1
|
Huang L, Wang J, Wang X, Zheng S, Liang K, Kang YE, Chang JW, Koo BS, Liu L, Gal A, Shan Y. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation. Cancer Lett 2024; 601:217145. [PMID: 39084455 DOI: 10.1016/j.canlet.2024.217145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.
Collapse
Affiliation(s)
- Lei Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Jiaxin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sicong Zheng
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kailin Liang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yea Eun Kang
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, 35015, Republic of Korea
| | - Lihua Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom.
| | - Yujuan Shan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Zhou F, Liu D, Ye J, Li B. Circ_0006944 aggravates LPS-induced HK2 cell injury via modulating miR-205-5p/UBL4A pathway. Autoimmunity 2023; 56:2276066. [PMID: 37994026 DOI: 10.1080/08916934.2023.2276066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
Circular RNAs (circRNAs) has been manifested to be involved in the development of human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the function and mechanism of circ_0006944 in SA-AKI has not been validated. Lipopolysaccharide (LPS) was utilised to induce AKI cell model. Levels of genes and proteins were monitored by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell counting kit 8 assay, EdU assay and flow cytometry were exploited to estimate cell proliferation and apoptosis. The concentrations of inflammation factors were measured via using ELISA assay. The levels of MDA and SOD were tested by the corresponding kits. The relationship between miR-205-5p and circ_0006944 or UBL4A was verified by dual-luciferase reporter assay and RIP assay. Circ_0006944 was overexpressed in SA-AKI patients, and interference of circ_0006944 restrained LPS-stimulated HK2 cell proliferation repression, apoptosis, inflammation and oxidative stress. Mechanistically, circ_0006944 could sponge miR-205-5p, and miR-205-5p interference counteracted circ_0006944 inhibition-mediated impact on the biological functions in LPS-induced HK2 cell. Additionally, UBL4A was targeted by miR-205-5p, and UBL4A overexpression also partially abolished the repressive impacts of miR-205-5p on LPS-triggered HK2 cell damage. Importantly, circ_0006944 sponged miR-205-5p to mediate the expression of UBL4A. Our outcomes identified that circ_0006944 exacerbated SA-AKI development via miR-205-5p/UBL4A axis, which might be a potential treatment and diagnosis biomarker for SA-AKI.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Infectious Diseases, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
| | - Dong Liu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
- Department of Intensive Care Unit, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China
| | - Junwei Ye
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
- Department of Intensive Care Unit, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China
| | - Bingqi Li
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
- Department of Intensive Care Unit, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China
| |
Collapse
|
3
|
Suryawan A, Rudar M, Naberhuis JK, Fiorotto ML, Davis TA. Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets. Pediatr Res 2022:10.1038/s41390-022-02382-4. [PMID: 36402914 DOI: 10.1038/s41390-022-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates. METHODS On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined. RESULTS Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05). CONCLUSIONS Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth. IMPACT The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates. This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced. This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants. These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Kurashiki T, Horikoshi Y, Kamizaki K, Sunaguchi T, Hara K, Morimoto M, Kitagawa Y, Nakaso K, Otsuki A, Matsura T. Molecular mechanisms underlying the promotion of wound repair by coenzyme Q10: PI3K/Akt signal activation via alterations to cell membrane domains. J Clin Biochem Nutr 2022; 70:222-230. [PMID: 35692678 PMCID: PMC9130066 DOI: 10.3164/jcbn.21-141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) promotes wound healing in vitro and in vivo. However, the molecular mechanisms underlying the promoting effects of CoQ10 on wound repair remain unknown. In the present study, we investigated the molecular mechanisms through which CoQ10 induces wound repair using a cellular wound-healing model. CoQ10 promoted wound closure in a dose-dependent manner and wound-mediated cell polarization after wounding in HaCaT cells. A comparison with other CoQ homologs, benzoquinone derivatives, and polyisoprenyl compounds suggested that the whole structure of CoQ10 is required for potent wound repair. The phosphorylation of Akt after wounding and the plasma membrane translocation of Akt were elevated in CoQ10-treated cells. The promoting effect of CoQ10 on wound repair was abrogated by co-treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor. Immunohistochemical and biochemical analyses showed that CoQ10 increased the localization of caveolin-1 (Cav-1) to the apical membrane domains of the cells and the Cav-1 content in the membrane-rich fractions. Depletion of Cav-1 suppressed CoQ10-mediated wound repair and PI3K/Akt signaling activation in HaCaT cells. These results indicated that CoQ10 increases the translocation of Cav-1 to the plasma membranes, activating the downstream PI3K/Akt signaling pathway, and resulting in wound closure in HaCaT cells.
Collapse
Affiliation(s)
- Tatsuyuki Kurashiki
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University
| | - Teppei Sunaguchi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Kazushi Hara
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Masaki Morimoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, Faculty of Medicine, Tottori University
| | - Yoshinori Kitagawa
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Tatsuya Matsura
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| |
Collapse
|
5
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
6
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
7
|
Suryawan A, El-Kadi SW, Nguyen HV, Fiorotto ML, Davis TA. Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. J Nutr 2021; 151:2636-2645. [PMID: 34159368 PMCID: PMC8417931 DOI: 10.1093/jn/nxab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.
Collapse
Affiliation(s)
- Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Mergault C, Lisée F, Tiroille V, Magnien M, Parent C, Lenga Mabonda W, Sizaret D, Jaillet M, Crestani B, Marchand-Adam S, Plantier L. Inhibition of the Arp2/3 complex represses human lung myofibroblast differentiation and attenuates bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2021; 179:125-140. [PMID: 34453744 DOI: 10.1111/bph.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The Arp2/3 multiprotein complex regulates branched polymerisation of the actin cytoskeleton and may contribute to collagen synthesis and fibrogenesis in the lung. EXPERIMENTAL APPROACH Expression of Arp2/3 components was assessed in human lung fibroblasts and in the bleomycin-induced pulmonary fibrosis model in mice. The Arp2/3 complex was repressed with the allosteric inhibitor CK666 and with interfering RNAs targeting the ARP2, ARP3 and ARPC2 subunits (siARP2, siARP3 and siARPC2) in CCD-16Lu human lung fibroblasts in vitro. Mice received daily intraperitoneal injections of CK666 from the 7th to the 14th day after tracheal bleomycin instillation. KEY RESULTS Expression of Arp2/3 complex subunits mRNAs was increased in fibroblasts treated with TGF-β1 and in the lungs of bleomycin-treated mice compared with controls. In vitro, CK666 and siARPC2 inhibited cell growth and TGF-β1-induced α-smooth muscle actin (ACTA2) and collagen-1 (COL1) expression. CK666 also decreased ACTA2 and COL1 expression in unstimulated cells. CK666 reduced Akt phosphorylation and repressed phospho-GSK3β, β-catenin and MRTF-A levels in unstimulated fibroblasts. In vivo, CK666 reduced levels of both procollagen-1 and insoluble collagen in bleomycin-treated mice. CONCLUSION AND IMPLICATIONS Expression of the Arp2/3 complex was increased in profibrotic environments in vitro and in vivo. Inhibition of the Arp2/3 complex repressed ACTA2 and COL1 expression and repressed an Akt/phospho-GSK3β/β-catenin/MRTF-A pathway in lung fibroblasts. CK666 exerted antifibrotic properties in the lung in vivo. Inhibition of the Arp2/3 complex could represent an interesting new therapy for idiopathic pulmonary fibrosis and other fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Coralie Mergault
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Fanny Lisée
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Victor Tiroille
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Mélia Magnien
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Christelle Parent
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France
| | - Woodys Lenga Mabonda
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Damien Sizaret
- CHRU de Tours, Service d'Anatomie Pathologique, Tours, France
| | | | - Bruno Crestani
- Université de Paris, Inserm UMR1152, Labex Inflamex, Paris, France.,Service de Pneumologie A, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Sylvain Marchand-Adam
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| | - Laurent Plantier
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| |
Collapse
|
9
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
10
|
Gray CW, Coster AC. Models of Membrane-Mediated Processes: Cascades and Cycles in Insulin Action. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Zhang H, Zhao Y, Yao Q, Ye Z, Mañas A, Xiang J. Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress. PLoS One 2020; 15:e0242700. [PMID: 33211772 PMCID: PMC7676689 DOI: 10.1371/journal.pone.0242700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial fusion and fission are dynamic processes regulated by the cellular microenvironment. Under nutrient starvation conditions, mitochondrial fusion is strengthened for energy conservation. We have previously shown that newborns of Ubl4A-deficient mice were more sensitive to starvation stress with a higher rate of mortality than their wild-type littermates. Ubl4A binds with the actin-related protein Arp2/3 complex to synergize the actin branching process. Here, we showed that deficiency in Ubl4A resulted in mitochondrial fragmentation and apoptosis. A defect in the fusion process was the main cause of the mitochondrial fragmentation and resulted from a shortage of primed Arp2/3 complex pool around the mitochondria in the Ubl4A-deficient cells compared to the wild-type cells. As a result, the mitochondrial fusion process was not undertaken quickly enough to sustain starvation stress-induced cell death. Consequently, fragmented mitochondria lost their membrane integrity and ROS was accumulated to trigger caspase 9-dependent apoptosis before autophagic rescue. Furthermore, the wild-type Ubl4A, but not the Arp2/3-binding deficient mutant, could rescue the starvation-induced mitochondrial fragmentation phenotype. These results suggest that Ubl4A promotes the mitochondrial fusion process via Arp2/3 complex during the initial response to nutrient deprivation for cell survival.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Yu Zhao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Adriana Mañas
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wu L, Liu T, Gu Y. Microvillar dynamic in renal tubular epithelial cells mediated by insulin/PLCγ signal pathway. Biochem Biophys Res Commun 2020; 534:1020-1025. [PMID: 33131771 DOI: 10.1016/j.bbrc.2020.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Significant cellular morphology changes in renal tubules were observed in diabetes patients and animal models. However, the interaction between insulin and tubular epithelial cells microvillar structure remains obscure. To understand microvillar dynamics, we used Scanning Ion Conductance Microscope to visualize microvillar in the living cell. Here, we found two layers of microvilli on the tubular epithelial cell surface: short compact microvilli and netlike long microvilli. Insulin treatment could increase microvilli length and density. This process was mediated by the PI3K/PLCγ signaling pathway, other than the PI3K/Arp2/3 signal pathway. In conclusion, our findings present a novel insulin signaling transduction mechanism, which contributes to understanding renal tubular epithelial cell microvilli dynamic regulation.
Collapse
Affiliation(s)
- Lida Wu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, 100871, Beijing, China; Translational and Regenerative Medicine Centre, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Tongri Liu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yuchun Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, 100871, Beijing, China; Translational and Regenerative Medicine Centre, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
13
|
Gray CW, Coster ACF. From insulin to Akt: Time delays and dominant processes. J Theor Biol 2020; 507:110454. [PMID: 32822700 DOI: 10.1016/j.jtbi.2020.110454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 11/27/2022]
Abstract
Akt/PKB regulates numerous processes in the mammalian cell, including cell survival and proliferation, and glucose uptake in response to insulin. Abnormalities in Akt signalling are linked to the development of Type 2 diabetes, cardio-vascular disease, and cancer. In the absence of insulin, Akt is predominantly found in the inactive state in the cytosol. Following insulin stimulation, Akt translocates to the plasma membrane, docks, and is phosphorylated to take on the active conformation. In turn, the activated Akt travels to and phosphorylates its many downstream substrates. Although crucial to the activation process, the translocation of Akt from the cytosol to the plasma membrane is currently not well understood. Here we detail the parameter optimisation of a mathematical model of Akt translocation to experimental data. We have quantified the time delay between the application of insulin and the downstream Akt translocation response, indicating the constraints on the timing of the intermediate processes. A delay of approximately 0.4 min prior to the Akt response was determined for the application of 1 nM insulin to cells in the basal state, whereas it was found that a further transition from physiological insulin to higher stimuli did not incur a delay. Furthermore, our investigation indicates that the dominant processes regulating the appearance of Akt at the plasma membrane differ with the insulin level. For physiological insulin, the rate limiting step was the release of Akt to the plasma membrane in response to the insulin signal. In contrast, at high insulin levels, regulation of the recycling of Akt from the plasma membrane to the cytosol was also required.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, UNSW Sydney Australia.
| | | |
Collapse
|
14
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Yang T, Yang WX. The dynamics and regulation of microfilament during spermatogenesis. Gene 2020; 744:144635. [PMID: 32244053 DOI: 10.1016/j.gene.2020.144635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is a highly complex physiological process which contains spermatogonia proliferation, spermatocyte meiosis and spermatid morphogenesis. In the past decade, actin binding proteins and signaling pathways which are critical for regulating the actin cytoskeleton in testis had been found. In this review, we summarized 5 actin-binding proteins that have been proven to play important roles in the seminiferous epithelium. Lack of them perturbs spermatids polarity and the transport of spermatids. The loss of Arp2/3 complex, Formin1, Eps8, Palladin and Plastin3 cause sperm release failure suggesting their irreplaceable role in spermatogenesis. Actin regulation relies on multiple signal pathways. The PI3K/Akt signaling pathway positively regulate the mTOR pathway to promote actin reorganization in seminiferous epithelium. Conversely, TSC1/TSC2 complex, the upstream of mTOR, is activated by the LKB1/AMPK pathway to inhibit cell proliferation, differentiation and migration. The increasing researches focus on the function of actin binding proteins (ABPs), however, their collaborative regulation of actin patterns and potential regulatory signaling networks remains unclear. We reviewed ABPs that play important roles in mammalian spermatogenesis and signal pathways involved in the regulation of microfilaments. We suggest that more relevant studies should be performed in the future.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
17
|
Morimoto M, Horikoshi Y, Nakaso K, Kurashiki T, Kitagawa Y, Hanaki T, Sakamoto T, Honjo S, Umekita Y, Fujiwara Y, Matsura T. Oncogenic role of TYRO3 receptor tyrosine kinase in the progression of pancreatic cancer. Cancer Lett 2019; 470:149-160. [PMID: 31765735 DOI: 10.1016/j.canlet.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The expression and functions of TYRO3, a member of the TAM receptor tyrosine kinase family, in pancreatic cancer (PC) have not been specifically elucidated. In this study, we confirmed TYRO3 expression in five human PC cell lines (PANC-1, MIA PaCa-2, BxPC-3, AsPC-1, and PK-9) using Western blotting. TYRO3 silencing and overexpression studies have revealed that TYRO3 promotes cell proliferation and invasion in PC via phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). Using a mouse xenograft model, we showed that tumor growth was significantly suppressed in mice subcutaneously inoculated with TYRO3-knockdown PC cells compared with mice inoculated with control PC cells. Furthermore, TYRO3 expression was examined in PC tissues obtained from 106 patients who underwent pancreatic resection for invasive ductal carcinoma through immunohistochemical staining. TYRO3-positive patients had poor prognoses for overall survival and disease-specific survival compared with TYRO3-negative patients. Multivariate analysis revealed that TYRO3 expression is an independent prognostic factor for overall survival. Our study demonstrates the critical role of TYRO3 in PC progression through Akt and ERK activation and suggests TYRO3 as a novel promising target for therapeutic strategies against PC.
Collapse
Affiliation(s)
- Masaki Morimoto
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yosuke Horikoshi
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Kazuhiro Nakaso
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Tatsuyuki Kurashiki
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshinori Kitagawa
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Takehiko Hanaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Teruhisa Sakamoto
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| |
Collapse
|
18
|
Yang Q, Yin W, Chen Y, Zhu D, Yin J, Zhang C, Gao Y. Betaine alleviates alcohol-induced osteonecrosis of the femoral head via mTOR signaling pathway regulation. Biomed Pharmacother 2019; 120:109486. [PMID: 31586901 DOI: 10.1016/j.biopha.2019.109486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is usually caused by chronic and excessive alcohol dependency, and this condition largely suppresses the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). As a trimethyl derivative of glycine, betaine is an important human nutrient that regulates a series of vital biological processes, including oxidative stress, inflammatory responses, osteoblast differentiation and cellular apoptosis. However, no study has investigated the role of betaine in alcohol-induced ONFH. In this study, we hypothesized that betaine might have protective effects on ethanol-treated BMSCs and decrease the morbidity of alcohol-induced ONFH in a rat model. In vitro, we found that ethanol significantly downregulated the expression of osteocalcin (OCN), collagen 1 (COL1) and RUNX2 via activating the mammalian target of rapamycin (mTOR) signaling cascade. However, the inhibitory effects were rescued by betaine co-treatment at concentrations of 1 mM and 10 mM. In vivo, the typical ONFH pathological changes in a rat model of alcohol-induced ONFH were investigated by using multiple methods, including hematoxylin-eosin staining, micro-CT scans, TdT-mediated dUTP nick end labeling (TUNEL) assays and immunohistochemical staining for OCN and COL1. Osteonecrotic lesions of the femoral head could be alleviated by betaine as evidenced by significant histological and radiological improvements. Collectively, betaine plays a protective role against ethanol-induced suppression of osteogenesis and mineralization of hBMSCs and is thus a potential pharmacotherapy for alcohol-induced ONFH in vivo.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yixuan Chen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Junhui Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; Institute of Microsurgery on Extremities, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; Institute of Microsurgery on Extremities, Shanghai, 200233, China.
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
19
|
Peng SJ, Yao RR, Yu SS, Chen HY, Pang X, Zhang Y, Zhang J. UBL4A Augments Innate Immunity by Promoting the K63-Linked Ubiquitination of TRAF6. THE JOURNAL OF IMMUNOLOGY 2019; 203:1943-1951. [PMID: 31451677 DOI: 10.4049/jimmunol.1800750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Human UBL4A/GdX, encoding an ubiquitin-like protein, was shown in this study to be upregulated by viral infection and IFN stimulation. Then the functions of UBL4A in antiviral immune response were characterized. Overexpression of UBL4A promoted RNA virus-induced ISRE or IFN-β or NF-κB activation, leading to enhanced type I IFN transcription and reduced virus replication. Consistently, knockdown of UBL4A resulted in reduced type I IFN transcription and enhanced virus replication. Additionally, overexpression of UBL4A promoted virus-induced phosphorylation of TBK1, IRF3, and IKKα/β. Knockdown of UBL4A inhibited virus-induced phosphorylation of TBK1, IRF3, and IKKα/β. Coimmunoprecipitation showed that UBL4A interacted with TRAF6, and this interaction was enhanced upon viral infection. Ubiquitination assays showed that UBL4A promoted the K63-linked ubiquitination of TRAF6. Therefore, we reveal a novel positive feedback regulation of UBL4A in innate immune response combating virus invasion by enhancing the K63-linked ubiquitination of TRAF6.
Collapse
Affiliation(s)
- Shu-Jie Peng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Hong-Yan Chen
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
20
|
Chen H, Li L, Hu J, Zhao Z, Ji L, Cheng C, Zhang G, zhang T, Li Y, Chen H, Pan S, Sun B. UBL4A inhibits autophagy-mediated proliferation and metastasis of pancreatic ductal adenocarcinoma via targeting LAMP1. J Exp Clin Cancer Res 2019; 38:297. [PMID: 31288830 PMCID: PMC6617940 DOI: 10.1186/s13046-019-1278-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/13/2019] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. METHODS First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. RESULTS We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. CONCLUSIONS These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC.
Collapse
Affiliation(s)
- Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Liang Ji
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Guangquan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Tao zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province China
| |
Collapse
|
21
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
22
|
Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang J, Liu C, Li J, Ju Y, Chang Z. GdX/UBL4A‐knockout mice resist collagen‐induced arthritis by balancing the population of T
h
1/T
h
17 and regulatory T cells. FASEB J 2019; 33:8375-8385. [DOI: 10.1096/fj.201802217rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanxia Fu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
- Tsinghua UniversityPeking University Joint Center for Life Sciences Beijing China
| | - Sihan Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Yinyin Wang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Fangli Ren
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Xuanzi Fan
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jiao Liang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Chunxiao Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jun Li
- Institute of ImmunologyPLAThe Third Military Medical University Chongqing China
| | - Yanfang Ju
- Department of GastroenterologyPLA General Hospital Beijing China
| | - Zhijie Chang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| |
Collapse
|
23
|
Yuan X, Zhen Z, Zhang M, Yu Y, Gao X, Ao JX. Cyclase-associated protein 1 is a key negative regulator of milk synthesis and proliferation of bovine mammary epithelial cells. Cell Biochem Funct 2019; 37:185-192. [PMID: 30847953 DOI: 10.1002/cbf.3387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/30/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022]
Abstract
Adenylyl cyclase-associated protein (CAP) is a highly conserved protein. Previous reports have suggested that CAP1 may be a negative regulator of cellular proliferation, migration, and adhesion and the development of cell carcinomas. The molecular mechanism of CAP1 regulation of downstream pathways, as well as how CAP1 is regulated by environmental stimuli and upstream signalling, is not well understood. In this present study, we assessed the role of CAP1 in milk synthesis and proliferation of bovine mammary epithelial cells. Using gene overexpression and silencing methods, CAP1 was found to negatively regulate milk synthesis and proliferation of cells via the PI3K-mTOR/SREBP-1c/Cyclin D1 signalling pathway. Hormones, such as prolactin and oestrogen, and amino acids, such as methionine and leucine, stimulate MMP9 expression and trigger CAP1 degradation, and thus, abrogate its inhibition of synthesis of milk protein, fat, and lactose by and proliferation of bovine mammary epithelial cells. The results of our study help deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in characterizing the molecular mechanisms of CAP1. Previous reports have suggested that CAP1 is a negative regulator of cellular proliferation and anabolism, but the molecular mechanisms are largely unknown. In this present study, we identified CAP1 as a negative regulator of milk synthesis and proliferation of bovine mammary epithelial cells. Our results will deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in exploring the molecular mechanisms of CAP1.
Collapse
Affiliation(s)
- Xiaohan Yuan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| | - Yanbo Yu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| | - Jin-Xia Ao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Liu C, Zhou Y, Li M, Wang Y, Yang L, Yang S, Feng Y, Wang Y, Wang Y, Ren F, Li J, Dong Z, Chin YE, Fu X, Wu L, Chang Z. Absence of GdX/UBL4A Protects against Inflammatory Diseases by Regulating NF-кB Signaling in Macrophages and Dendritic Cells. Am J Cancer Res 2019; 9:1369-1384. [PMID: 30867837 PMCID: PMC6401509 DOI: 10.7150/thno.32451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) activation is critical for innate immune responses. However, cellular-intrinsic regulation of NF-κB activity during inflammatory diseases remains incompletely understood. Ubiquitin-like protein 4A (UBL4A, GdX) is a small adaptor protein involved in protein folding, biogenesis and transcription. Yet, whether GdX has a role during innate immune response is largely unknown. Methods: To investigate the involvement of GdX in innate immunity, we challenged GdX-deficient mice with lipopolysaccharides (LPS). To investigate the underlying mechanism, we performed RNA sequencing, real-time PCR, ELISA, luciferase reporter assay, immunoprecipitation and immunoblot analyses, flow cytometry, and structure analyses. To investigate whether GdX functions in inflammatory bowel disease, we generated dendritic cell (DC), macrophage (Mφ), epithelial-cell specific GdX-deficient mice and induced colitis with dextran sulfate sodium. Results: GdX enhances DC and Mφ-mediated innate immune defenses by positively regulating NF-κB signaling. GdX-deficient mice were resistant to LPS-induced endotoxin shock and DSS-induced colitis. DC- or Mφ- specific GdX-deficient mice displayed alleviated mucosal inflammation. The production of pro-inflammatory cytokines by GdX-deficient DCs and Mφ was reduced. Mechanistically, we found that tyrosine-protein phosphatase non-receptor type 2 (PTPN2, TC45) and protein phosphatase 2A (PP2A) form a complex with RelA (p65) to mediate its dephosphorylation whereas GdX interrupts the TC45/PP2A/p65 complex formation and restrict p65 dephosphorylation by trapping TC45. Conclusion: Our study provides a mechanism by which NF-κB signaling is positively regulated by an adaptor protein GdX in DC or Mφ to maintain the innate immune response. Targeting GdX could be a strategy to reduce over-activated immune response in inflammatory diseases.
Collapse
|
25
|
Chen Y, Zhu D, Gao J, Xu Z, Tao S, Yin W, Zhang Y, Gao Y, Zhang C. Diminished membrane recruitment of Akt is instrumental in alcohol‐associated osteopenia via thePTEN/Akt/GSK‐3β/β‐catenin axis. FEBS J 2019; 286:1101-1119. [PMID: 30656849 DOI: 10.1111/febs.14754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Xuan Chen
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Dao‐Yu Zhu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Junjie Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Zheng‐Liang Xu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Shi‐Cong Tao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Wen‐Jing Yin
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yue‐Lei Zhang
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - You‐Shui Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Chang‐Qing Zhang
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Institute of Microsurgery on Extremities Shanghai China
| |
Collapse
|
26
|
Benarroch R, Austin JM, Ahmed F, Isaacson RL. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:265-313. [PMID: 30635083 PMCID: PMC7102839 DOI: 10.1016/bs.apcsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SGTA is a co-chaperone that, in collaboration with the complex of BAG6/UBL4A/TRC35, facilitates the biogenesis and quality control of hydrophobic proteins, protecting them from the aqueous cytosolic environment. This work includes targeting tail-anchored proteins to their resident membranes, sorting of membrane and secretory proteins that mislocalize to the cytoplasm and endoplasmic reticulum-associated degradation of misfolded proteins. Since these functions are all vital for the cell's continued proteostasis, their disruption poses a threat to the cell, with a particular risk of protein aggregation, a phenomenon that underpins many diseases. Although the specific disease implications of machinery involved in quality control of hydrophobic substrates are poorly understood, here we summarize much of the available information on this topic.
Collapse
Affiliation(s)
- Rashi Benarroch
- Department of Chemistry, King's College London, London, United Kingdom
| | - Jennifer M Austin
- Department of Chemistry, King's College London, London, United Kingdom
| | - Fahmeda Ahmed
- Department of Chemistry, King's College London, London, United Kingdom
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
27
|
Crosstalk in transition: the translocation of Akt. J Math Biol 2018; 78:919-942. [PMID: 30306249 DOI: 10.1007/s00285-018-1297-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Akt/PKB is an important crosstalk node at the junction between a number of major signalling pathways in the mammalian cell. As a significant nutrient sensor, Akt plays a central role in many cellular processes, including cell growth, cell survival and glucose metabolism. The dysregulation of Akt signalling is implicated in the development of many diseases, from diabetes to cancer. The translocation of Akt from cytosol to plasma membrane is a crucial step in Akt activation. Akt is initially synthesized on the endoplasmic reticulum, but translocates to the plasma membrane (PM) in response to insulin stimulation, where it may be activated. The Akt is then recycled to the cytoplasm. The activated Akt may propagate signals to downstream substrates both at the PM and in the cytosol, hence understanding the translocation dynamics is an important step in dissecting the signalling system. At the present time, however, knowledge concerning the translocation of either activated and unactivated Akt is scant. Here we present a simple, deterministic, three-compartment ordinary differential equation model of Akt translocation in vitro. This model can reproduce the salient features of Akt translocation in a manner consistent with the experimental data. Furthermore, we demonstrate that this system is equivalent to a damped harmonic oscillator, and analyse the steady state and transient behaviour of the model over the entire parameter space.
Collapse
|
28
|
The C-terminus of Ubl4A is critical for pro-death activity and association with the Arp2/3 complex. Biochem Biophys Res Commun 2018; 503:3192-3197. [PMID: 30146258 DOI: 10.1016/j.bbrc.2018.08.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 11/23/2022]
Abstract
Ubl4A is a small ubiquitin-like protein involved in diverse cellular functions. We have shown that Ubl4A is critical for survival of the starvation-mediated cell death in vivo. The underlying mechanism for this is through interaction with the actin-related protein Arp2/3 complex and promotion of actin branching. Interestingly, "put-back" of Ubl4A to Ubl4A-deficient cells also results in cell death. Removal of the Ubl4A N-terminus significantly enhances its cytotoxicity, indicating that the pro-death activity of Ubl4A is mainly from its C-terminal region. In vitro protein pull-down assays show that the C-terminal region of Ubl4A can directly interact with the Arp2/3 complex. The single point mutation of an aspartic acid to alanine (D122A) in the Ubl4A C-terminus abolishes its ability to bind the Arp2/3 complex. This mutation also destabilizes Ubl4A proteins susceptible to protease degradation. Importantly, ectopic expression of wild-type Ubl4A can induce cell death in colon cancer cells, but such pro-death activity is diminished in the D122A mutant. These data suggest that Ubl4A C-terminus, especially D122, is critical for Ubl4A-Arp2/3 interaction and its pro-death function.
Collapse
|
29
|
Khanna P, Lee JS, Sereemaspun A, Lee H, Baeg GH. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep 2018; 8:9511. [PMID: 29934528 PMCID: PMC6015000 DOI: 10.1038/s41598-018-27864-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore
| | - Joan Shuying Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore
| | - Amornpun Sereemaspun
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
30
|
Nair VS, Gu C, Janoshazi AK, Jessen HJ, Wang H, Shears SB. Inositol Pyrophosphate Synthesis by Diphosphoinositol Pentakisphosphate Kinase-1 is Regulated by Phosphatidylinositol(4,5)bisphosphate. Biosci Rep 2018; 38:BSR20171549. [PMID: 29459425 PMCID: PMC5857911 DOI: 10.1042/bsr20171549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/17/2022] Open
Abstract
5-diphosphoinositol tetrakisphosphate (5-InsP7) and bisdiphosphoinositol tetrakisphosphate (InsP8) are 'energetic' inositol pyrophosphate signaling molecules that regulate bioenergetic homeostasis. Inositol pyrophosphate levels are regulated by diphosphoinositol pentakisphosphate kinases (PPIP5Ks); these are large modular proteins that host a kinase domain (which phosphorylates 5-InsP7 to InsP8), a phosphatase domain that catalyzes the reverse reaction, and a polyphosphoinositide-binding domain (PBD). Here, we describe new interactions between these three domains in the context of full-length human PPIP5K1. We determine that InsP7 kinase activity is dominant when PPIP5K1 is expressed in intact cells; in contrast, we found that InsP8 phosphatase activity prevails when the enzyme is isolated from its cellular environment. We approach a reconciliation of this disparity by showing that cellular InsP8 phosphatase activity is inhibited by C8-PtdIns(4,5)P2 (IC50 approx. 40 ìM). We recapitulate this phosphatase inhibition with natural PtdIns(4,5)P2 that was incorporated into large unilamellar vesicles. Additionally, PtdIns(4,5)P2 increases net InsP7 kinase activity 5-fold. We oftlinedemonstrate that PtdIns(4,5)P2 is not itself a phosphatase substrate; its inhibition of InsP8 phosphatase activity results from an unusual, functional overlap between the phosphatase domain and the PBD. Finally, we discuss the significance of PtdIns(4,5)P2 as a novel regulator of PPIP5K1, in relation to compartmentalization of InsP7/InsP8 signaling in vivo.
Collapse
Affiliation(s)
- Vasudha S Nair
- NIEHS, Research Triangle Park, North Carolina, United States
| | - Chunfang Gu
- NIEHS, Research Triangle Park, North Carolina, United States
| | | | | | - Huanchen Wang
- NIEHS, Research Triangle Park, North Carolina, United States
| | | |
Collapse
|
31
|
Tee SS, Suster I, Truong S, Jeong S, Eskandari R, DiGialleonardo V, Alvarez JA, Aldeborgh HN, Keshari KR. Targeted AKT Inhibition in Prostate Cancer Cells and Spheroids Reduces Aerobic Glycolysis and Generation of Hyperpolarized [1- 13C] Lactate. Mol Cancer Res 2018; 16:453-460. [PMID: 29330287 PMCID: PMC6662159 DOI: 10.1158/1541-7786.mcr-17-0458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is frequently mutated in prostate cancer. Specific AKT inhibitors are now in advanced clinical trials, and this study investigates the effect of MK2206, a non-ATP-competitive inhibitor, on the cellular metabolism of prostate cancer cells. We observed a reduction in cell motility and aerobic glycolysis in prostate cancer cells with treatment. These changes were not accompanied by a reduction in the ratio of high-energy phosphates or a change in total protein levels of enzymes and transporters involved in glycolysis. However, a decreased ratio of NAD+/NADH was observed, motivating the use of hyperpolarized magnetic resonance spectroscopy (HP-MRS) to detect treatment response. Spectroscopic experiments were performed on tumor spheroids, 3D structures that self-organize in the presence of an extracellular matrix. Treated spheroids showed decreased lactate production with on-target inhibition confirmed using IHC, demonstrating that HP-MRS can be used to probe treatment response in prostate cancer spheroids and can provide a biomarker for treatment response. Mol Cancer Res; 16(3); 453-60. ©2018 AACR.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Izabela Suster
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Sangmoo Jeong
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roozbeh Eskandari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valentina DiGialleonardo
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hannah N Aldeborgh
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
32
|
Liang J, Li J, Fu Y, Ren F, Xu J, Zhou M, Li P, Feng H, Wang Y. GdX/UBL4A null mice exhibit mild kyphosis and scoliosis accompanied by dysregulation of osteoblastogenesis and chondrogenesis. Cell Biochem Funct 2018; 36:129-136. [DOI: 10.1002/cbf.3324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jiao Liang
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Yanxia Fu
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
- Tsinghua University-Perking University Joint Center for Life Sciences; Beijing China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Jiake Xu
- School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| | - Mengyu Zhou
- Department of Dentistry; The First Affiliated Hospital of Guangxi Medical University; Nanning China
| | - Peiyu Li
- The General Hospital of the People's Liberation Army; Beijing China
| | - Haotian Feng
- Research Centre for Regenerative Medicine; Guangxi Medical University; Nanning China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| |
Collapse
|
33
|
Li Y, Qiu J, Pang T, Guo Z, Su Y, Zeng Q, Zhang X. Restoration of Arpin suppresses aggressive phenotype of breast cancer cells. Biomed Pharmacother 2017; 92:116-121. [PMID: 28531800 DOI: 10.1016/j.biopha.2017.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 01/20/2023] Open
Abstract
Arpin, a negative regulator of the actin-related protein-2/3 (Arp2/3) complex, is downregulated and predicts poor prognosis in breast cancer patients. However, its biological relevance in breast cancer is still unclear. This study was conducted to investigate the roles of Arpin in breast cancer growth and invasion. We overexpressed Arpin expression in MCF-7 and MDA-MB-231 breast cancer cells and examined the effects of restoration of Arpin on cell proliferation, colony formation, cell cycle distribution, invasion in vitro and tumorigenesis in vivo. The related molecular mechanism(s) was determined. It was found that ectopic expression of Arpin significantly decreased cell proliferation, colony formation, and tumorigenicity. Flow cytometric analysis showed that overexpression of Arpin significantly increased the percentage of G0/G1-phase cells and decreased the percentage of S-phase cells. Moreover, restoration of Arpin impaired the invasiveness of breast cancer cells, as determined by Transwell invasion assays. Mechanistically, overexpression of Arpin inhibited the phosphorylation of Akt in breast cancer cells. Co-expression of a constitutively active form of Akt blunted the suppression of cell proliferation and invasion by Arpin. Taken together, we provide evidence that Arpin acts as a tumor suppressor in breast cancer, which is associated with inhibition of Akt signaling. Restoration of Arpin may represent a promising therapeutic strategy against breast cancer progression.
Collapse
Affiliation(s)
- Yi Li
- Department of General Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jiliang Qiu
- Department of Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Pang
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhixing Guo
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yonghui Su
- Department of General Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Qingan Zeng
- Department of General Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xuexia Zhang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
34
|
Deficiency in ubiquitin-like protein Ubl4A impairs migration of fibroblasts and macrophages. Biochem Biophys Res Commun 2016; 483:617-623. [PMID: 27998771 DOI: 10.1016/j.bbrc.2016.12.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022]
Abstract
Ubiquitin-like protein Ubl4A is a small, multi-functional protein with no ubiquitination activity. We have previously demonstrated that Ubl4A directly interacts with actin-related protein 2/3 complex (Arp2/3) and promotes Arp2/3-dependent actin branching, thereby accelerating plasma membrane translocation of protein kinase Akt upon insulin stimulation. Here, we show that Ubl4A is critical for plasma membrane protrusion and cell migration. Ubl4A, F-actin and Arp2/3 are co-localized at the cell leading edges during wound closure. Knockout of Ubl4A significantly reduces actin-mediated membrane protrusion and delays wound healing by primary mouse embryonic fibroblasts. Consistently, the ability of fibroblasts to migrate out of corneal tissue ex vivo is also impaired in Ubl4A-deficient mice. Furthermore, cell motility, but not phagocytosis, is significantly decreased in Ubl4A-deficient macrophages compared with wild-type controls. These results imply an important role for Ubl4A in cell migration-associated pathophysiological processes.
Collapse
|
35
|
Gómez-Salinero JM, López-Olañeta MM, Ortiz-Sánchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro-Lérida I, Del Pozo MÁ, García-Pavía P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E. The Calcineurin Variant CnAβ1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol 2016; 23:1372-1382. [PMID: 27746127 DOI: 10.1016/j.chembiol.2016.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aβ variant CnAβ1 in mouse ESCs (mESC). CnAβ1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAβ1 regulates the intracellular localization and activation of the mTORC2 complex. CnAβ1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3β/β-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAβ1 and its role in the differentiation of mESCs to the mesodermal lineage.
Collapse
Affiliation(s)
- Jesús M Gómez-Salinero
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marina M López-Olañeta
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paula Ortiz-Sánchez
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Javier Larrasa-Alonso
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Alberto Gatto
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK; NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London SW7 2AZ, UK
| | - Inmaculada Navarro-Lérida
- Vascular Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Ángel Del Pozo
- Vascular Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Balaji Sundararaman
- Sanford Consortium for Regenerative Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Giovanna Giovinazo
- Pluripotent Cell Technology Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Gene W Yeo
- Sanford Consortium for Regenerative Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Enrique Lara-Pezzi
- Myocardial Pathophysiology Program, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Pedraz-Cuesta E, Fredsted J, Jensen HH, Bornebusch A, Nejsum LN, Kragelund BB, Pedersen SF. Prolactin Signaling Stimulates Invasion via Na(+)/H(+) Exchanger NHE1 in T47D Human Breast Cancer Cells. Mol Endocrinol 2016; 30:693-708. [PMID: 27176613 DOI: 10.1210/me.2015-1299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.
Collapse
Affiliation(s)
- Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jacob Fredsted
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Helene H Jensen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Annika Bornebusch
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lene N Nejsum
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Birthe B Kragelund
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
The Akt switch model: Is location sufficient? J Theor Biol 2016; 398:103-11. [PMID: 26992575 DOI: 10.1016/j.jtbi.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Akt/PKB is a biochemical regulator that functions as an important cross-talk node between several signalling pathways in the mammalian cell. In particular, Akt is a key mediator of glucose transport in response to insulin. The phosphorylation (activation) of only a small percentage of the Akt pool of insulin-sensitive cells results in maximal translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This enables the diffusion of glucose into the cell. The dysregulation of Akt signalling is associated with the development of diabetes, cancer and cardiovascular disease. Akt is synthesised in the cytoplasm in the inactive state. Under the influence of insulin, it moves to the PM, where it is phosphorylated to form pAkt. Although phosphorylation occurs only at the PM, pAkt is found in many cellular locations, including the PM, the cytoplasm, and the nucleus. Indeed, the spatial distribution of pAkt within the cell appears to be an important determinant of downstream regulation. Here we present a simple, linear, four-compartment ordinary differential equation (ODE) model of Akt activation that tracks both the biochemical state and the physical location of Akt. This model embodies the main features of the activation of this important cross-talk node and is consistent with the experimental data. In particular, it allows different downstream signalling motifs without invoking separate feedback pathways. Moreover, the model is computationally tractable, readily analysed, and elucidates some of the apparent anomalies in insulin signalling via Akt.
Collapse
|