1
|
Sobhy H, De Rovere M, Ait-Ammar A, Kashif M, Wallet C, Daouad F, Loustau T, Van Lint C, Schwartz C, Rohr O. BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195065. [PMID: 39455000 DOI: 10.1016/j.bbagrm.2024.195065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders. IMPORTANCE: BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression. BCL11b interacts with RNA processing and splicing proteins.
Collapse
Affiliation(s)
- Haitham Sobhy
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| | - Marco De Rovere
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Amina Ait-Ammar
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France; Université Libre de Bruxelles, ULB, Gosselies, Belgium
| | - Muhammad Kashif
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | | | - Christian Schwartz
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
2
|
Scordino M, Stepanova P, Srinivasan V, Pham DD, Eriksson O, Lalowski M, Mudò G, Di Liberto V, Korhonen L, Voutilainen MH, Lindholm D. CNPY2 protects against ER stress and is expressed by corticostriatal neurons together with CTIP2 in a mouse model of Huntington's disease. Front Mol Neurosci 2024; 17:1473058. [PMID: 39359687 PMCID: PMC11446244 DOI: 10.3389/fnmol.2024.1473058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Canopy Homolog 2 (CNPY2) is an endoplasmic reticulum (ER) localized protein belonging to the CNPY gene family. We show here that CNPY2 is protective against ER stress induced by tunicamycin in neuronal cells. Overexpression of CNPY2 enhanced, while downregulation of CNPY2 using shRNA expression, reduced the viability of neuroblastoma cells after tunicamycin. Likewise, recombinant CNPY2 increased survival of cortical neurons in culture after ER stress. CNPY2 reduced the activating transcription factor 6 (ATF6) branch of ER stress and decreased the expression of CCAT/Enhancer-Binding Protein Homologous Protein (CHOP) involved in cell death. Immunostaining using mouse brain sections revealed that CNPY2 is expressed by cortical and striatal neurons and is co-expressed with the transcription factor, COUPTF-interacting protein 2 (CTIP2). In transgenic N171-82Q mice, as a model for Huntington's disease (HD), the number of CNPY2-immunopositive neurons was increased in the cortex together with CTIP2. In the striatum, however, the number of CNPY2 decreased at 19 weeks of age, representing a late-stage of pathology. Striatal cells in culture were shown to be more susceptible to ER stress after downregulation of CNPY2. These results demonstrate that CNPY2 is expressed by corticostriatal neurons involved in the regulation of movement. CNPY2 enhances neuronal survival by reducing ER stress and is a promising factor to consider in HD and possibly in other brain diseases.
Collapse
Affiliation(s)
- Miriana Scordino
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | | | - Vignesh Srinivasan
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Dan Duc Pham
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biochemistry, Adam Mickiewicz University, Poznań, Poland
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Zhou Y, Chapagain P, Desmarini D, Uredi D, Rameh LE, Djordjevic JT, Blind RD, Wang X. Design, synthesis and cellular characterization of a new class of IPMK kinase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593371. [PMID: 38798512 PMCID: PMC11118372 DOI: 10.1101/2024.05.09.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many genetic studies have established the kinase activity of inositol phosphate multikinase (IPMK) is required for the synthesis of higher-order inositol phosphate signaling molecules, the regulation of gene expression and control of the cell cycle. These genetic studies await orthogonal validation by specific IPMK inhibitors, but no such inhibitors have been synthesized. Here, we report complete chemical synthesis, cellular characterization, structure-activity relationships and rodent pharmacokinetics of a novel series of highly potent IPMK inhibitors. The first-generation compound 1 (UNC7437) decreased cellular proliferation and tritiated inositol phosphate levels in metabolically labeled human U251-MG glioblastoma cells. Compound 1 also regulated the transcriptome of these cells, selectively regulating genes that are enriched in cancer, inflammatory and viral infection pathways. Further optimization of compound 1 eventually led to compound 15 (UNC9750), which showed improved potency and pharmacokinetics in rodents. Compound 15 specifically inhibited cellular accumulation of InsP 5 , a direct product of IPMK kinase activity, while having no effect on InsP 6 levels, revealing a novel metabolic signature detected for the first time by rapid chemical attenuation of cellular IPMK activity. These studies designed, optimized and synthesized a new series of IPMK inhibitors, which reduces glioblastoma cell growth, induces a novel InsP 5 metabolic signature, and reveals novel aspects inositol phosphate cellular metabolism and signaling.
Collapse
|
4
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
5
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
6
|
Tyagi R, Chakraborty S, Tripathi SJ, Jung IR, Kim SF, Snyder SH, Paul BD. Inositol polyphosphate multikinase modulates redox signaling through nuclear factor erythroid 2-related factor 2 and glutathione metabolism. iScience 2023; 26:107199. [PMID: 37456841 PMCID: PMC10345128 DOI: 10.1016/j.isci.2023.107199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Maintenance of redox balance plays central roles in a plethora of signaling processes. Although physiological levels of reactive oxygen and nitrogen species are crucial for functioning of certain signaling pathways, excessive production of free radicals and oxidants can damage cell components. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling cascade is the key pathway that mediates cellular response to oxidative stress. It is controlled at multiple levels, which serve to maintain redox homeostasis within cells. We show here that inositol polyphosphate multikinase (IPMK) is a modulator of Nrf2 signaling. IPMK binds Nrf2 and attenuates activation and expression of Nrf2 target genes. Furthermore, depletion of IPMK leads to elevated glutathione and cysteine levels, resulting in increased resistance to oxidants. Accordingly, targeting IPMK may restore redox balance under conditions of cysteine and glutathione insufficiency.
Collapse
Affiliation(s)
- Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ik-Rak Jung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sangwon F. Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Fjodorova M, Noakes Z, De La Fuente DC, Errington AC, Li M. Dysfunction of cAMP-Protein Kinase A-Calcium Signaling Axis in Striatal Medium Spiny Neurons: A Role in Schizophrenia and Huntington's Disease Neuropathology. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:418-429. [PMID: 37519464 PMCID: PMC10382711 DOI: 10.1016/j.bpsgos.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Striatal medium spiny neurons (MSNs) are preferentially lost in Huntington's disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington's disease and identified as a candidate risk gene in schizophrenia. Methods Using human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published genome-wide association study datasets identified cell type-specific disease-related phenotypes. Results We uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and PKA (protein kinase A)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling. Conclusions Our study indicates that Huntington's disease and schizophrenia are likely to share neuronal pathophysiology where dysregulation of intracellular calcium homeostasis is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.
Collapse
Affiliation(s)
- Marija Fjodorova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel C. De La Fuente
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Adam C. Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol 2023:10.1111/bph.16170. [PMID: 37338307 PMCID: PMC10730776 DOI: 10.1111/bph.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The gaseous neurotransmitter hydrogen sulfide (H2 S) exerts neuroprotective efficacy in the brain via post-translational modification of cysteine residues by sulfhydration, also known as persulfidation. This process is comparable in biological impact to phosphorylation and mediates a variety of signalling events. Unlike conventional neurotransmitters, H2 S cannot be stored in vesicles due to its gaseous nature. Instead, it is either locally synthesized or released from endogenous stores. Sulfhydration affords both specific and general neuroprotective effects and is critically diminished in several neurodegenerative disorders. Conversely, some forms of neurodegenerative disease are linked to excessive cellular H2 S. Here, we review the signalling roles of H2 S across the spectrum of neurodegenerative diseases, including Huntington's disease, Parkinson's disease, Alzheimer's disease, Down syndrome, traumatic brain injury, the ataxias, and amyotrophic lateral sclerosis, as well as neurodegeneration generally associated with ageing.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, USA
- School of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, Ohio, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Ramesh V, Suwanmajo T, Krishnan J. Network regulation meets substrate modification chemistry. J R Soc Interface 2023; 20:20220510. [PMID: 36722169 PMCID: PMC9890324 DOI: 10.1098/rsif.2022.0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Biochemical networks are at the heart of cellular information processing. These networks contain distinct facets: (i) processing of information from the environment via cascades/pathways along with network regulation and (ii) modification of substrates in different ways, to confer protein functionality, stability and processing. While many studies focus on these factors individually, how they interact and the consequences for cellular systems behaviour are poorly understood. We develop a systems framework for this purpose by examining the interplay of network regulation (canonical feedback and feed-forward circuits) and multisite modification, as an exemplar of substrate modification. Using computational, analytical and semi-analytical approaches, we reveal distinct and unexpected ways in which the substrate modification and network levels combine and the emergent behaviour arising therefrom. This has important consequences for dissecting the behaviour of specific signalling networks, tracing the origins of systems behaviour, inference of networks from data, robustness/evolvability and multi-level engineering of biomolecular networks. Overall, we repeatedly demonstrate how focusing on only one level (say network regulation) can lead to profoundly misleading conclusions about all these aspects, and reveal a number of important consequences for experimental/theoretical/data-driven interrogations of cellular signalling systems.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thapanar Suwanmajo
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
10
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Paul BD. Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease. Free Radic Biol Med 2022; 186:93-98. [PMID: 35550919 PMCID: PMC10066926 DOI: 10.1016/j.freeradbiomed.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The semi-essential amino acid, cysteine, plays important roles in both essential cellular processes as well as in modulation of signaling cascades. Cysteine is obtained both from the diet as well as generated endogenously via the transsulfuration pathway. Cysteine is further utilized in protein synthesis and biosynthesis of various sulfur containing molecules. One of the products of cysteine catabolism, hydrogen sulfide (H2S), is a gaseous signaling molecule, which regulates a multitude of cellular processes. Cysteine metabolism is dysregulated in several neurodegenerative diseases and during aging. This minireview focuses on aberrant cysteine and H2S metabolism in Huntington's disease, a neurodegenerative disease caused by expansion of polyglutamine encoding repeats in the gene huntingtin, which leads to motor and cognitive deficits.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Paul BD. Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants (Basel) 2021; 10:antiox10091468. [PMID: 34573100 PMCID: PMC8465517 DOI: 10.3390/antiox10091468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is caused by expansion of polyglutamine repeats in the protein huntingtin, which affects the corpus striatum of the brain. The polyglutamine repeats in mutant huntingtin cause its aggregation and elicit toxicity by affecting several cellular processes, which include dysregulated organellar stress responses. The Golgi apparatus not only plays key roles in the transport, processing, and targeting of proteins, but also functions as a sensor of stress, signaling through the Golgi stress response. Unlike the endoplasmic reticulum (ER) stress response, the Golgi stress response is relatively unexplored. This review focuses on the molecular mechanisms underlying the Golgi stress response and its intersection with cysteine metabolism in HD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Lee B, Park SJ, Hong S, Kim K, Kim S. Inositol Polyphosphate Multikinase Signaling: Multifaceted Functions in Health and Disease. Mol Cells 2021; 44:187-194. [PMID: 33935040 PMCID: PMC8112168 DOI: 10.14348/molcells.2021.0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol phosphates are water-soluble intracellular signaling molecules found in eukaryotes from yeasts to mammals, which are synthesized by a complex network of enzymes including inositol phosphate kinases. Among these, inositol polyphosphate multikinase (IPMK) is a promiscuous enzyme with broad substrate specificity, which phosphorylates multiple inositol phosphates, as well as phosphatidylinositol 4,5-bisphosphate. In addition to its catalytic actions, IPMK is known to non-catalytically control major signaling events via direct protein-protein interactions. In this review, we describe the general characteristics of IPMK, highlight its pleiotropic roles in various physiological and pathological conditions, and discuss future challenges in the field of IPMK signaling pathways.
Collapse
Affiliation(s)
- Boah Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
14
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Dato S, Crocco P, De Rango F, Iannone F, Maletta R, Bruni AC, Saiardi A, Rose G, Passarino G. IP6K3 and IPMK variations in LOAD and longevity: Evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival. Mech Ageing Dev 2021; 195:111439. [PMID: 33497757 DOI: 10.1016/j.mad.2021.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
Several studies reported that genetic variants predisposing to neurodegeneration were at higher frequencies in centenarians than in younger controls, suggesting they might favor also longevity. IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol poly- and pyrophosphates and by acting non-enzymatically via protein-protein interactions. Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and longevity, respectively. Here, in the same sample groups, we investigated whether variants of IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP interaction analysis, including our previous data, highlighted phenotype-specific interactions between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed variants suggested mitochondria as crossroad of interconnected pathways crucial for susceptibility to neurodegeneration and/or longevity. Overall, data support the view that in these traits interactions may be more important than single polymorphisms. This phenomenon may contribute to the non-additive heritability of neurodegeneration and longevity and be part of the missing heritability of these traits.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Raffaele Maletta
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme, Italy.
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme, Italy.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
16
|
Etxeberria-Rekalde E, Alzola-Aldamizetxebarria S, Flunkert S, Hable I, Daurer M, Neddens J, Hutter-Paier B. Quantification of Huntington's Disease Related Markers in the R6/2 Mouse Model. Front Mol Neurosci 2021; 13:617229. [PMID: 33505246 PMCID: PMC7831778 DOI: 10.3389/fnmol.2020.617229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is caused by an expansion of CAG triplets in the huntingtin gene, leading to severe neuropathological changes that result in a devasting and lethal phenotype. Neurodegeneration in HD begins in the striatum and spreads to other brain regions such as cortex and hippocampus, causing motor and cognitive dysfunctions. To understand the signaling pathways involved in HD, animal models that mimic the human pathology are used. The R6/2 mouse as model of HD was already shown to present major neuropathological changes in the caudate putamen and other brain regions, but recently established biomarkers in HD patients were yet not analyzed in these mice. We therefore performed an in-depth analysis of R6/2 mice to establish new and highly translational readouts focusing on Ctip2 as biological marker for motor system-related neurons and translocator protein (TSPO) as a promising readout for early neuroinflammation. Our results validate already shown pathologies like mutant huntingtin aggregates, ubiquitination, and brain atrophy, but also provide evidence for decreased tyrosine hydroxylase and Ctip2 levels as indicators of a disturbed motor system, while vesicular acetyl choline transporter levels as marker for the cholinergic system barely change. Additionally, increased astrocytosis and activated microglia were observed by GFAP, Iba1 and TSPO labeling, illustrating, that TSPO is a more sensitive marker for early neuroinflammation compared to GFAP and Iba1. Our results thus demonstrate a high sensitivity and translational value of Ctip2 and TSPO as new marker for the preclinical evaluation of new compounds in the R6/2 mouse model of HD.
Collapse
Affiliation(s)
| | | | | | - Isabella Hable
- QPS Austria GmbH, Grambach, Austria.,Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | | | | | | |
Collapse
|
17
|
Yang ZL, Chen JN, Lu YY, Lu M, Wan QL, Wu GS, Luo HR. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans. Cell Calcium 2020; 93:102327. [PMID: 33316585 DOI: 10.1016/j.ceca.2020.102327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.
Collapse
Affiliation(s)
- Zhong-Lin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China
| | - Jian-Ning Chen
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu-Yang Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Min Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin-Li Wan
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
18
|
Randez-Gil F, Bojunga L, Estruch F, Winderickx J, Del Poeta M, Prieto JA. Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Front Cell Dev Biol 2020; 8:592159. [PMID: 33282871 PMCID: PMC7705114 DOI: 10.3389/fcell.2020.592159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperphosphorylation of protein tau is a hallmark of Alzheimer's disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altered tau phosphorylation. Lack of inositol hexakisphosphate kinases Kcs1 and Vip1 (IP6 and IP7 kinases in mammals) increased tau hyperphosphorylation. Similar effects were found by mutation of IPK2 (inositol polyphosphate multikinase), or PLC1, the yeast phospholipase C gene. These effects may be explained by IP-mediated regulation of Pho85. Indeed, this appeared to be the case for plc1, ipk2, and kcs1. However, the effects of Vip1 on tau phosphorylation were independent of the presence of Pho85, suggesting additional mechanisms. Interestingly, kcs1 and vip1 strains, like pho85, displayed dysregulated sphingolipid (SL) metabolism. Moreover, genetic and pharmacological inhibition of SL biosynthesis stimulated the appearance of hyperphosphorylated forms of tau, while increased flux through the pathway reduced its abundance. Finally, we demonstrated that Sit4, the yeast ortholog of human PP2A protein phosphatase, is a downstream effector of SL signaling in mediating the tau phosphorylation state. Altogether, our results add new knowledge on the molecular effectors involved in tauopathies and identify new targets for pharmacological intervention.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lino Bojunga
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | | | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
19
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
20
|
Structural analyses of inositol phosphate second messengers bound to signaling effector proteins. Adv Biol Regul 2019; 75:100667. [PMID: 31648945 DOI: 10.1016/j.jbior.2019.100667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
The higher-order inositol phosphate second messengers inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) are important signaling molecules that regulate DNA-damage repair, cohesin dynamics, RNA-editing, retroviral assembly, nuclear transport, phosphorylation, acetylation, crotonylation, and ubiquitination. This functional diversity has made understanding how inositol polyphosphates regulate cellular processes challenging to dissect. However, some inositol phosphates have been unexpectedly found in X-ray crystal structures, occasionally revealing structural and mechanistic details of effector protein regulation before functional consequences have been described. This review highlights a sampling of crystal structures describing the interaction between inositol phosphates and protein effectors. This list includes the RNA editing enzyme "adenosine deaminase that acts on RNA 2" (ADAR2), the Pds5B regulator of cohesin dynamics, the class 1 histone deacetylases (HDACs) HDAC1 and HDAC3, and the PH domain of Bruton's tyrosine kinase (Btk). One of the most important enzymes responsible for higher-order inositol phosphate synthesis is inositol polyphosphate multikinase (IPMK), which plays dual roles in both inositol and phosphoinositide signaling. Structures of phosphoinositide lipid binding proteins have also revealed new aspects of protein effector regulation, as mediated by the nuclear receptors Steroidogenic Factor-1 (SF-1, NR5A2) and Liver Receptor Homolog-1 (LRH-1, NR5A2). Together, these studies underscore the structural diversity in binding interactions between effector proteins and inositol phosphate small signaling molecules, and further support that detailed structural studies can lead to new biological discovery.
Collapse
|
21
|
Niu L, Ye C, Sun Y, Peng T, Yang S, Wang W, Li H. Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease. Cell Biosci 2018; 8:41. [PMID: 30002810 PMCID: PMC6033216 DOI: 10.1186/s13578-018-0239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron accumulation in basal ganglia accompanies neuronal loss in Huntington’s disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis. Methods N171-82Q HD transgenic mice brain iron was detected by using Diaminobenzidine-enhanced Perls’ stain. Iron homeostatic proteins including iron response protein 1 (IRP1), transferrin (Tf), ferritin and transferrin receptor (TfR) were determined by using western blotting and immunohistochemistry, and their relative expression levels of RNA were measured by RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing N-terminal of huntingtin. Results Iron was increased in striatum and cortex of N171-82Q HD transgenic mice. Analysis of iron homeostatic proteins revealed increased expression of IRP1, Tf, ferritin and TfR in N171-82Q mice striatum and cortex. The same results were obtained in HEK293 cells expressing N-terminal of mutant huntingtin containing 160 CAG repeats. Conclusion We conclude that mutant huntingtin may cause abnormal iron homeostatic pathways by increasing IRP1 expression in Huntington’s disease, suggesting potential therapeutic target.
Collapse
Affiliation(s)
- Li Niu
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Cuifang Ye
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Yun Sun
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Ting Peng
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Shiming Yang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Weixi Wang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - He Li
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| |
Collapse
|
22
|
Ramazzotti G, Billi AM, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, Kim S, Suh PG, Cocco L, Faenza I. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget 2018; 7:84118-84127. [PMID: 27563828 PMCID: PMC5356648 DOI: 10.18632/oncotarget.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
In previous studies, we have reported that phospholipase C (PLC)-β1 plays a crucial role in myogenic differentiation and we determined the importance of its catalytic activity for the initiation of this process. Here we define the effectors that take part to its signaling pathway. We show that the Inositol Polyphosphate Multikinase (IPMK) is able to promote myogenic differentiation since its overexpression determines the up-regulation of several myogenic markers. Moreover, we demonstrate that IPMK activates the same cyclin D3 promoter region targeted by PLC-β1 and that IPMK-induced promoter activation relies upon c-jun binding to the promoter, as we have shown previously for PLC-β1. Furthermore, our data shows that IPMK overexpression causes an increase in β-catenin translocation and accumulation to the nuclei of differentiating myoblasts resulting in higher MyoD activation. Finally, we describe that PLC-β1 overexpression determines too an increase in β-catenin translocation and that PLC-β1, IPMK and β-catenin are mediators of the same signaling pathway since their overexpression results in cyclin D3 and myosin heavy chain (MYH) induction.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Mazzetti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Ruggeri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Seyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A 2018; 115:E762-E771. [PMID: 29311338 DOI: 10.1073/pnas.1715865115] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that early neurodevelopmental defects in Huntington's disease (HD) patients could contribute to the later adult neurodegenerative phenotype. Here, by using HD-derived induced pluripotent stem cell lines, we report that early telencephalic induction and late neural identity are affected in cortical and striatal populations. We show that a large CAG expansion causes complete failure of the neuro-ectodermal acquisition, while cells carrying shorter CAGs repeats show gross abnormalities in neural rosette formation as well as disrupted cytoarchitecture in cortical organoids. Gene-expression analysis showed that control organoid overlapped with mature human fetal cortical areas, while HD organoids correlated with the immature ventricular zone/subventricular zone. We also report that defects in neuroectoderm and rosette formation could be rescued by molecular and pharmacological approaches leading to a recovery of striatal identity. These results show that mutant huntingtin precludes normal neuronal fate acquisition and highlights a possible connection between mutant huntingtin and abnormal neural development in HD.
Collapse
|
24
|
Wang H, Shears SB. Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities. J Biol Chem 2017; 292:18192-18202. [PMID: 28882892 DOI: 10.1074/jbc.m117.801845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 01/17/2023] Open
Abstract
Human inositol phosphate multikinase (HsIPMK) critically contributes to intracellular signaling through its inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) 3-kinase activities. This catalytic profile is not conserved; orthologs from Arabidopsis thaliana and Saccharomyces cerevisiae are predominantly Ins(1,4,5)P3 6-kinases, and the plant enzyme cannot phosphorylate PtdIns(4,5)P2 Therefore, crystallographic analysis of the yeast and plant enzymes, without bound inositol phosphates, do not structurally rationalize HsIPMK activities. Here, we present 1.6-Å resolution crystal structures of HsIPMK in complex with either Ins(1,4,5)P3 or PtdIns(4,5)P2 The Ins(1,4,5)P3 headgroup of PtdIns(4,5)P2 binds in precisely the same orientation as free Ins(1,4,5)P3 itself, indicative of evolutionary optimization of 3-kinase activities against both substrates. We report on nucleotide binding between the separate N- and C-lobes of HsIPMK. The N-lobe exhibits a remarkable degree of conservation with protein kinase A (root mean square deviation = 1.8 Å), indicating common ancestry. We also describe structural features unique to HsIPMK. First, we observed a constrained, horseshoe-shaped substrate pocket, formed from an α-helix, a 310 helix, and a recently evolved tri-proline loop. We further found HsIPMK activities rely on a preponderance of Gln residues, in contrast to the larger Lys and Arg residues in yeast and plant orthologs. These conclusions are supported by analyzing 14 single-site HsIPMK mutants, some of which differentially affect 3-kinase and 6-kinase activities. Overall, we structurally rationalize phosphorylation of Ins(1,4,5)P3 and PtdIns(4,5)P2 by HsIPMK.
Collapse
Affiliation(s)
- Huanchen Wang
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Stephen B Shears
- From the Inositol Signaling Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
25
|
Kawarai T, Morigaki R, Kaji R, Goto S. Clinicopathological Phenotype and Genetics of X-Linked Dystonia-Parkinsonism (XDP; DYT3; Lubag). Brain Sci 2017; 7:brainsci7070072. [PMID: 28672841 PMCID: PMC5532585 DOI: 10.3390/brainsci7070072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
X-linked dystonia–parkinsonism (XDP; OMIM314250), also referred to as DYT3 dystonia or “Lubag” disease, was first described as an endemic disease in the Philippine island of Panay. XDP is an adult-onset movement disorder characterized by progressive and severe dystonia followed by overt parkinsonism in the later years of life. Among the primary monogenic dystonias, XDP has been identified as a transcriptional dysregulation syndrome with impaired expression of the TAF1 (TATA box-binding protein associated factor 1) gene, which is a critical component of the cellular transcription machinery. The major neuropathology of XDP is progressive neuronal loss in the neostriatum (i.e., the caudate nucleus and putamen). XDP may be used as a human disease model to elucidate the pathomechanisms by which striatal neurodegeneration leads to dystonia symptoms. In this article, we introduce recent advances in the understanding of the interplay between pathophysiology and genetics in XDP.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
26
|
Kim E, Ahn H, Kim MG, Lee H, Kim S. The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub. Mol Cells 2017; 40:315-321. [PMID: 28554203 PMCID: PMC5463039 DOI: 10.14348/molcells.2017.0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates (IP4 and IP5), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hyoungjoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Min Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
27
|
Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, McEvoy LK, Witoelar A, Chen CH, Holland D, Brewer JB, Franke A, Dillon WP, Wilson DM, Mukherjee P, Hess CP, Miller Z, Bonham LW, Shen J, Rabinovici GD, Rosen HJ, Miller BL, Hyman BT, Schellenberg GD, Karlsen TH, Andreassen OA, Dale AM, Desikan RS. Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurol 2017; 73:691-7. [PMID: 27088644 DOI: 10.1001/jamaneurol.2016.0150] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Late-onset Alzheimer disease (AD), the most common form of dementia, places a large burden on families and society. Although epidemiological and clinical evidence suggests a relationship between inflammation and AD, their relationship is not well understood and could have implications for treatment and prevention strategies. OBJECTIVE To determine whether a subset of genes involved with increased risk of inflammation are also associated with increased risk for AD. DESIGN, SETTING, AND PARTICIPANTS In a genetic epidemiology study conducted in July 2015, we systematically investigated genetic overlap between AD (International Genomics of Alzheimer's Project stage 1) and Crohn disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis using summary data from genome-wide association studies at multiple academic clinical research centers. P values and odds ratios from genome-wide association studies of more than 100 000 individuals were from previous comparisons of patients vs respective control cohorts. Diagnosis for each disorder was previously established for the parent study using consensus criteria. MAIN OUTCOMES AND MEASURES The primary outcome was the pleiotropic (conjunction) false discovery rate P value. Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer's Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer's Disease Neuroimaging Initiative); and gene expression in AD vs control brains (Gene Expression Omnibus data). RESULTS Eight single-nucleotide polymorphisms (false discovery rate P < .05) were associated with both AD and immune-mediated diseases. Of these, rs2516049 (closest gene HLA-DRB5; conjunction false discovery rate P = .04 for AD and psoriasis, 5.37 × 10-5 for AD, and 6.03 × 10-15 for psoriasis) and rs12570088 (closest gene IPMK; conjunction false discovery rate P = .009 for AD and Crohn disease, P = 5.73 × 10-6 for AD, and 6.57 × 10-5 for Crohn disease) demonstrated the same direction of allelic effect between AD and the immune-mediated diseases. Both rs2516049 and rs12570088 were significantly associated with neurofibrillary tangle pathology (P = .01352 and .03151, respectively); rs2516049 additionally correlated with longitudinal decline on Alzheimer's Disease Assessment Scale cognitive subscale scores (β [SE], 0.405 [0.190]; P = .03). Regarding gene expression, HLA-DRA and IPMK transcript expression was significantly altered in AD brains compared with control brains (HLA-DRA: β [SE], 0.155 [0.024]; P = 1.97 × 10-10; IPMK: β [SE], -0.096 [0.013]; P = 7.57 × 10-13). CONCLUSIONS AND RELEVANCE Our findings demonstrate genetic overlap between AD and immune-mediated diseases and suggest that immune system processes influence AD pathogenesis and progression.
Collapse
Affiliation(s)
| | - Yunpeng Wang
- Department of Psychiatry, Washington University, St Louis, Missouri3Department of Neurosciences, University of California, San Diego, La Jolla
| | - Andrew J Schork
- Department of Cognitive Sciences, University of California, San Diego, La Jolla
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St Louis, Missouri
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St Louis, Missouri
| | - Linda K McEvoy
- Department of Radiology, University of California, San Diego, La Jolla
| | - Aree Witoelar
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway8Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Chi-Hua Chen
- Department of Radiology, University of California, San Diego, La Jolla
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, La Jolla
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla6Department of Radiology, University of California, San Diego, La Jolla
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - William P Dillon
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - David M Wilson
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Pratik Mukherjee
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Christopher P Hess
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Zachary Miller
- Department of Neurology, University of California, San Francisco
| | - Luke W Bonham
- Department of Neurology, University of California, San Francisco
| | - Jeffrey Shen
- Department of Neurology, University of California, San Francisco
| | - Gil D Rabinovici
- Department of Neurology, University of California, San Francisco
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Tom H Karlsen
- Norwegian PSC Research Center and KG Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway14Division of Gastroenterolog
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway8Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, La Jolla4Department of Cognitive Sciences, University of California, San Diego, La Jolla5Department of Psychiatry, University of California, San Diego, La Jolla6Department of Radiology, Uni
| | - Rahul S Desikan
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | |
Collapse
|
28
|
Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ. Bcl11b-A Critical Neurodevelopmental Transcription Factor-Roles in Health and Disease. Front Cell Neurosci 2017; 11:89. [PMID: 28424591 PMCID: PMC5372781 DOI: 10.3389/fncel.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity of functions. It works as both a genetic suppressor and activator, acting directly, attaching to promoter regions, as well as indirectly, attaching to promoter-bound transcription factors. Bcl11b is a fundamental transcription factor in fetal development, with important roles for the differentiation and development of various neuronal subtypes in the central nervous system (CNS). It has been used as a specific marker of layer V subcerebral projection neurons as well as striatal interneurons. Bcl11b also has critical developmental functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a number of disease states including Huntington's disease, Alzheimer's disease, HIV and T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in the CNS and other parts of the body are yet to be fully explicated. This review summarizes the current literature on Bcl11b and its functions in development, health, and disease as well as future directions for research.
Collapse
Affiliation(s)
- Matthew J Lennon
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Simon P Jones
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia.,Departments of Neurology and Immunology, St. Vincent's HospitalSydney, NSW, Australia
| |
Collapse
|
29
|
Inositol polyphosphate multikinase (IPMK) in transcriptional regulation and nuclear inositide metabolism. Biochem Soc Trans 2016; 44:279-85. [PMID: 26862216 DOI: 10.1042/bst20150225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inositol polyphosphate multikinase (IPMK, ipk2, Arg(82), ArgRIII) is an inositide kinase with unusually flexible substrate specificity and the capacity to partake in many functional protein-protein interactions (PPIs). By merging these two activities, IPMK is able to execute gene regulatory functions that are very unique and only now beginning to be recognized. In this short review, we present a brief history of IPMK, describe the structural biology of the enzyme and highlight a few recent discoveries that have shed more light on the role IPMK plays in inositide metabolism, nuclear signalling and transcriptional regulation.
Collapse
|
30
|
Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 ( IP6K3 ) gene promoter to the susceptibility to late onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1766-73. [DOI: 10.1016/j.bbadis.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 01/16/2023]
|
31
|
Domingo A, Amar D, Grütz K, Lee LV, Rosales R, Brüggemann N, Jamora RD, Cutiongco-Dela Paz E, Rolfs A, Dressler D, Walter U, Krainc D, Lohmann K, Shamir R, Klein C, Westenberger A. Evidence of TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism. Cell Mol Life Sci 2016; 73:3205-15. [PMID: 26879577 PMCID: PMC11108471 DOI: 10.1007/s00018-016-2159-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
The molecular dysfunction in X-linked dystonia-parkinsonism is not completely understood. Thus far, only noncoding alterations have been found in genetic analyses, located in or nearby the TATA-box binding protein-associated factor 1 (TAF1) gene. Given that this gene is ubiquitously expressed and is a critical component of the cellular transcription machinery, we sought to study differential gene expression in peripheral models by performing microarray-based expression profiling in blood and fibroblasts, and comparing gene expression in affected individuals vs. ethnically matched controls. Validation was performed via quantitative polymerase chain reaction in discovery and independent replication sets. We observed consistent downregulation of common TAF1 transcripts in samples from affected individuals in gene-level and high-throughput experiments. This signal was accompanied by a downstream effect in the microarray, reflected by the dysregulation of 307 genes in the disease group. Gene Ontology and network analyses revealed enrichment of genes involved in RNA polymerase II-dependent transcription, a pathway relevant to TAF1 function. Thus, the results converge on TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism, and provide evidence of altered expression of a canonical gene in this disease. Furthermore, our study illustrates a link between the previously described genetic alterations and TAF1 dysfunction at the transcriptome level.
Collapse
Affiliation(s)
- Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany
- Graduate School Lübeck, University of Lübeck, Lübeck, Germany
| | - David Amar
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany
| | - Lillian V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Raymond Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas, Manila, Philippines
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Eva Cutiongco-Dela Paz
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | - Dirk Dressler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Dimitri Krainc
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany
| | - Ron Shamir
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany.
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Maria Goeppert Str. 1, 23562, Lübeck, Germany
| |
Collapse
|
32
|
Bak J, Kim HJ, Kim SY, Choi YS. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:279-86. [PMID: 27162482 PMCID: PMC4860370 DOI: 10.4196/kjpp.2016.20.3.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD.
Collapse
Affiliation(s)
- Jia Bak
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yun-Sik Choi
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan 38430, Korea
| |
Collapse
|