleb Andryianau
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Piotr Niedziejko
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michal Kowalski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Mariusz Gruza
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bartłomiej Borek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Jedrzejczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Elżbieta Pluta
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Magdalena Kania
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Rejczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sylwia Piasecka
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michal Mlacki
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Michał Piotrowicz
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Magdalena Salamon
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | | - Aneta Bartlomiejczak
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Witold Mozga
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Dobrzański
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karolina Dzwonek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jakub Golab
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Olczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Adam Golebiowski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
23
|
Zhu W, Lönnblom E, Förster M, Johannesson M, Tao P, Meng L, Lu S, Holmdahl R. Natural polymorphism of Ym1 regulates pneumonitis through alternative activation of macrophages. SCIENCE ADVANCES 2020; 6:6/43/eaba9337. [PMID: 33087360 PMCID: PMC7577715 DOI: 10.1126/sciadv.aba9337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/02/2020] [Indexed: 05/12/2023]
Abstract
We have positionally cloned the Ym1 gene, with a duplication and a promoter polymorphism, as a major regulator of inflammation. Mice with the RIIIS/J haplotype, with the absence of Ym1 expression, showed reduced susceptibility to mannan-enhanced collagen antibody-induced arthritis and to chronic arthritis induced by intranasal exposure of mannan. Depletion of lung macrophages alleviated arthritis, whereas intranasal supplement of Ym1 protein to Ym1-deficient mice reversed the disease, suggesting a key role of Ym1 for inflammatory activity by lung macrophages. Ym1-deficient mice with pneumonitis had less eosinophil infiltration, reduced production of type II cytokines and IgG1, and skewing of macrophages toward alternative activation due to enhanced STAT6 activation. Proteomics analysis connected Ym1 polymorphism with changed lipid metabolism. Induced PPAR-γ and lipid metabolism in Ym1-deficient macrophages contributed to cellular polarization. In conclusion, the natural polymorphism of Ym1 regulates alternative activation of macrophages associated with pulmonary inflammation.
Collapse
Affiliation(s)
- Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
- The National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, 710004 Xi'an, China
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Erik Lönnblom
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Michael Förster
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Martina Johannesson
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Pei Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
- The National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, 710004 Xi'an, China
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Rikard Holmdahl
- The National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, 710004 Xi'an, China.
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| |
Collapse
|
24
|
Abstract
House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.
Collapse
|
25
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
26
|
Hanashiro J, Muraosa Y, Toyotome T, Hirose K, Watanabe A, Kamei K. Schizophyllum commune induces IL-17-mediated neutrophilic airway inflammation in OVA-induced asthma model mice. Sci Rep 2019; 9:19321. [PMID: 31852931 PMCID: PMC6920419 DOI: 10.1038/s41598-019-55836-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Schizophyllum commune is a ubiquitous basidiomycetous fungus typically found across the world, which has been detected in indoor and outdoor air. Some studies indicated that sensitization to S. commune is correlated with asthma severity in patients. Patients with chronic severe or acute fatal asthma have neutrophil-dominant airway inflammation. We hypothesized that S. commune can exacerbate asthma. To test this hypothesis, we evaluated the direct immunomodulatory activities of S. commune in allergic airway inflammation induced by non-fungal sensitization. Ovalbumin (OVA)-induced asthma model mice were generated using wild-type (WT) and Il-17a-/-Il-17f-/- mice that were intratracheally exposed to S. commune, then immune responses in the lungs were assessed after 24 h. Intratracheal administration of S. commune in OVA-induced asthma model mice enhanced neutrophilic airway inflammation, increased the mRNA expression of CXCL1 and CXCL2 in the lungs, and provoked IL-17A, and IL-17F production in BAL fluid. In addition, neutrophilic airway inflammation was significantly inhibited in Il-17a-/-Il-17f-/- mice compared with those found in WT mice. We demonstrated that S. commune induces neutrophilic airway inflammation in OVA-induced asthma model mice, and IL-17A and IL-17F had central roles in this activity. As S. commune inhabits the general environment, including indoor and outdoor air, our results suggested that S. commune is a causative agent of asthma exacerbation. This study has provided clues regarding the mechanisms behind fungi and asthma exacerbation.
Collapse
Affiliation(s)
- Jun Hanashiro
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
| | - Yasunori Muraosa
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan.
| | - Takahito Toyotome
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan.,Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.,Department of Rheumatology, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
27
|
Mazur M, Dymek B, Koralewski R, Sklepkiewicz P, Olejniczak S, Mazurkiewicz M, Piotrowicz M, Salamon M, Jędrzejczak K, Zagozdzon A, Czestkowski W, Matyszewski K, Borek B, Bartoszewicz A, Pluta E, Rymaszewska A, Mozga W, Stefaniak F, Dobrzański P, Dzwonek K, Golab J, Golebiowski A, Olczak J. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J Med Chem 2019; 62:7126-7145. [PMID: 31291098 DOI: 10.1021/acs.jmedchem.9b00681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acidic mammalian chitinase (AMCase) and chitotriosidase-1 (CHIT1) are two enzymatically active proteins produced by mammals capable of cleaving the glycosidic bond in chitin. Based on the clinical findings and animal model studies, involvement of chitinases has been suggested in several respiratory system diseases including asthma, COPD, and idiopathic pulmonary fibrosis. Exploration of structure-activity relationships within the series of 1-(3-amino-1H-1,2,4-triazol-5-yl)-piperidin-4-amines, which was earlier identified as a scaffold of potent AMCase inhibitors, led us to discover highly active dual (i.e., AMCase and CHIT1) inhibitors with very good pharmacokinetic properties. Among them, compound 30 was shown to reduce the total number of cells in bronchoalveolar lavage fluid of mice challenged with house dust mite extract after oral administration (50 mg/kg, qd). In addition, affinity toward the hERG potassium channel of compound 30 was significantly reduced when compared to the earlier reported chitinase inhibitors.
Collapse
Affiliation(s)
- Marzena Mazur
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Barbara Dymek
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Robert Koralewski
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Piotr Sklepkiewicz
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Sylwia Olejniczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | | | - Michał Piotrowicz
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Magdalena Salamon
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Karol Jędrzejczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | | | | | | | - Bartłomiej Borek
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | | | - Elżbieta Pluta
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | | | - Witold Mozga
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Filip Stefaniak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland.,Laboratory of Bioinformatics and Protein Engineering , International Institute of Molecular and Cell Biology in Warsaw , Ks. Trojdena 4 , 02-109 Warsaw , Poland
| | - Paweł Dobrzański
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Karolina Dzwonek
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Jakub Golab
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland.,Department of Immunology , Medical University of Warsaw , Nielubowicza 5 , 02-097 Warsaw , Poland
| | - Adam Golebiowski
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Jacek Olczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
28
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
29
|
Jiang X, Bao H, Merzendorfer H, Yang Q. Immune Responses of Mammals and Plants to Chitin-Containing Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:61-81. [PMID: 31102242 DOI: 10.1007/978-981-13-7318-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin-containing organisms, such as fungi and arthropods, use chitin as a structural component to protect themselves from harsh environmental conditions. Hosts such as mammals and plants, however, sense chitin to initiate innate and adaptive immunity and exclude chitin-containing organisms. A number of protein factors are then expressed, and several signaling pathways are triggered. In this chapter, we focus on the responses and signal transduction pathways that are activated in mammals and plants upon invasion by chitin-containing organisms. As host chitinases play important roles in the glycolytic processing of chitin, which is then recognized by pattern-recognition receptors, we also pay special attention to the chitinases that are involved in immune recognition.
Collapse
Affiliation(s)
- Xi Jiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Han Bao
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Hans Merzendorfer
- Department of Chemistry and Biology - Molecular Biology, University of Siegen, 57076, Siegen, Germany
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China. .,State Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection at Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
30
|
Gour N, Lajoie S, Smole U, White M, Hu D, Goddard P, Huntsman S, Eng C, Mak A, Oh S, Kim JH, Sharma A, Plante S, Salem IH, Resch Y, Xiao X, Yao N, Singh A, Vrtala S, Chakir J, Burchard EG, Lane AP, Wills-Karp M. Dysregulated invertebrate tropomyosin-dectin-1 interaction confers susceptibility to allergic diseases. Sci Immunol 2018; 3:3/20/eaam9841. [PMID: 29475849 DOI: 10.1126/sciimmunol.aam9841] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
The key factors underlying the development of allergic diseases-the propensity for a minority of individuals to develop dysfunctional responses to harmless environmental molecules-remain undefined. We report a pathway of immune counter-regulation that suppresses the development of aeroallergy and shrimp-induced anaphylaxis. In mice, signaling through epithelially expressed dectin-1 suppresses the development of type 2 immune responses through inhibition of interleukin-33 (IL-33) secretion and the subsequent recruitment of IL-13-producing innate lymphoid cells. Although this homeostatic pathway is functional in respiratory epithelial cells from healthy humans, it is dramatically impaired in epithelial cells from asthmatic and chronic rhinosinusitis patients, resulting in elevated IL-33 production. Moreover, we identify an association between a single-nucleotide polymorphism (SNP) in the dectin-1 gene loci and reduced pulmonary function in two cohorts of asthmatics. This intronic SNP is a predicted eQTL (expression quantitative trait locus) that is associated with reduced dectin-1 expression in human tissue. We identify invertebrate tropomyosin, a ubiquitous arthropod-derived molecule, as an immunobiologically relevant dectin-1 ligand that normally serves to restrain IL-33 release and dampen type 2 immunity in healthy individuals. However, invertebrate tropomyosin presented in the context of impaired dectin-1 function, as observed in allergic individuals, leads to unrestrained IL-33 secretion and skewing of immune responses toward type 2 immunity. Collectively, we uncover a previously unrecognized mechanism of protection against allergy to a conserved recognition element omnipresent in our environment.
Collapse
Affiliation(s)
- Naina Gour
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephane Lajoie
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Ursula Smole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marquitta White
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donglei Hu
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pagé Goddard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Huntsman
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel Mak
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sam Oh
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jung-Hyun Kim
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Annu Sharma
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sophie Plante
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ikhlass Haj Salem
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Yvonne Resch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Xiao Xiao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nu Yao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anju Singh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jamila Chakir
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Esteban G Burchard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew P Lane
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Hasby Saad MA, Watany M, Tomoum M, El-Mehy D, Elsheikh M, Sharshar R. Acidic mammalian chitinase tuning after enteric helminths eradication in inflammatory respiratory disease patients. Parasite Immunol 2018; 40:e12583. [DOI: 10.1111/pim.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Marwa A. Hasby Saad
- Medical Parasitology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Mona Watany
- Clinical Pathology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Mohamed Tomoum
- Otorhinolaryngeology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Dalia El-Mehy
- Medical Parasitology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| | - May Elsheikh
- Paediatric Department; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Ragia Sharshar
- Pulmonology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| |
Collapse
|
32
|
Takatori H, Makita S, Ito T, Matsuki A, Nakajima H. Regulatory Mechanisms of IL-33-ST2-Mediated Allergic Inflammation. Front Immunol 2018; 9:2004. [PMID: 30233590 PMCID: PMC6131616 DOI: 10.3389/fimmu.2018.02004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) plays multiple roles in tissue homeostasis, prevention of parasitic infection, and induction of allergic inflammation. Especially, IL-33-ST2 (IL-1RL1) axis has been regarded as the villain in allergic diseases such as asthma and atopic dermatitis and in autoimmune diseases such as rheumatoid arthritis. Indeed, a number of studies have indicated that IL-33 produced by endothelial cells and epithelial cells plays a critical role in the activation and expansion of group 2 innate lymphoid cells (ILC2s) which cause allergic inflammation by producing large amounts of IL-5 and IL-13. However, mechanisms that antagonize IL-33-ST2-mediated allergic responses remain largely unknown. Recently, several groups including our group have demonstrated cellular and molecular mechanisms that could suppress excessive activation of ILC2s by the IL-33-ST2 axis. In this review, we summarize recent progress in the regulatory mechanisms of IL-33-ST2-mediated allergic responses. Selective targeting of the IL-33-ST2 axis would be a promising strategy in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Rheumatology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Sohei Makita
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayako Matsuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
33
|
Duan Y, Liu T, Zhou Y, Dou T, Yang Q. Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J Biol Chem 2018; 293:15429-15438. [PMID: 30135205 DOI: 10.1074/jbc.ra118.004351] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Indexed: 02/01/2023] Open
Abstract
Berberine is a traditional medicine that has multiple medicinal and agricultural applications. However, little is known about whether berberine can be a bioactive molecule toward carbohydrate-active enzymes, which play numerous vital roles in the life process. In this study, berberine and its analogs were discovered to be competitive inhibitors of glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidase (GH20 Hex) and GH18 chitinase from both humans and the insect pest Ostrinia furnacalis Berberine and its analog SYSU-1 inhibit insect GH20 Hex from O. furnacalis (OfHex1), with Ki values of 12 and 8.5 μm, respectively. Co-crystallization of berberine and its analog SYSU-1 in complex with OfHex1 revealed that the positively charged conjugate plane of berberine forms π-π stacking interactions with Trp490, which are vital to its inhibitory activity. Moreover, the 1,3-dioxole group of berberine binds an unexplored pocket formed by Trp322, Trp483, and Val484, which also contributes to its inhibitory activity. Berberine was also found to be an inhibitor of human GH20 Hex (HsHexB), human GH18 chitinase (HsCht and acidic mammalian chitinase), and insect GH18 chitinase (OfChtI). Besides GH18 and GH20 enzymes, berberine was shown to weakly inhibit human GH84 O-GlcNAcase (HsOGA) and Saccharomyces cerevisiae GH63 α-glucosidase I (ScGluI). By analyzing the published crystal structures, berberine was revealed to bind with its targets in an identical mechanism, namely via π-π stacking and electrostatic interactions with the aromatic and acidic residues in the binding pockets. This paper reports new molecular targets of berberine and may provide a berberine-based scaffold for developing multitarget drugs.
Collapse
Affiliation(s)
- Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024,
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tongyi Dou
- the School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, .,the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Hong JY, Kim M, Sol IS, Kim KW, Lee CM, Elias JA, Sohn MH, Lee CG. Chitotriosidase inhibits allergic asthmatic airways via regulation of TGF-β expression and Foxp3 + Treg cells. Allergy 2018; 73:1686-1699. [PMID: 29420850 PMCID: PMC6047905 DOI: 10.1111/all.13426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Chitotriosidase (chitinase 1, Chit1), a major true chitinase in humans, is induced in childhood asthma and has been implicated in the pathogenesis of a variety of inflammatory and tissue remodeling responses. However, the role and the mechanisms that underlie these contributions to the diseases have not been defined. We hypothesized that Chit1 plays a significant role in the pathogenesis of allergic asthma. METHODS Wild-type and Chit1-deficient mice and cells in culture were used to define the roles of Chit1 in models of allergic adaptive Th2 inflammation. In addition, the levels of sputum Chit1 were evaluated in pediatric asthma patients and compared to control. RESULTS The levels of sputum Chit1 were significantly increased in the patients with childhood asthma. Mice with Chit1 null mutation demonstrated enhanced allergic Th2 inflammatory and cytokine and IgE responses to OVA or house dust mite allergen sensitization and challenge. However, the expression levels of TGF-β1 were significantly decreased with a diminished number of Foxp3+ regulatory T cells (Treg) in the lungs of Chit1-/- mice compared to WT controls. In vitro, the absence of Chit1 significantly reduced TGF-β-stimulated conversion of CD4+ CD25- naïve T cells to CD4+ Foxp3+ Treg cells, suggesting Chit1 is required for optimal effect of TGF-β1 in Treg cell differentiation. CONCLUSION Chit1 plays a protective role in the pathogenesis of allergic inflammation and asthmatic airway responses via regulation of TGF-β expression and Foxp3+ Treg cells.
Collapse
Affiliation(s)
- Jung Yeon Hong
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mina Kim
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - In Suk Sol
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, RI., USA
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, RI., USA
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, RI., USA
- Department of Internal Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
35
|
Niu S, Yang L, Zuo H, Zheng J, Weng S, He J, Xu X. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:161-169. [PMID: 29678533 DOI: 10.1016/j.dci.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that hydrolyze chitin and widely exist in organisms. Studies in mammals have demonstrated that chitinases play important roles in regulation of humoral and cellular immune responses. In arthropods, although it is well known that chitinases are involved in growth, molting and development, the current knowledge on the role of chitinases in immunity, especially in immune regulation, remains largely unknown. In this study, a chitinase (LvChi5) from Litopenaeus vannamei was representatively selected for studying its immune function. The start codon of LvChi5 was corrected by 5'RACE analysis and its protein sequence was reanalyzed. LvChi5 contains a catalytic domain and a chitin binding domain and shows no inhibitory effect on growth of bacteria in vitro. However, in vivo experiments demonstrated that silencing of LvChi5 increased the mortality of shrimp infected with white spot syndrome virus (WSSV) and Vibro parahaemolyticus and significantly upregulated the load of pathogens in tissues. The expression of various immune related genes, including transcription factors, antimicrobial peptides and other functional proteins with antibacterial and antiviral activities, was widely changed in LvChi5 silencing shrimp. Moreover, the recombinant LvChi5 protein could enhance the phagocytic activity of hemocytes against bacteria. These suggested that shrimp chitinase could play a role in regulation of both humoral and cellular immune responses in shrimp.
Collapse
Affiliation(s)
- Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jiefu Zheng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| |
Collapse
|
36
|
Steven J. VD, Richard M. L. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol 2018; 142:364-369. [PMID: 29959948 PMCID: PMC6078791 DOI: 10.1016/j.jaci.2018.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
Chitin, one of the most abundant biopolymers on Earth, is bound and degraded by chitinases, specialized enzymes that are similarly widespread in nature. Chitin catabolism affects global carbon and nitrogen cycles through a host of diverse biological processes, but recent work has focused attention on systems of chitin recognition and degradation conserved in mammals, connecting an ancient pathway of polysaccharide processing to human diseases influenced by persistent immune triggering. Here we review current advances in our understanding of how chitin-chitinase interactions affect mucosal immune feedback mechanisms essential to maintaining homeostasis and organ health.
Collapse
Affiliation(s)
- Van Dyken Steven J.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO USA.
| | - Locksley Richard M.
- Howard Hughes Medical Institute, Departments of Medicine and Microbiology / Immuology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure. Infect Immun 2018; 86:IAI.00944-17. [PMID: 29712728 DOI: 10.1128/iai.00944-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia-/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E2 (PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.
Collapse
|
38
|
Abstract
Asthma is a heterogeneous disease that affects approximately 300 million people worldwide, largely in developed countries. The etiology of the disease is poorly understood, but is likely to involve specific innate and adaptive responses to inhaled microbial components that are found in allergens. Fungal-derived allergens represent a major contributing factor in the initiation, persistence, exacerbation, and severity of allergic asthma. C-type lectin like receptors, such as dectin-1, dectin-2, DC-specific intercellular adhesion molecule 3-grabbing nonintegrin, and mannose receptor, recognize many fungal-derived allergens and other structurally similar allergens derived from house dust mites (HDM). In some cases, the fungal derived allergens have been structurally and functionally identified alongside their respective receptors in both humans and mice. In this review, we discuss recent understanding on how selected fungal and HDM derived allergens as well as their known or unknown receptors shape allergic airway diseases.
Collapse
Affiliation(s)
- Sabelo Hadebe
- Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, United Kingdom
- Division of Medical Microbiology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Aberdeen AFGrica Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Mazur M, Olczak J, Olejniczak S, Koralewski R, Czestkowski W, Jedrzejczak A, Golab J, Dzwonek K, Dymek B, Sklepkiewicz PL, Zagozdzon A, Noonan T, Mahboubi K, Conway B, Sheeler R, Beckett P, Hungerford WM, Podjarny A, Mitschler A, Cousido-Siah A, Fadel F, Golebiowski A. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J Med Chem 2018; 61:695-710. [PMID: 29283260 DOI: 10.1021/acs.jmedchem.7b01051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article highlights our work toward the identification of a potent, selective, and efficacious acidic mammalian chitinase (AMCase) inhibitor. Rational design, guided by X-ray analysis of several inhibitors bound to human chitotriosidase (hCHIT1), led to the identification of compound 7f as a highly potent AMCase inhibitor (IC50 values of 14 and 19 nM against human and mouse enzyme, respectively) and selective (>150× against mCHIT1) with very good PK properties. This compound dosed once daily at 30 mg/kg po showed significant anti-inflammatory efficacy in HDM-induced allergic airway inflammation in mice, reducing inflammatory cell influx in the BALF and total IgE concentration in plasma, which correlated with decrease of chitinolytic activity. Therapeutic efficacy of compound 7f in the clinically relevant aeroallergen-induced acute asthma model in mice provides a rationale for developing AMCase inhibitor for the treatment of asthma.
Collapse
Affiliation(s)
- Marzena Mazur
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jacek Olczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sylwia Olejniczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Robert Koralewski
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Anna Jedrzejczak
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jakub Golab
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Department of Immunology, Medical University of Warsaw , 1A Banacha Str., 02-097 Warsaw, Poland
| | - Karolina Dzwonek
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Barbara Dymek
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | | - Tom Noonan
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Keyvan Mahboubi
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bruce Conway
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ryan Sheeler
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paul Beckett
- The Institute for Pharmaceutical Discovery , Business Drive 23, Branford, Connecticut 06405, United States
| | - William M Hungerford
- The Institute for Pharmaceutical Discovery , Business Drive 23, Branford, Connecticut 06405, United States
| | - Alberto Podjarny
- Department of Integrative Biology, IGBMC, CNRS, INSERM, Université de Strasbourg , 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Andre Mitschler
- Department of Integrative Biology, IGBMC, CNRS, INSERM, Université de Strasbourg , 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Alexandra Cousido-Siah
- Department of Integrative Biology, IGBMC, CNRS, INSERM, Université de Strasbourg , 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Firas Fadel
- Department of Integrative Biology, IGBMC, CNRS, INSERM, Université de Strasbourg , 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Adam Golebiowski
- OncoArendi Therapeutics SA , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
41
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|
42
|
|
43
|
Abstract
Allergic diseases, which have escalated in prevalence in recent years, arise as a result of maladaptive immune responses to ubiquitous environmental stimuli. Why only certain individuals mount inappropriate type 2 immune responses to these otherwise harmless allergens has remained an unanswered question. Mounting evidence suggests that the epithelium, by sensing its environment, is the central regulator of allergic diseases. Once considered to be a passive barrier to allergens, epithelial cells at mucosal surfaces are now considered to be the cornerstone of the allergic diathesis. Beyond their function as maintaining barrier at mucosal surfaces, mucosal epithelial cells through the secretion of mediators like IL-25, IL-33, and TSLP control the fate of downstream allergic immune responses. In this review, we will discuss the advances in recent years regarding the process of allergen recognition and secretion of soluble mediators by epithelial cells that shape the development of the allergic response.
Collapse
Affiliation(s)
- Naina Gour
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Stephane Lajoie
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Van Dyken SJ, Liang HE, Naikawadi RP, Woodruff PG, Wolters PJ, Erle DJ, Locksley RM. Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease. Cell 2017; 169:497-509.e13. [PMID: 28431248 DOI: 10.1016/j.cell.2017.03.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 01/21/2023]
Abstract
The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ram P Naikawadi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation. mBio 2017; 8:mBio.02290-16. [PMID: 28143983 PMCID: PMC5285508 DOI: 10.1128/mbio.02290-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to mask immunogenic epitopes. We have created a fungal strain with a targeted mutation in a pH response pathway that is unable to properly organize its cell wall, resulting in a dramatic immune reaction during infection. This mutant cell wall is defective in hiding important cell wall components, such as the chito-oligomers chitin and chitosan. By creating a series of cell wall mutants, we demonstrated that the degree of chito-oligomer exposure correlates with the intensity of innate immune cell activation. This activation requires a combination of host receptors to recognize and respond to these infecting microorganisms. Therefore, these experiments explored host-pathogen interactions that determine the degree of the subsequent inflammatory response and the likely outcome of infection.
Collapse
|
46
|
Abstract
Interleukin-33 (IL-33) - a member of the IL-1 family - was originally described as an inducer of type 2 immune responses, activating T helper 2 (TH2) cells and mast cells. Now, evidence is accumulating that IL-33 also potently stimulates group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, TH1 cells, CD8+ T cells and natural killer (NK) cells. This pleiotropic nature is reflected in the role of IL-33 in tissue and metabolic homeostasis, infection, inflammation, cancer and diseases of the central nervous system. In this Review, we highlight the molecular and cellular characteristics of IL-33, together with its major role in health and disease and the potential therapeutic implications of these findings in humans.
Collapse
|
47
|
Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol. PLoS One 2016; 11:e0159459. [PMID: 27463381 PMCID: PMC4962986 DOI: 10.1371/journal.pone.0159459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023] Open
Abstract
Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin.
Collapse
|
48
|
Vannella KM, Ramalingam TR, Hart KM, de Queiroz Prado R, Sciurba J, Barron L, Borthwick LA, Smith AD, Mentink-Kane M, White S, Thompson RW, Cheever AW, Bock K, Moore I, Fitz LJ, Urban JF, Wynn TA. Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol 2016; 17:538-44. [PMID: 27043413 DOI: 10.1038/ni.3417] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.
Collapse
Affiliation(s)
- Kevin M Vannella
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thirumalai R Ramalingam
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M Hart
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael de Queiroz Prado
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Sciurba
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luke Barron
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lee A Borthwick
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Tissue Fibrosis and Repair Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Center, Beltsville, Maryland, USA
| | - Margaret Mentink-Kane
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra White
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert W Thompson
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allen W Cheever
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Bock
- Infectious Disease Pathology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ian Moore
- Infectious Disease Pathology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lori J Fitz
- Inflammation and Immunity, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Center, Beltsville, Maryland, USA
| | - Thomas A Wynn
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016; 17:122-31. [DOI: 10.1038/ni.3370] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
|
50
|
Chang J, Xia YF, Zhang MZ, Zhang LM. IL-33 Signaling in Lung Injury. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:24-32. [PMID: 27536706 PMCID: PMC4985245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interleukin (IL)-33, a member of the IL-1 cytokine super-family, acts as both a traditional cytokine and an intracellular nuclear factor. It is generally released from damaged immune cells and signals through its receptor ST2 in an autocrine and paracrine fashion, plays important roles in type-2 innate immunity, and functions as an "alarmin" or a danger signal for cellular damage or cellular stress. Here, we review recent advances of the role of IL-33 in lung injury and explore its potential significance as an attractive therapeutic target.
Collapse
Affiliation(s)
- Jing Chang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, P.R. China
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Yue-Feng Xia
- Department of Anesthesiology, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Ma-Zhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, P.R. China
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|