1
|
Obaideen M, Önel T, Yıldırım E, Yaba A. The role of leptin in the male reproductive system. J Turk Ger Gynecol Assoc 2024; 25:247-258. [PMID: 39658934 PMCID: PMC11632632 DOI: 10.4274/jtgga.galenos.2024.2023-7-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/08/2024] [Indexed: 12/12/2024] Open
Abstract
Leptin is a hormone produced from adipose tissue, targeting the hypothalamus and regulating energy expenditure, adipose tissue mass, and reproductive function. Leptin concentration reflects body weight and the amount of energy stored, as well as the level of reproductive hormones and male fertility. In this review, the aim was to focus on leptin signaling mechanisms and the significant influence of leptin on the male reproductive system and to summarize the current knowledge of clinical and experimental studies. The PubMed database was searched for studies on leptin and the male reproductive system to summarize the mechanism of leptin in the male reproductive system. Studies have shown that obesity-related, high leptin levels or leptin resistance negatively affects male reproductive functions. Leptin directly affects the testis by binding to the hypothalamic-pituitary-gonadal axis and the receptors of testicular cells, and thus the location of leptin receptors plays a key role in the regulation of the male reproductive system with the negative feedback mechanism between adipose tissue and hypothalamus. Based on the current evidence, leptin may totally inhibit male reproduction, and investigation of this role of leptin has established a potential interaction between obesity and male infertility. The mechanism of leptin in the male reproductive system should be further investigated and possible treatments for subfertility should be evaluated, supported by better understanding of leptin and associated signaling mechanisms.
Collapse
Affiliation(s)
- Melek Obaideen
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
2
|
Xia K, Luo P, Yu J, He S, Dong L, Gao F, Chen X, Ye Y, Gao Y, Ma Y, Yang C, Zhang Y, Yang Q, Han D, Feng X, Wan Z, Cai H, Ke Q, Wang T, Li W, Tu X, Sun X, Deng C, Xiang AP. Single-cell RNA sequencing reveals transcriptomic landscape and potential targets for human testicular ageing. Hum Reprod 2024; 39:2189-2209. [PMID: 39241251 PMCID: PMC11447013 DOI: 10.1093/humrep/deae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2024] [Indexed: 09/08/2024] Open
Abstract
STUDY QUESTION What is the molecular landscape underlying the functional decline of human testicular ageing? SUMMARY ANSWER The present study provides a comprehensive single-cell transcriptomic atlas of testes from young and old humans and offers insights into the molecular mechanisms and potential targets for human testicular ageing. WHAT IS KNOWN ALREADY Testicular ageing is known to cause male age-related fertility decline and hypogonadism. Dysfunction of testicular cells has been considered as a key factor for testicular ageing. STUDY DESIGN, SIZE, DURATION Human testicular biopsies were collected from three young individuals and three old individuals to perform single-cell RNA sequencing (scRNA-seq). The key results were validated in a larger cohort containing human testicular samples from 10 young donors and 10 old donors. PARTICIPANTS/MATERIALS, SETTING, METHODS scRNA-seq was used to identify gene expression signatures for human testicular cells during ageing. Ageing-associated changes of gene expression in spermatogonial stem cells (SSCs) and Leydig cells (LCs) were analysed by gene set enrichment analysis and validated by immunofluorescent and functional assays. Cell-cell communication analysis was performed using CellChat. MAIN RESULTS AND THE ROLE OF CHANCE The single-cell transcriptomic landscape of testes from young and old men was surveyed, revealing age-related changes in germline and somatic niche cells. In-depth evaluation of the gene expression dynamics in germ cells revealed that the disruption of the base-excision repair pathway is a prominent characteristic of old SSCs, suggesting that defective DNA repair in SSCs may serve as a potential driver for increased de novo germline mutations with age. Further analysis of ageing-associated transcriptional changes demonstrated that stress-related changes and cytokine pathways accumulate in old somatic cells. Age-related impairment of redox homeostasis in old LCs was identified and pharmacological treatment with antioxidants alleviated this cellular dysfunction of LCs and promoted testosterone production. Lastly, our results revealed that decreased pleiotrophin signalling was a contributing factor for impaired spermatogenesis in testicular ageing. LARGE SCALE DATA The scRNA-seq sequencing and processed data reported in this paper were deposited at the Genome Sequence Archive (https://ngdc.cncb.ac.cn/), under the accession number HRA002349. LIMITATIONS, REASONS FOR CAUTION Owing to the difficulty in collecting human testis tissue, the sample size was limited. Further in-depth functional and mechanistic studies are warranted in future. WIDER IMPLICATIONS OF THE FINDINGS These findings provide a comprehensive understanding of the cell type-specific mechanisms underlying human testicular ageing at a single-cell resolution, and suggest potential therapeutic targets that may be leveraged to address age-related male fertility decline and hypogonadism. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2022YFA1104100), the National Natural Science Foundation of China (32130046, 82171564, 82101669, 82371611, 82371609, 82301796), the Natural Science Foundation of Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and Genetics (KF202001), the Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921, 2022A1515111201), and the China Postdoctoral Science Foundation (2021M703736). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Peng Luo
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jiajie Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyuan He
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Feng Gao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuren Chen
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yadong Zhang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayu Han
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Feng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Wan
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongcai Cai
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Vinco S, Ambrosini G, Errico A, Marroncelli N, Dalla Pozza E, Matranga E, Zampieri N, Dando I. In vitro obtainment of stem-like cells from gubernaculum testis biopsies of cryptorchid pediatric patients. Exp Cell Res 2024; 442:114281. [PMID: 39396722 DOI: 10.1016/j.yexcr.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Testicular descent is a crucial event in male sexual development, and alterations in this process during gestation can lead to reduced fertility in adulthood. Cryptorchidism, i.e., failure of one or both testicles to descend into the scrotum, is one of the most common birth defects and represents a principal cause of infertility in adulthood. Therefore, identifying effective approaches for preserving fertility in childhood is of primary importance. In this context, the key role played by the gubernaculum testis during the placement of the testes in the scrotal bursa emerges. Given its close affinity to testicular tissue and its richness in mesenchymal cells, our prime aim is to characterize this para-testicular tissue to explore its potential ability to differentiate into testicular cells for fertility preservation. The first step of our task is represented by the present study that aimed to obtain in vitro stem-like cells starting from gubernaculum testis biopsies of four pediatric patients affected by cryptorchidism, aiming to differentiate them into testicular functioning cells. Our results show that the obtainment of aggregates with stem features is not dependent on the age of the patients and, therefore, not even on the damage suffered by the testis during its stay in the abdomen. This study opens the possibility of extending this approach to older patients, offering a new potential approach to support their fertility potential.
Collapse
Affiliation(s)
- Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Eleonora Matranga
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Nicola Zampieri
- Department of Engineering for Medicine Innovation, Pediatric and Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, Verona, Italy; UNICAMILLUS, International Medical University, Rome, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Huang F, Wang J, Wang H, Hu Y, Li Z, Xu J, Qin M, Wen X, Cao S, Guan X, Duan P, Chen H, Chen C. Effects of Leydig cell elimination on testicular interstitial cell populations: characterization by scRNA-seq and immunocytochemical techniques. Front Endocrinol (Lausanne) 2024; 15:1423801. [PMID: 39229372 PMCID: PMC11368788 DOI: 10.3389/fendo.2024.1423801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Background The mammalian testicular interstitial cells are not well-defined. The present study characterized the interstitial cell types and their turnover dynamics in adult rats. Additionally, the heterogeneity of the mesenchymal population and the effects of Leydig cell elimination on interstitial homeostasis were further analyzed by scRNA-seq datasets and immunocytochemical techniques. Methods Interstitial cells were defined at the transcriptomic level by scRNA-seq and then confirmed and quantified with protein markers. The dividing activity of the major cell types was determined by continuous EdU labeling of the animals for one week. Some of the rats were also treated with a dose of ethylenedimethylsulfonate (EDS) to examine how the loss of Leydig cells (LCs) could affect interstitial homeostasis for three weeks. Results Seven interstitial cell types were identified, including cell types (percentage of the whole interstitial population) as follows: Leydig (44.6%), macrophage and dendritic (19.1%), lymphoid (6.2%), vascular endothelial (7.9%), smooth muscle (10.7%), and mesenchymal (11.5%) cells. The EdU experiment indicated that most cell types were dividing at relatively low levels (<9%) except for the mesenchymal cells (MCs, 17.1%). Further analysis of the transcriptome of MCs revealed 4 subgroups with distinct functions, including 1) glutathione metabolism and xenobiotic detoxification, 2) ROS response and AP-1 signaling, 3) extracellular matrix synthesis and binding, and 4) immune response and regulation. Stem LCs (SLCs) are primarily associated with subgroup 3, expressing ARG1 and GAP43. EDS treatment not only eliminated LCs but also increased subgroup 3 and decreased subgroups 1 and 2 of the mesenchymal population. Moreover, EDS treatment increased the division of immune cells by more than tenfold in one week. Conclusion Seven interstitial cell types were identified and quantified for rat testis. Many may play more diversified roles than previously realized. The elimination of LCs led to significant changes in MCs and immune cells, indicating the importance of LCs in maintaining testicular interstitial homeostasis.
Collapse
Affiliation(s)
- Fu Huang
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hu Wang
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun Hu
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenni Li
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingfeng Xu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjie Qin
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuyan Cao
- The Basic Medical Research Center of the Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Wen X, Wang J, Qin M, Wang H, Xu J, Guan X, Shan D, Chen P, Xie J, Shao J, Duan P, Chen C, Chen H. Characterization of ovarian progenitor cells for their potential to generate steroidogenic theca cells in vitro. Reproduction 2024; 168:e230407. [PMID: 38718815 PMCID: PMC11227037 DOI: 10.1530/rep-23-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
In brief Progenitor cells with ovulation-related tissue repair activity were identified with defined markers (LGR5, EPCR, LY6A, and PDGFRA), but their potentials to form steroidogenic cells were not known. This study shows that the cells can generate progenies with different steroidogenic activities. Abstract Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well defined. The aim of current study is to compare the potentials of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5, and PDGFRA) to form steroidogenic theca cells in vitro. The location of the progenitors with defined makers was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS, and DHH agonist for 12 days. The results showed that EPCR+ and LGR5+ cells primarily distributed along the ovarian surface epithelium (OSE), while LY6A+ cells distributed in both the OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). In conclusion, progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjie Qin
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hu Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingfeng Xu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Shan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajia Xie
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Shao
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Liu W, Du L, Cui Y, He C, He Z. WNT5A regulates the proliferation, apoptosis and stemness of human stem Leydig cells via the β-catenin signaling pathway. Cell Mol Life Sci 2024; 81:93. [PMID: 38367191 DOI: 10.1007/s00018-023-05077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 02/19/2024]
Abstract
Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing resulted in the decreases in nuclear translocation of β-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the β-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Du
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinghong Cui
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caimei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Traore K, Zirkin B. Use of in vitro methodology to investigate phthalate effects on the differentiation of seminiferous tubule-associated stem cells to form Leydig cells and on the Leydig cells derived from the stem cells. FRONTIERS IN TOXICOLOGY 2024; 6:1352294. [PMID: 38362108 PMCID: PMC10867263 DOI: 10.3389/ftox.2024.1352294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Leydig cells isolated from the testis are able to sustain high levels of testosterone production in vitro, but only for up to 3 days. Such cells are valuable for addressing the acute effects of chemicals on steroidogenic function, but not for repeated or chronic effects. Methodology is now available by which adult Leydig cells can be derived in vitro from seminiferous tubule-associated stem cells. In contrast to isolated Leydig cells, the Leydig cells derived in this way can synthesize and secrete high levels of testosterone for months. Herein, we asked whether this system might be used to address the effect of mono-(2-ethylhexyl) phthalate (MEHP) exposure on the formation of Leydig cells from tubule-associated stem cells, and on the Leydig cells after their formation. Methods: Adult Brown Norway rats received an intraperitoneal injection of ethane dimethanesulfonate (EDS) to eliminate the existing Leydig cells. Seminiferous tubules then were isolated and cultured in medium containing Insulin-Transferrin- Selenium (ITS), Smoothened Agonist (SAG), and luteinizing hormone (LH). Results: Culture of the tubules for 8 weeks resulted in the formation of cells on the surfaces of the tubules that stained for CYP11A1 and STAR and produced high levels of testosterone. When the tubules were cultured in medium containing increasing concentrations of MEHP, concentration-dependent effects on Leydig cell formation occurred. To determine the effect of MEHP on newly produced Leydig cells, tubules were cultured for 8 weeks in the absence of MEHP, resulting in the formation of adult Leydig cells, and then in medium containing increasing concentrations of MEHP. Concentration-dependent decreases in testosterone production by the adult Leydig cells were seen, and these decreases proved to be reversible. Discussion: The use of this new system should make it possible to determine the mechanisms by which acute, repeated, or chronic exposures to increasing concentrations of MEHP and/or exposure to other chemicals affect the formation of Leydig cells from stem cells, as well as the steroidogenic function of adult Leydig cells.
Collapse
Affiliation(s)
- Kassim Traore
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, NC, United States
- Duquesne University College of Osteopathic Medicine, Pittsburgh, PA, United States
| | - Barry Zirkin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
8
|
Moutard L, Goudin C, Jaeger C, Duparc C, Louiset E, Pereira T, Fraissinet F, Delessard M, Saulnier J, Rives-Feraille A, Delalande C, Lefebvre H, Rives N, Dumont L, Rondanino C. Steroidogenesis and androgen/estrogen signaling pathways are altered in in vitro matured testicular tissues of prepubertal mice. eLife 2023; 12:RP85562. [PMID: 38095307 PMCID: PMC10721218 DOI: 10.7554/elife.85562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Children undergoing cancer treatments are at risk for impaired fertility. Cryopreserved prepubertal testicular biopsies could theoretically be later matured in vitro to produce spermatozoa for assisted reproductive technology. A complete in vitro spermatogenesis has been obtained from mouse prepubertal testicular tissue, although with low efficiency. Steroid hormones are essential for the progression of spermatogenesis, the aim of this study was to investigate steroidogenesis and steroid signaling in organotypic cultures. Histological, RT-qPCR, western blot analyses, and steroid hormone measurements were performed on in vitro cultured mouse prepubertal testicular tissues and age-matched in vivo controls. Despite a conserved density of Leydig cells after 30 days of culture (D30), transcript levels of adult Leydig cells and steroidogenic markers were decreased. Increased amounts of progesterone and estradiol and reduced androstenedione levels were observed at D30, together with decreased transcript levels of steroid metabolizing genes and steroid target genes. hCG was insufficient to facilitate Leydig cell differentiation, restore steroidogenesis, and improve sperm yield. In conclusion, this study reports the failure of adult Leydig cell development and altered steroid production and signaling in tissue cultures. The organotypic culture system will need to be further improved before it can be translated into clinics for childhood cancer survivors.
Collapse
Affiliation(s)
- Laura Moutard
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Caroline Goudin
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Catherine Jaeger
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Céline Duparc
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Estelle Louiset
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Tony Pereira
- Department of General Biochemistry, Rouen University HospitalRouenFrance
| | | | - Marion Delessard
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Justine Saulnier
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Aurélie Rives-Feraille
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | | | - Hervé Lefebvre
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Nathalie Rives
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Ludovic Dumont
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| | - Christine Rondanino
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Adrenal and Gonadal Pathophysiology team, F-76000RouenFrance
| |
Collapse
|
9
|
Li X, Quan H, He J, Li H, Zhu Q, Wang Y, Zhu Y, Ge RS. The role of platelet-derived growth factor BB signaling pathway in the regulation of stem and progenitor Leydig cell proliferation and steroidogenesis in male rats. J Steroid Biochem Mol Biol 2023; 233:106344. [PMID: 37286111 DOI: 10.1016/j.jsbmb.2023.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Platelet-derived growth factor BB (BB) regulates cell proliferation and function. However, the roles of BB on proliferation and function of Leydig stem (LSCs) and progenitor cells (LPCs) and the underlying signaling pathways remain unclear. This study aimed to analyze the roles of PI3K and MAPK pathways in the regulation of proliferation-related and steroidogenesis-related gene expression in rat LSCs/LPCs. In this experiment, BB receptor antagonist, tyrosine kinase inhibitor IV (PKI), the PI3K inhibitor, LY294002, and the MEK inhibitor, U0126, were used to measure the effects of these pathways on the expression of cell cycle-related genes (Ccnd1 and Cdkn1b) and steroidogenesis-related genes (Star, Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a1), as well as Leydig cell maturation gene Pdgfra [1]. These results showed that BB (10 ng/mL)-stimulated EdU-incorporation into LSCs and BB-mediated inhibition on its differentiation was mediated through the activation of its receptor, PDGFRB, as well as MAPK and PI3K pathways. The results of LPC experiment also showed that LY294002 and U0126 decreased BB (10 ng/mL)-upregulated Ccnd1 expression while only U0126 reversed BB (10 ng/mL)-downregulated Cdkn1b expression. U0126 significantly reversed BB (10 ng/mL)-mediated downregulation of Cyp11a1, Hsd3b1, and Cyp17a1 expression. On the other hand, LY294002 reversed the expression of Cyp17a1 and Abca1. In conclusion, BB-mediated induction of proliferation and suppression of steroidogenesis of LSCs/LPCs are dependent on the activation of both MAPK and PI3K pathways, which show distinct regulation of gene expression.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China
| | - Hehua Quan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiayi He
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China.
| |
Collapse
|
10
|
Quan H, Wang Y, Li H, Zhu Q, Chen X, Ge RS, Li X. Ciliary neurotrophic factor stimulates stem/progenitor Leydig cell proliferation but inhibits differentiation into its lineage in rats. Andrology 2023; 11:1495-1513. [PMID: 37029531 DOI: 10.1111/andr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Ciliary neurotrophic factor is a member of the interleukin-6 family of cytokines. Ciliary neurotrophic factor drives many cells for their development. However, its effects on Leydig cell development remain unclear. METHODS In the current study, we used three-dimensional seminiferous tubule culture system to induce the proliferation and differentiation of tubule-associated stem Leydig cells and primary progenitor Leydig cells culture to address the effects of ciliary neurotrophic factor. RESULTS We found that ciliary neurotrophic factor stimulated the proliferation of stem Leydig cells but inhibited their development into the Leydig cell lineage. The ciliary neurotrophic factor-mediated effects can be reversed by signal transducer and activator 3 inhibitor S3I-201 and phosphatidylinositol 3-kinase inhibitor wortmannin, indicating that ciliary neurotrophic factor acts via signal transducer and activator 3-phosphatidylinositol 3-kinase signaling pathways to increase stem/progenitor Leydig cell proliferation. Ciliary neurotrophic factor at 1 and 10 ng/mL significantly decreased androgen production by progenitor Leydig cells. Microarray analysis of ciliary neurotrophic factor-treated progenitor Leydig cells showed that ciliary neurotrophic factor blocked steroidogenic pathways by downregulating Scarb1, Star, and Hsd3b1, possibly by downregulating the transcription factor Nr5a1 expression. CONCLUSION Ciliary neurotrophic factor stimulates proliferation but blocks the differentiation of stem/progenitor Leydig cells.
Collapse
Affiliation(s)
- Hehua Quan
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
12
|
Liang J, Chen D, Xiao Z, Wei S, Liu Y, Wang C, Wang Z, Feng Y, Lei Y, Hu M, Deng J, Wang Y, Zhang Q, Yang Y, Huang Y. Role of miR-300-3p in Leydig cell function and differentiation: A therapeutic target for obesity-related testosterone deficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:879-895. [PMID: 37273781 PMCID: PMC10236194 DOI: 10.1016/j.omtn.2023.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) regulate various cellular functions, but their specific roles in the regulation of Leydig cells (LCs) have yet to be fully understood. Here, we found that the expression of miR-300-3p varied significantly during the differentiation from progenitor LCs (PLCs) to adult LCs (ALCs). High expression of miR-300-3p in PLCs inhibited testosterone production and promoted PLC proliferation by targeting the steroidogenic factor-1 (Sf-1) and transcription factor forkhead box O1 (FoxO1) genes, respectively. As PLCs differentiated into ALCs, the miR-300-3p expression level significantly decreased, which promoted testosterone biosynthesis and suppressed proliferation of ALCs by upregulating SF-1 and FoxO1 expression. The LH/METTL3/SMURF2/SMAD2 cascade pathway controlled miR-300-3p expression, in which luteinizing hormone (LH) upregulated SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) expression through methyltransferase like 3 (METTL3)-mediated Smurf2 N6-methyladenosine modification. The Smurf2 then suppressed miR-300 transcription by inhibiting SMAD family member 2 (SMAD2) binding to the promoter of miR-300. Notably, miR-300-3p was associated with an obesity-related testosterone deficiency in men and the inhibition of miR-300-3p effectively rescued testosterone deficiency in obese mice. These findings suggested that miR-300-3p plays a pivotal role in LC differentiation and function, and could be a promising diagnostic or therapeutic target for obesity-related testosterone deficiency.
Collapse
Affiliation(s)
- Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Chengzhi Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People’s Republic of China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yaling Lei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Shao J, Wang J, Wen X, Xie J, Huang F, Guan X, Hao X, Duan P, Chen C, Chen H. Effects of aging and macrophages on mice stem Leydig cell proliferation and differentiation in vitro. Front Endocrinol (Lausanne) 2023; 14:1139281. [PMID: 37051204 PMCID: PMC10083278 DOI: 10.3389/fendo.2023.1139281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Testosterone plays a critical role in maintaining reproductive functions and well-beings of the males. Adult testicular Leydig cells (LCs) produce testosterone and are generated from stem Leydig cells (SLCs) during puberty through adulthood. In addition, macrophages are critical in the SLC regulatory niche for normal testicular function. Age-related reduction in serum testosterone contributes to a number of metabolic and quality-of-life changes in males, as well as age-related changes in immunological functions. How aging and testicular macrophages may affect SLC function is still unclear. METHODS SLCs and macrophages were purified from adult and aged mice via FACS using CD51 as a marker protein. The sorted cells were first characterized and then co-cultured in vitro to examine how aging and macrophages may affect SLC proliferation and differentiation. To elucidate specific aging effects on both cell types, co-culture of sorted SLCs and macrophages were also carried out across two ages. RESULTS CD51+ (weakly positive) and CD51++ (strongly positive) cells expressed typical SLC and macrophage markers, respectively. However, with aging, both cell types increased expression of multiple cytokine genes, such as IL-1b, IL-6 and IL-8. Moreover, old CD51+ SLCs reduced their proliferation and differentiation, with a more significant reduction in differentiation (2X) than proliferation (30%). Age matched CD51++ macrophages inhibited CD51+ SLC development, with a more significant reduction in old cells (60%) than young (40%). Crossed-age co-culture experiments indicated that the age of CD51+ SLCs plays a more significant role in determining age-related inhibitory effects. In LC lineage formation, CD51+ SLC had both reduced LC lineage markers and increased myoid cell lineage markers, suggesting an age-related lineage shift for SLCs. CONCLUSION The results suggest that aging affected both SLC function and their regulatory niche cell, macrophages.
Collapse
Affiliation(s)
- Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinrui Hao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| |
Collapse
|
14
|
Low-Intensity Pulsed Ultrasound Alleviates Human Testicular Leydig Cell Senescence In Vitro. Int J Mol Sci 2022; 24:ijms24010418. [PMID: 36613865 PMCID: PMC9820771 DOI: 10.3390/ijms24010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022] Open
Abstract
Aging has a significant negative impact on human testicular function; steroidogenesis is gradually impaired, and testosterone replacement therapy still has many risks. Low-intensity pulsed ultrasound (LIPUS) has been used as a novel non-invasive treatment for male erectile dysfunction and other fields, and has been shown to increase testosterone levels in animal models. Testosterone is synthesized and secreted by Leydig cells (LCs), and the serum testosterone level decreases after aging due to the LCs senescence. However, the effect of LIPUS on human senescent LCs has not been reported. In this study, human senescent LCs were isolated and stimulated with different energy intensities in vitro, and cell morphology, cell apoptosis, cell proliferation, cell senescence levels, lipid droplet number, testosterone and INSL3 secretion levels were tested and analyzed. Quantitative Polymerase Chain Reaction (QPCR) and Western Blot were performed to compare cell senescence characteristics and the expression profile of key pathways of testosterone secretion, and transcriptome analysis was performed to explore the signaling pathways of LCs alteration after LIPUS stimulation. It was safe and effective to stimulate LCs with the 75 mW/cm2 energy of LIPUS in vitro, which not only improved the senescence phenotype, but also effectively enhanced the secretory function of LCs in vitro, and increased the expression of key pathways of the testosterone synthesis pathway. These results suggest that LIPUS could be used as a novel treatment to human senescent LCs with decreased testosterone secretion levels in vitro.
Collapse
|
15
|
Bone morphogenetic protein 4 inhibits rat stem/progenitor Leydig cell development and regeneration via SMAD-dependent and SMAD-independent signaling. Cell Death Dis 2022; 13:1039. [PMID: 36513649 PMCID: PMC9748027 DOI: 10.1038/s41419-022-05471-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) is an important member of the transforming growth factor-β superfamily. BMP4 is expressed in the Leydig cell lineage. We hypothesized that BMP4 might regulate the development of stem/progenitor Leydig cells. The BMP4 receptors, BMPR1A, BMPR1B, and BMPR2 were found to be expressed in progenitor Leydig cells of prepubertal testis and isolated cells. BMP4 at 1 and 10 ng/mL significantly reduced androgen production and down-regulated steroidogenesis-related gene and protein expression possibly by activating the SMAD signaling pathway (increasing SMAD1/5 phosphorylation and SMAD4) at 24 h treatment. BMP4 at 0.1 ng/mL and higher concentrations markedly reduced the EdU labeling index of CD90+ stem Leydig cells after 24 h treatment and significantly reduced the number of EdU+ stem Leydig cells on the surface of seminiferous tubules after 7 days of culture. BMP4 at 0.01 ng/mL and higher concentrations significantly blocked the differentiation of stem Leydig cells into adult cells, as shown by the reduction of testosterone secretion and the downregulation of Lhcgr, Scarb1, Cyp11a1, Hsd11b1, and Insl3 and their function after 3D seminiferous tubule culture for 3 weeks, and this effect was reversed by co-treatment with the BMP4 antagonists noggin and doxomorphine. In addition, BMP4 also blocked stem Leydig cell differentiation through SMAD-independent signaling pathways (ERK1/2 and AMPK). Ethanedimethane sulfonate (EDS) single injection can result in reduction of testosterone, restoration can happen post treatment. In an in vivo model of Leydig cell regeneration following EDS treatment, intratesticular injection of BMP4 from day 14 to day 28 post-elimination significantly reduced serum testosterone levels and down-regulated the expression of Scarb1, Star, Hsd11b1, and Insl3 and its proteins, possibly through SMAD-dependent and SMAD-independent (ERK1/2 and AMPK) signaling pathways. In conclusion, BMP4 is expressed in cells of the Leydig cell lineage and blocks entry of stem/progenitor Leydig cells into adult Leydig cells through SMAD-dependent and SMAD-independent signaling pathways.
Collapse
|
16
|
Li Z, Fan Y, Xie C, Liu J, Guan X, Li S, Huang Y, Zeng R, Chen H, Su Z. High-fidelity reprogramming into Leydig-like cells by CRISPR activation and paracrine factors. PNAS NEXUS 2022; 1:pgac179. [PMID: 36714877 PMCID: PMC9802085 DOI: 10.1093/pnasnexus/pgac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
Androgen deficiency is a common medical conditions that affects males of all ages. Transplantation of testosterone-producing cells is a promising treatment for male hypogonadism. However, getting a cell source with the characteristics of Leydig cells (LCs) is still a challenge. Here, a high-efficiency reprogramming of skin-derived fibroblasts into functional Leydig-like cells (LLCs) based on epigenetic mechanism was described. By performing an integrated analysis of genome-wide DNA methylation and transcriptome profiling in LCs and fibroblasts, the potentially epigenetic-regulating steroidogenic genes and signaling pathways were identified. Then by using CRISPR/dCas9 activation system and signaling pathway regulators, the male- or female-derived fibroblasts were reprogrammed into LLCs with main LC-specific traits. Transcriptomic analysis further indicated that the correlation coefficients of global genes and transcription factors between LLCs and LCs were higher than 0.81 and 0.96, respectively. After transplantation in the testes of hypogonadal rodent models, LLCs increased serum testosterone concentration significantly. In type 2 diabetic rats model, LLCs which were transplanted in armpit, have the capability to restore the serum testosterone level and improve the hyperglycemia status. In conclusion, our approach enables skin-derived fibroblasts reprogramming into LLCs with high fidelity, providing a potential cell source for the therapeutics of male hypogonadism and metabolic-related comorbidities.
Collapse
Affiliation(s)
| | | | | | - Jierong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- To whom correspondence should be addressed:
| | | | - Zhijian Su
- To whom correspondence should be addressed:
| |
Collapse
|
17
|
Abe SI. Behavior and Functional Roles of CD34 + Mesenchymal Cells in Mammalian Testes. Int J Mol Sci 2022; 23:9585. [PMID: 36076981 PMCID: PMC9455925 DOI: 10.3390/ijms23179585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Mammalian testes consist of seminiferous tubules within which Sertoli cells line up at the periphery and nurse germ cells, and of interstitia that harbor various cells such as peritubular myoid cells (PMCs), Leydig cells (LCs), vascular endothelial cells, immune cells such as macrophages, and mesenchymal (stromal) cells. Morphological studies have recently reported the presence of telocytes with telopodes in the interstitium of adult mouse, rat, and human testes. CD34+PDGFRα+ telocytes with long and moniliform telopodes form reticular networks with various cell types such as LCs, PMCs, and vessels, indicating their potential functions in cell-cell communications and tissue homeostasis. Functional studies have recently been performed on testicular interstitial cells and CD34+ cells, using 3D re-aggregate cultures of dissociated testicular cells, and cell cultures. Direct observation of CD34+ cells and adult LCs (ALCs) revealed that CD34+ cells extend thin cytoplasmic processes (telopodes), move toward the LC-CD34+ cell-re-aggregates, and finally enter into the re-aggregates, indicating the chemotactic behavior of CD34+ telocytes toward ALCs. In mammalian testes, important roles of mesenchymal interstitial cells as stem/progenitors in the differentiation and regeneration of LCs have been reported. Here, reports on testicular telocytes so far obtained are reviewed, and future perspectives on the studies of testicular telocytes are noted.
Collapse
Affiliation(s)
- Shin-Ichi Abe
- Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| |
Collapse
|
18
|
Min M, Song T, Sun M, Wang T, Tan J, Zhang J. Dhh signaling pathway regulates reconstruction of seminiferous tubule-like structure. Reprod Biol 2022; 22:100684. [PMID: 35987158 DOI: 10.1016/j.repbio.2022.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The reconstruction of a tubule-like structure in vitro has provided a promising system to analyze factors that drive morphogenesis and the underlying mechanisms. In this study, we took advantage of the inhibitor cyclopamine and a smoothened agonist to detect the role of the Dhh signaling pathway in the reconstructed tubule-like structure. Sertoli cells did not show polarity, rounded peritubular myoid cells and scattered Leydig cells were observed, combined with less laminin and lower proliferation of Leydig, peritubular myoid, germ, and Sertoli cells. However, in the presence of SAG, elongated peritubular myoid cells gathered at the bottom of polarized Sertoli cells, and most of the Leydig cells gathered at the outer part of the elongated peritubular myoid cells. Moreover, SAG promoted the secretion of laminin, assisting in the formation of the basal membrane and promoting the proliferation of Leydig, peritubular myoid, and germ cells. The level of Gli1 was significantly downregulated when treated with cyclopamine, whereas it was significantly upregulated when treated with SAG. These results indicate that the Dhh signaling pathway regulates the reconstruction of tubule-like structures by regulating the expression of Gli1.
Collapse
Affiliation(s)
- Ming Min
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; People's Hospital of Qingbaijiang District, Qingbaijiang, 61300 Chengdu, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Mengdi Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Tingting Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
19
|
Yao S, Wei X, Deng W, Wang B, Cai J, Huang Y, Lai X, Qiu Y, Wang Y, Guan Y, Wang J. Nestin-dependent mitochondria-ER contacts define stem Leydig cell differentiation to attenuate male reproductive ageing. Nat Commun 2022; 13:4020. [PMID: 35821241 PMCID: PMC9276759 DOI: 10.1038/s41467-022-31755-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Male reproductive system ageing is closely associated with deficiency in testosterone production due to loss of functional Leydig cells, which are differentiated from stem Leydig cells (SLCs). However, the relationship between SLC differentiation and ageing remains unknown. In addition, active lipid metabolism during SLC differentiation in the reproductive system requires transportation and processing of substrates among multiple organelles, e.g., mitochondria and endoplasmic reticulum (ER), highlighting the importance of interorganelle contact. Here, we show that SLC differentiation potential declines with disordered intracellular homeostasis during SLC senescence. Mechanistically, loss of the intermediate filament Nestin results in lower differentiation capacity by separating mitochondria-ER contacts (MERCs) during SLC senescence. Furthermore, pharmacological intervention by melatonin restores Nestin-dependent MERCs, reverses SLC differentiation capacity and alleviates male reproductive system ageing. These findings not only explain SLC senescence from a cytoskeleton-dependent MERCs regulation mechanism, but also suggest a promising therapy targeting SLC differentiation for age-related reproductive system diseases. The regulatory mechanisms contributing to male reproductive ageing are unknown. Here, the authors show that Nestin-dependent mito-ER contacts (MERCs) regulate stem Leydig cell (SLC) senescence and provide insights into SLCs-targeting therapies.
Collapse
Affiliation(s)
- Senyu Yao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoyue Wei
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenrui Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Boyan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China. .,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
20
|
Curley M, Darbey A, O'Donnell L, Kilcoyne KR, Wilson K, Mungall W, Rebourcet D, Guo J, Mitchell RT, Smith LB. Leukemia inhibitory factor-receptor signalling negatively regulates gonadotrophin-stimulated testosterone production in mouse Leydig Cells. Mol Cell Endocrinol 2022; 544:111556. [PMID: 35031431 DOI: 10.1016/j.mce.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.
Collapse
Affiliation(s)
- Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Liza O'Donnell
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Kirsten Wilson
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Will Mungall
- Bioresearch and Veterinary Services, University of Edinburgh, the Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Diane Rebourcet
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Royal Hospital for Children and Young People, Edinburgh, EH91LF, United Kingdom
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
21
|
Guan X, Chen P, Ji M, Wen X, Chen D, Zhao X, Huang F, Wang J, Shao J, Xie J, Zhao X, Chen F, Tian J, Lin H, Zirkin BR, Duan P, Su Z, Chen H. Identification of Rat Testicular Leydig Precursor Cells by Single-Cell-RNA-Sequence Analysis. Front Cell Dev Biol 2022; 10:805249. [PMID: 35242757 PMCID: PMC8887666 DOI: 10.3389/fcell.2022.805249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Stem Leydig cells (SLCs) play a critical role in the development and maintenance of the adult Leydig cell (ALC) population. SLCs also are present in the adult testis. Their identification, characteristics, and regulation in the adult testis remain uncertain. Using single-cell RNA-seq, we found that the mesenchymal stromal population may be involved in ALC regeneration. Upon ALC elimination, a fraction of stromal cells begins to proliferate while a different fraction begins to differentiate to ALCs. Transcriptomic analysis identified five stromal clusters that can be classified into two major groups representing proliferation and differentiation populations. The proliferating group represents stem cells expressing high levels of CD90, Nes, Lum, Fn and Gap43. The differentiating group represents a progenitor stage that is ready to form ALCs, and specifically expresses Vtn, Rasl11a, Id1 and Egr2. The observation that the actively dividing cells after ALC loss were not those that formed ALCs suggests that stem cell proliferation and differentiation are regulated separately, and that the maintenance of the stromal stem cell pool occurs at the population level. The study also identified specific markers for the major interstitial cell groups and potential paracrine factors involved in the regulation of SLCs. Our data suggest a new theory about SLC identity, proliferation, differentiation, and regulation.
Collapse
Affiliation(s)
- Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingyi Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingxing Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Leptin secreted from testicular microenvironment modulates hedgehog signaling to augment the endogenous function of Leydig cells. Cell Death Dis 2022; 13:208. [PMID: 35246515 PMCID: PMC8897450 DOI: 10.1038/s41419-022-04658-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Abstract
Although testosterone deficiency (TD) may be present in one out of five men 40 years or older, the factors responsible for TD remain largely unknown. Leydig stem cells (LSCs) differentiate into adult Leydig cells (ALC) and produce testosterone in the testes under the pulsatile control of luteinizing hormone (LH) from the pituitary gland. However, recent studies have suggested that the testicular microenvironment (TME), which is comprised of Sertoli and peritubular myoid cells (PMC), plays an instrumental role in LSC differentiation and testosterone production under the regulation of the desert hedgehog signaling pathway (DHH). It was hypothesized that the TME releases paracrine factors to modulate LSC differentiation. For this purpose, cells (Sertoli, PMCs, LSCs, and ALCs) were extracted from men undergoing testis biopsies for sperm retrieval and were evaluated for the paracrine factors in the presence or absence of the TME (Sertoli and PMC). The results demonstrated that TME secretes leptin, which induces LSC differentiation and increases testosterone production. Leptin's effects on LSC differentiation and testosterone production, however, are inversely concentration-dependent: positive at low doses and negative at higher doses. Mechanistically, leptin binds to the leptin receptor on LSCs and induces DHH signaling to modulate LSC differentiation. Leptin-DHH regulation functions unidirectionally insofar as DHH gain or loss of function has no effect on leptin levels. Taken together, these findings identify leptin as a key paracrine factor released by cells within the TME that modulates LSC differentiation and testosterone release from mature Leydig cells, a finding with important clinical implications for TD.
Collapse
|
23
|
R. R. LIMA T, P. SOUZA N, FERRAGUT CARDOSO AP, M. GOMIDE LM, G. NASCIMENTO E PONTES M, A. MIOT H, L. ARNOLD L, M. COHEN S, V. DE CAMARGO JL. Testicular alterations in cryptorchid/orchiopexic rats chronically exposed to acrylamide or di-butyl-phthalate. J Toxicol Pathol 2022; 35:159-170. [PMID: 35516837 PMCID: PMC9018398 DOI: 10.1293/tox.2021-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Thania R. R. LIMA
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| | - Nathália P. SOUZA
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| | - Ana P. FERRAGUT CARDOSO
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| | - Lígia Maria M. GOMIDE
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| | - Merielen G. NASCIMENTO E PONTES
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| | - Hélio A. MIOT
- São Paulo State University (UNESP), Botucatu Medical School, Department of Dermatology and Radiotherapy, Botucatu, 18618-687, São Paulo, Brazil
| | - Lora L. ARNOLD
- University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, 68105, NE, USA
| | - Samuel M. COHEN
- University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, 68105, NE, USA
| | - João Lauro V. DE CAMARGO
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, 18618-687, São Paulo, Brazil
| |
Collapse
|
24
|
Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep 2021; 37:109915. [PMID: 34731600 PMCID: PMC8606188 DOI: 10.1016/j.celrep.2021.109915] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has revealed extensive molecular diversity in gene programs governing mammalian spermatogenesis but fails to delineate their dynamics in the native context of seminiferous tubules, the spatially confined functional units of spermatogenesis. Here, we use Slide-seq, a spatial transcriptomics technology, to generate an atlas that captures the spatial gene expression patterns at near-single-cell resolution in the mouse and human testis. Using Slide-seq data, we devise a computational framework that accurately localizes testicular cell types in individual seminiferous tubules. Unbiased analysis systematically identifies spatially patterned genes and gene programs. Combining Slide-seq with targeted in situ RNA sequencing, we demonstrate significant differences in the cellular compositions of spermatogonial microenvironment between mouse and human testes. Finally, a comparison of the spatial atlas generated from the wild-type and diabetic mouse testis reveals a disruption in the spatial cellular organization of seminiferous tubules as a potential mechanism of diabetes-induced male infertility. Chen et al. generate a spatial transcriptome atlas of the mammalian testis at near-single-cell resolution that recapitulates spermatogenesis by accurately localizing testicular cell types and reconstructing tissue structures. The atlas is used to reveal the spatial organization of testicular microenvironment and profile its changes under diabetic conditions.
Collapse
Affiliation(s)
- Haiqi Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Evan Murray
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anubhav Sinha
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02142, USA
| | | | - Jilong Li
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Lesman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jim Hotaling
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan Z Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Yang H, Wan Z, Jin Y, Wang F, Zhang Y. SMAD2 regulates testicular development and testosterone synthesis in Hu sheep. Theriogenology 2021; 174:139-148. [PMID: 34454319 DOI: 10.1016/j.theriogenology.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 01/01/2023]
Abstract
The SMAD protein family plays crucial roles in reproduction as a downstream target genes of the TGFβ signaling pathway. Many studies have focused on the expression change exploration of SMADs during testicular development and investigation of SMAD2 in hormone synthesis regulation. However, little attention has been given to determining the regulatory mechanism of SMADs in sheep testes. In the present study, we first detected SMAD mRNA expression levels in three-month-old (3 M), six-month-old (6 M), nine-month-old (9 M) and two-year-old (2Y) sheep testes. Different SMADs showed various expression patterns. In addition, the subcellular localization of SMAD2 was also analyzed, and Sertoli cells (SCs), Leydig cells (LCs) and spermatogonia presented mainly positive staining. Protein and nucleic acid sequence alignment showed that the SMAD2 gene was extremely homologous between various species. SMAD2 interference RNA was transfected into sheep LCs to examine the cell proliferation and hormone levels. The testosterone level was significantly decreased, and cell proliferation efficiency presented the same trend (P < 0.05). Moreover, SMAD2 downregulation promoted cell apoptosis (P < 0.05) and changed the cell cycle. In total, our results revealed that downregulating the expression of SMAD2 can effectively inhibit testosterone levels by affecting cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hua Yang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanshan Jin
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Liu ZJ, Liu YH, Huang SY, Zang ZJ. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells. Stem Cell Rev Rep 2021; 17:1521-1533. [PMID: 33598893 DOI: 10.1007/s12015-021-10133-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Male hypogonadism is a clinical syndrome caused by testosterone deficiency. Hypogonadism can be caused by testicular disease (primary hypogonadism) or hypothalamic-pituitary dysfunction (secondary hypogonadism). The present strategy for treating hypogonadism is the administration of exogenous testosterone. But exogenous testosterone is reported to have negative side effects including adverse cardiovascular events and disruption of physiological spermatogenesis probably due to its inability to mimic the physiological circadian rhythm of testosterone secretion in vivo. In recent years, a growing number of articles demonstrated that stem Leydig cells (SLCs) can not only differentiate into functional Leydig cells (LCs) in vivo to replace chemically disrupted LCs, but also secrete testosterone in a physiological pattern. The proliferation and differentiation of SLCs are regulated by various factors. However, the mechanisms involved in regulating the development of SLCs remain to be summarized. Factors involved in the regulation of SLCs can be divided into environmental pollutants, growth factors, cytokine and hormones. Environmental pollutants such as Perfluorooctanoic acid (PFOA) and Triphenyltin (TPT) could suppress SLCs proliferation or differentiation. Growth factors including FGF1, FGF16, NGF and activin A are essential for the maintenance of SLCs self-renewal and differentiation. Interleukin 6 family could inhibit differentiation of SLCs. Among hormones, dexamethasone suppresses SLCs differentiation, while aldosterone suppresses their proliferation. The present review focuses on new progress about factors regulating SLC's proliferation and differentiation which will undoubtedly deepen our insights into SLCs and help make better clinical use of them. Different factors affect on the proliferation and differentiation of stem Leydig cells. Firstly, each rat was intraperitoneally injected EDS so as to deplete Leydig cells from the adult testis. Secondly, the CD51+ or CD90+ cells from the testis of rats are SLCs, and the p75+ cells from human adult testes are human SLCs. These SLCs in the testis start to proliferate and some of them differentiate into LCs. Thirdly, during the SLCs regeneration period, researchers could explore different function of those factors (pollutants, growth factors, cytokines and hormones) towards SLCs.
Collapse
Affiliation(s)
- Zhuo-Jie Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yong-Hui Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Sheng-Yu Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
27
|
Huang Q, Yang Z, Wang J, Luo Y, Zhao C, Li M, Xiao H, Tao W, Wang D, Wei J. Establishment of a stem Leydig cell line capable of 11-ketotestosterone production. Reprod Fertil Dev 2021; 32:1271-1281. [PMID: 33153523 DOI: 10.1071/rd20171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
The deficiency or insufficiency of androgen can trigger a range of reproductive diseases as well as other symptoms. Stem Leydig cells (SLCs) are critical for the formation and maintenance of a functional androgen-producing cell (Leydig cell, LC) population throughout adult male life. However, to date, our knowledge about SLCs is poor. Here we report the derivation and characterisation of a clonal stem LC line (designated as TSL) capable of 11- ketotestosterone (11-KT) production from a 3-month-old Nile tilapia (Oreochromis niloticus) testis. The cells retained stable proliferation after 77 generations with normal karyotype and growth factor dependency. They expressed platelet-derived growth factor receptor-α (pdgfrα), nestin and chicken ovalbumin upstream promoter transcription factor II (coup-tfIIa), which are characteristic of SLCs. Upon induction in defined medium, TSLs could undergo differentiation into steroidogenically active LCs and produce 11-KT. When implanted into recipient Nile tilapia testes from which endogenous LCs had been eliminated by ethane dimethanesulphonate (EDS) treatment, the PKH26-labelled TSLs could colonise the interstitium, subsequently express steroidogenic genes and restore 11-KT production. Taken together, our data suggest that TSLs possess the ability of continuous proliferation and potential of differentiation into functional LCs invitro and invivo. To the best of our knowledge TSL might represent the first stem LC line capable of 11-KT production to date. Our study may offer new opportunities for investigating the self-renewal of SLCs and steroidogenesis invitro, and provide an invaluable invitro model for investigating endocrine disruptors.
Collapse
Affiliation(s)
- Qin Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Zhuo Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Jie Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Yubing Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Changle Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China; and Corresponding authors. Emails: ;
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education; Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China; and Corresponding authors. Emails: ;
| |
Collapse
|
28
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
29
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
30
|
Rapid Differentiation of Human Embryonic Stem Cells into Testosterone-Producing Leydig Cell-Like Cells In vitro. Tissue Eng Regen Med 2021; 18:651-662. [PMID: 34165777 PMCID: PMC8325741 DOI: 10.1007/s13770-021-00359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.
Collapse
|
31
|
Shen YC, Shami AN, Moritz L, Larose H, Manske GL, Ma Q, Zheng X, Sukhwani M, Czerwinski M, Sultan C, Chen H, Gurczynski SJ, Spence JR, Orwig KE, Tallquist M, Li JZ, Hammoud SS. TCF21 + mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun 2021; 12:3876. [PMID: 34162856 PMCID: PMC8222243 DOI: 10.1038/s41467-021-24130-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.
Collapse
Affiliation(s)
- Yu-Chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lindsay Moritz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Hailey Larose
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel L Manske
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Czerwinski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Haolin Chen
- Biochemistry and Molecular Biology, Bloomberg School of Public Health, John Hopkins, USA
| | | | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Tallquist
- University of Hawaii, Center for Cardiovascular Research, Honolulu, HI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Zou C, Yan H, Wen Z, Li C, Zhang S, Ying Y, Pan P, Li Y, Li H, Li X, Wang Y, Zhong Y, Ge RS, Rao D. Perfluorotridecanoic Acid Inhibits Leydig Cell Maturation in Male Rats in Late Puberty via Changing Testicular Lipid Component. Chem Res Toxicol 2021; 34:1542-1555. [PMID: 34081457 DOI: 10.1021/acs.chemrestox.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain (C13) perfluoroalkyl carboxylic acid. Here, we report the influence of PFTrDA exposure on the maturation of rat Leydig cells in late puberty in vivo. Male Sprague-Dawley rats were administered PFTrDA by gavage of 0, 1, 5, and 10 mg/kg/day from 35 days to 56 days postpartum. PFTrDA had no effect on body weight, testis weight, and epididymis weight. It significantly decreased the serum testosterone level after 5 and 10 mg/kg exposure, while it did not alter the serum estradiol level. The serum luteinizing hormone level was markedly reduced after 10 mg/kg PFTrDA exposure, while the follicle-stimulating hormone level was unchanged. Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3 transcript levels in the testis were markedly lowered in the 1-5 mg/kg PFTrDA group and the Lhb transcript level in the pituitary in the 10 mg/kg group. CYP11A1 and HSD11B1-positive Leydig cell numbers were markedly reduced after 10 mg/kg PFTrDA exposure. Testicular triglyceride and free fatty acid (palmitic acid, oleic acid, and linoleic acid) levels were significantly reduced by PFTrDA, while Mgll (up-regulation) and Scarb1 and Elovl5 (down-regulation) expression were altered. AKT1 and AMPK phosphorylation was stimulated after 10 PFTrDA mg/kg exposure. In conclusion, PFTrDA delays the maturation of Leydig cells in late puberty mainly by altering the free fatty acid profile.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haoni Yan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Changchang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dapang Rao
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
33
|
Li C, Zou C, Yan H, Li Z, Li Y, Pan P, Ma F, Yu Y, Wang Y, Wen Z, Ge RS. Perfluorotridecanoic acid inhibits fetal Leydig cell differentiation after in utero exposure in rats via increasing oxidative stress and autophagy. ENVIRONMENTAL TOXICOLOGY 2021; 36:1206-1216. [PMID: 33683001 DOI: 10.1002/tox.23119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 05/23/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain perfluoroalkyl substance, and its effect on the differentiation of fetal Leydig cells remains unclear. The objective of this study is to explore the effect of in utero PFTrDA exposure on the differentiation of fetal Leydig cells and investigate its underlying mechanisms. Pregnant Sprague-Dawley female rats were daily administered by gavage of PFTrDA at doses of 0, 1, 5, and 10 mg/kg from gestational day 14 to 21. PFTrDA had no effect on the body weight of dams, but significantly reduced the body weight and anogenital distance of male pups at birth at a dose of 10 mg/kg. PFTrDA significantly decreased serum testosterone levels as low as 1 mg/kg. PFTrDA did not affect fetal Leydig cell number, but promoted abnormal aggregation of fetal Leydig cells at doses of 5 and 10 mg/kg. PFTrDA down-regulated the expression of Insl3, Lhcgr, Scarb1, Star, Hsd3b1, Cyp17a1, Nr5a1, and Dhh as well as their proteins. PFTrDA lowered the levels of antioxidants (SOD1, CAT, and GPX1), induced autophagy as shown by increased levels of LC3II and beclin1, and reduced the phosphorylation of mTOR. In conclusion, PFTrDA inhibits the differentiation of fetal Leydig cells in male pups after in utero exposure mainly through increasing oxidative stress and inducing autophagy.
Collapse
Affiliation(s)
- Changchang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Enhanced Negative Regulation of the DHH Signaling Pathway as a Potential Mechanism of Ascrotal Testes in Laurasiatherians. Evol Biol 2021. [DOI: 10.1007/s11692-021-09542-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Mao B, Li C, Wen Z, Li H, Wang Y, Chen L, Lian Q, Ge RS. Short-term perfluorooctane sulfonate exposure impairs Leydig cell regeneration in the adult rat testis via targeting hedgehog signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112121. [PMID: 33721578 DOI: 10.1016/j.ecoenv.2021.112121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctane sulfonate is related to male reproductive dysfunction in rats and humans. However, the underlying mechanism remains unknown. Here, we reported the effects of short-term exposure to perfluorooctane sulfonate on the regeneration of Leydig cells in vivo and investigated possible mechanisms in vitro. After adult male Sprague-Dawley rats were gavaged perfluorooctane sulfonate (0, 5 or 10 mg/kg/day) for 7 days and then injected intraperitoneally ethane dimethane sulfonate next day to eliminate Leydig cells, the Leydig cell regeneration process was monitored. Perfluorooctane sulfonate significantly lowered serum testosterone levels, reduced the number of regenerated Leydig cells, down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Dhh) and their proteins at doses of 5 and 10 mg/kg 35 and 56 days after ethane dimethane sulfonate. Using a 3D seminiferous tubule culture system to study the development of stem Leydig cells, we found that perfluorooctane sulfonate inhibited stem Leydig cell proliferation and differentiation and hedgehog signaling pathway. In conclusion, a short-term exposure to perfluorooctane sulfonate can inhibit the development of stem Leydig cells into the Leydig cell lineage via direct suppression of hedgehog signaling pathway and indirect inhibition of desert hedgehog section by Sertoli cells.
Collapse
Affiliation(s)
- Baiping Mao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Chao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lanlan Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
37
|
Xia K, Ma Y, Feng X, Deng R, Ke Q, Xiang AP, Deng C. Endosialin defines human stem Leydig cells with regenerative potential. Hum Reprod 2021; 35:2197-2212. [PMID: 32951040 PMCID: PMC7518712 DOI: 10.1093/humrep/deaa174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is endosialin a specific marker of human stem Leydig cells (SLCs) with the ability to differentiate into testosterone-producing Leydig cells (LCs) in vitro and in vivo? SUMMARY ANSWER Endosialin is a specific marker of human SLCs which differentiate into testosterone-producing LCs in vitro and in vivo. WHAT IS KNOWN ALREADY Human SLCs have been identified and isolated using the marker platelet-derived growth factor receptor α (PDGFRα) or nerve growth factor receptor (NGFR). However, the specificity was not high; thus, LCs and germ cells could be mistakenly sorted as SLCs if PDGFRα or NGFR was used as a marker for human SLCs isolation. STUDY DESIGN, SIZE, DURATION Firstly, we re-evaluated the specificity of PDGFRα and NGFR for SLCs in adult human testes. Then we analysed the previously published single-cell sequencing data and found that endosialin may identify human SLCs. Subsequently, we sorted endosialin+ cells from four human donors and characterized their self-renewal and multipotent properties. To assess whether endosialin+ cells have the potential to differentiate into functional LCs in vitro, these cells were stimulated by differentiation-inducing medium. We next assessed the in vivo regenerative potential of human endosialin+ cells after xenotransplantation into the testes of immunodeficient mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell sequencing analysis, immunofluorescence and flow cytometry were used to characterize human testis tissues. In vitro colony formation, multipotent differentiation (adipogenic, osteogenic and chondrogenic) and Leydig cell-lineage induction were used to assess stem cell activity. Xenotransplantation into 3-week-old immunodeficient mice was used to determine in vivo regenerative potential. Endpoint measures included testosterone measurements, cell proliferation, immunofluorescence, flow cytometry and quantitative RT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE The results indicate that endosialin is a specific marker of SLCs compared with PDGFRα and NGFR. Additionally, endosialin+ cells isolated from human testes show extensive proliferation and differentiation potential in vitro: their self-renewal ability was inferred by the formation of spherical clones derived from a single cell. Moreover, these cells could differentiate into functional LCs that secreted testosterone in response to LH in a concentration-dependent manner in vitro. These self-renewal and differentiation properties reinforce the proposal that human testicular endosialin+ cells are SLCs. Furthermore, transplanted human endosialin+ cells appear to colonize the murine host testes, localize to peritubular and perivascular regions, proliferate measurably and differentiate partially into testosterone-producing LCs in vivo. LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION Owing to the difficulty in collecting human testis tissue, the sample size was limited. The functions of endosialin on SLCs need to be elucidated in future studies. WIDER IMPLICATIONS OF THE FINDINGS A discriminatory marker, endosialin, for human SLCs purification is a prerequisite to advance research in SLCs and logically promote further clinical translation of SLCs-based therapies for male hypogonadism. STUDY FUNDING/COMPETING INTEREST(S) A.P.X. was supported by the National Key Research and Development Program of China (2017YFA0103802 and 2018YFA0107200). C.D. was supported by the National Natural Science Foundation of China (81971314) and the Natural Science Foundation of Guangdong Province, China (2018B030311039). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
38
|
Zhao X, Wen X, Ji M, Guan X, Chen P, Hao X, Chen F, Hu Y, Duan P, Ge RS, Chen H. Differentiation of seminiferous tubule-associated stem cells into leydig cell and myoid cell lineages. Mol Cell Endocrinol 2021; 525:111179. [PMID: 33515640 DOI: 10.1016/j.mce.2021.111179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Peritubular stem Leydig cells (SLCs) have been identified from rat testicular seminiferous tubules. However, no stem cells for peritubular myoid cells have been reported in the adult testis so far. In the present study, we tested the hypothesis that the peritubular SLCs are multipotent and able to form either Leydig or myoid cells. Using cultured tubules, we show that in the presence of PDGFAA and luteinizing hormone, SLCs became testosterone-producing Leydig cells, while in the presence of PDGFBB and TGFB, the cells formed α-smooth muscle actin-expressing myoid cells. This multipotency was also confirmed by culture of isolated CD90+ SLCs. These results suggest that these stem cells outside the myoid layer are multipotent and give rise to either Leydig or myoid cells, depending on the inducing factors. These cells may serve as a common precursor population for maintaining homeostasis of both Leydig and myoid cell populations in the adult testis.
Collapse
Affiliation(s)
- Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Minpeng Ji
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoju Guan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinrui Hao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yue Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Haolin Chen
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
39
|
Navin AK, Aruldhas MM, Navaneethabalakrishnan S, Mani K, Michael FM, Srinivasan N, Banu SK. Prenatal exposure to hexavalent chromium disrupts testicular steroidogenic pathway in peripubertal F 1 rats. Reprod Toxicol 2021; 101:63-73. [PMID: 33675932 DOI: 10.1016/j.reprotox.2021.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 11/21/2022]
Abstract
We have reported sub-fertility in F1 progeny rats with gestational exposure to hexavalent chromium [Cr(VI)], which had disrupted Sertoli cell (SC) structure and function, and decreased testosterone (T). However, the underlying mechanism for reduced T remains to be understood. We tested the hypothesis "transient prenatal exposure to Cr(VI) affects testicular steroidogenesis by altering hormone receptors and steroidogenic enzyme proteins in Leydig cells (LCs)." Pregnant Wistar rats were given drinking water containing 50, 100, and 200 mg/L potassium dichromate during gestational days 9-14, encompassing fetal differentiation window of the testis from the bipotential gonad. F1 male rats were euthanized on postnatal day 60 (peripubertal rats with adult-type LCs alone). Results showed that prenatal exposure to Cr(VI): (i) increased accumulation of Cr(III) in the testis of F1 rats; (ii) increased serum levels of luteinizing and follicle stimulating hormones (LH and FSH), and 17β estradiol, and decreased prolactin and T; (iii) decreased steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A1, 3β- and 17β-hydroxysteroid dehydrogenases, cytochrome P450 aromatase and 5α reductase proteins, (iv) decreased specific activities of 3β and 17β hydroxysteroid dehydrogenases; (v) decreased receptors of LH, androgen and estrogen in LCs; (vi) decreased 5α reductase and receptor proteins of FSH, androgen, and estrogen in SCs. The current study concludes that prenatal exposure to Cr(VI) disrupts testicular steroidogenesis in F1 progeny by repressing hormone receptors and key proteins of the steroidogenic pathway in LCs and SCs.
Collapse
Affiliation(s)
- Ajit Kumar Navin
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, TAMU-4458, Texas A&M University, College Station, TX, 77843, USA
| | - Mariajoseph Michael Aruldhas
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India.
| | - Shobana Navaneethabalakrishnan
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Kathireshkumar Mani
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Felicia Mary Michael
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Narasimhan Srinivasan
- Department of Tissue Engineering and Regenerative Medicine, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamil Nadu, India
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, TAMU-4458, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
40
|
Li H, Wen Z, Ni C, Chen X, Cheng Y, Liu Y, Li X, Zhu Q, Ge RS. Perfluorododecanoic acid delays Leydig cell regeneration from stem cells in adult rats. Food Chem Toxicol 2021; 151:112152. [PMID: 33774092 DOI: 10.1016/j.fct.2021.112152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Perfluorododecanoic acid (PFDoA) is an endocrine-damaging compound in contaminated food and water. However, the potential role and underlying mechanism of PFDoA in Leydig cell regeneration from stem Leydig cells remain unclear. The current study aims to investigate the effect of PFDoA on the regeneration of Leydig cells in the testis of rats treated with ethylene dimethane sulfonate (EDS). PFDoA (0, 5 or 10 mg/kg/day) was gavaged to adult Sprague-Dawley male rats for 8 days, and 75 mg/kg EDS was intraperitoneally injected to eliminate Leydig cells to initiate its regeneration from day 21-56 after EDS. The serum testosterone levels in the 5 and 10 mg/kg/day PFDoA groups were significantly reduced at day 21 after EDS and the levels of serum luteinizing hormone and follicle-stimulating hormone were significantly decreased in the 10 mg/kg/day PFDoA groups at day 56 after EDS. PFDoA significantly reduced Leydig cell number and proliferation at a dose of 10 mg/kg at days 21 and 56 after EDS. PFDoA significantly down-regulated the expression of Leydig cell-specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1 and Cyp17a1) and their proteins at both doses at days 21 and 56 after EDS. PFDoA significantly down-regulated the gene expression of Sertoli cells (Fshr, Dhh, and Sox9) at 5 mg/kg or higher at days 21 and 56 after EDS. In addition, we found that PFDoA significantly inhibited EdU incorporation into putative stem Leydig cells and their differentiation into the Leydig cell lineage in vitro. In conclusion, short-term PFDoA exposure in adulthood delayed the regeneration of Leydig cells by preventing Leydig cells from stem cells via multiple mechanisms.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zina Wen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, China
| | - Xianwu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Cheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yuxin Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
41
|
Yan H, Li C, Zou C, Xin X, Li X, Li H, Li Y, Li Z, Wang Y, Chen H, Ge RS. Perfluoroundecanoic acid inhibits Leydig cell development in pubertal male rats via inducing oxidative stress and autophagy. Toxicol Appl Pharmacol 2021; 415:115440. [PMID: 33549592 DOI: 10.1016/j.taap.2021.115440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Perfluoroundecanoic acid (PFUnA) is one of long-chain perfluoroalkyl carboxylic acids. However, the effect of PFUnA on pubertal development of Leydig cells remains unclear. The goal of this study was to investigate the effect of PFUnA on Leydig cell development in pubertal male rats. We orally dosed male Sprague-Dawley rats (age 35 days) with PFUnA at doses of 0, 1, 5, and 10 mg/kg/day from postnatal day (PND) 35 to PND 56. Serum testosterone and luteinizing hormone levels were remarkably reduced by PFUnA at ≥1 mg/kg while serum follicle-stimulating hormone levels were lowered at 5 and 10 mg/kg. PFUnA down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, Insl3, Nr5a1, Fshr, Dhh, Sod1, and Sod2 and their proteins in the testis and the expression of Lhb and Fshb in the pituitary. PFUnA reduced Leydig cell number at 5 and 10 mg/kg. PFUnA induced oxidative stress and increased autophagy. These may result from the inhibition of phosphorylation of mTOR, AKT1, AKT2, and ERK1/2 in the testis. In conclusion, PFUnA exhibits inhibitory effects on pubertal Leydig cell development possibly via inducing oxidative stress and increasing autophagy.
Collapse
Affiliation(s)
- Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changchang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
42
|
Zhu X, Hu M, Ji H, Huang T, Ge RS, Wang Y. Exposure to di-n-octyl phthalate during puberty induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111432. [PMID: 33075588 DOI: 10.1016/j.ecoenv.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to phthalates ubiquitously, which may threaten health. However, whether di-n-octyl phthalate can prevent pubertal sexual maturity is still elusive. In this study, male Sprague Dawley rats (age 35 days) were treated daily by gavage with 0, 10, 100, and 1000 mg/kg body weight of di-n-octyl phthalate from day 35 to day 49 after birth. Di-n-octyl phthalate significantly reduced serum testosterone levels at doses of 100 and 1000 mg/kg, but increased serum luteinizing hormone levels of 1000 mg/kg and decreased testosterone/luteinizing hormone ratio at ≥10 mg/kg, without affecting serum follicle-stimulating hormone levels. Di-n-octyl phthalate significantly induced Leydig cell hyperplasia (increased number of CYP11A1-positive Leydig cells) at 100 and 1000 mg/kg. Di-n-octyl phthalate down-regulates the gene expression of Cyp11a1, Hsd3b1 and Insl3 in individual Leydig cells. Di-n-octyl phthalate can also reduce the number of sperm in the epididymis. Di-n-octyl phthalate increased phosphorylated AKT1/AKT2 without affecting their total proteins, but increased the total protein and phosphorylated protein of ERK1/2 and GSK-3β. Primary immature Leydig cells isolated from 35-day-old rats were treated with 0-50 μM di-n-octyl phthalate for 3 h. This phthalate inhibited androgen production under basal, LH-stimulated, and cAMP-stimulated conditions by 5 and 50 μM in vitro via down-regulating Cyp11a1 expression but up-regulating Srd5a1 expression in vitro. In conclusion, di-n-octyl phthalate induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function and prevents sperm production.
Collapse
Affiliation(s)
- Xiayan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miner Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haosen Ji
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
43
|
Jia M, Li X, Jiang C, Wang K, Zuo T, He G, Qin L, Xu W. Testis-enriched circular RNA circ-Bbs9 plays an important role in Leydig cell proliferation by regulating a CyclinD2-dependent pathway. Reprod Fertil Dev 2021; 32:355-362. [PMID: 31708014 DOI: 10.1071/rd18474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs belong to a new category of non-coding RNAs, characterised by a circular structure, conservation, stability and high expression in eukaryotes. They often show tissue- or cell-specific expression. Here, we identified a testis-enriched circular RNA (circRNA), circular Bbs9 (circ-Bbs9) that is highly expressed in mouse testis. An RNase R treatment experiment confirmed that circ-Bbs9 is indeed a circRNA. In situ hybridisation experiments showed that circ-Bbs9 is expressed in Leydig cells along seminiferous tubules and in the cytoplasm of the TM3 Leydig cell line. Knocking down the circ-Bbs9 in TM3 cells by lentivirus vectors arrested cell proliferation, whereas overexpression of circ-Bbs9 induced cell proliferation significantly. Knocking down circ-Bbs9 inhibited the protein level of cyclin D2 (Ccnd2) and RNA immunoprecipitation results showed that circ-Bbs9 interacts with Ccnd2. Our results show that use of the Hedgehog pathway Smoothened Agonist (SAG) HCl and antagonists cyclopamine and gant6 affects the expression levels of Glioma-Associated Oncogene Homolog 1 (Gli1), Ccnd2 and other genes in this pathway. Our research reveals that a Leydig cell-specific circRNA, circ-Bbs9, plays a critical role in Leydig cell proliferation through regulating the levels of cell cycle-related Ccnd2. Thus, our results emphasise the important role of circRNA in the male reproductive system.
Collapse
Affiliation(s)
- Minzhi Jia
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoliang Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Chuan Jiang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ke Wang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zuo
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Guolin He
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Lang Qin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Gene expression and functional abnormalities in XX/Sry Leydig cells. Sci Rep 2021; 11:719. [PMID: 33436964 PMCID: PMC7804417 DOI: 10.1038/s41598-020-80741-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
The SRY gene induces testis development even in XX individuals. However, XX/Sry testes fail to produce mature sperm, due to the absence of Y chromosome carrying genes essential for spermatogenesis. XX/Sry Sertoli cells show abnormalities in the production of lactate and cholesterol required for germ cell development. Leydig cells are essential for male functions through testosterone production. However, whether XX/Sry adult Leydig cells (XX/Sry ALCs) function normally remains unclear. In this study, the transcriptomes from XY and XX/Sry ALCs demonstrated that immediate early and cholesterogenic gene expressions differed between these cells. Interestingly, cholesterogenic genes were upregulated in XX/Sry ALCs, although downregulated in XX/Sry Sertoli cells. Among the steroidogenic enzymes, CYP17A1 mediates steroid 17α-hydroxylation and 17,20-lyase reaction, necessary for testosterone production. In XX/Sry ALCs, the latter reaction was selectively decreased. The defects in XX/Sry ALCs, together with those in the germ and Sertoli cells, might explain the infertility of XX/Sry testes.
Collapse
|
45
|
Zhao X, Ji M, Wen X, Chen D, Huang F, Guan X, Tian J, Xie J, Shao J, Wang J, Huang L, Lin H, Ye L, Chen H. Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells In Vitro. Front Endocrinol (Lausanne) 2021; 12:765251. [PMID: 34867807 PMCID: PMC8632869 DOI: 10.3389/fendo.2021.765251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Midazolam is a neurological drug with diverse functions, including sedation, hypnosis, decreased anxiety, anterograde amnesia, brain-mediated muscle relaxation, and anticonvulsant activity. Since it is frequently used in children and adolescents for extended periods of time, there is a risk that it may affect their pubertal development. Here, we report a potential effect of the drug on the development of Leydig cells (LCs), the testosterone (T)-producing cells in the testis. METHODS Stem LCs (SLCs), isolated from adult rat testes by a magnetic-activated cell sorting technique, were induced to differentiate into LCs in vitro for 3 weeks. Midazolam (0.1-30 μM) was added to the culture medium, and the effects on LC development were assayed. RESULTS Midazolam has dose-dependent effects on SLC differentiation. At low concentrations (0.1-5 μM), the drug can mildly increase SLC differentiation (increased T production), while at higher concentrations (15-30 μM), it inhibits LC development (decreased T production). T increases at lower levels may be due to upregulations of scavenger receptor class b Member 1 (SCARB1) and cytochrome P450 17A1 (CYP17A1), while T reductions at higher levels of midazolam could be due to changes in multiple steroidogenic proteins. The uneven changes in steroidogenic pathway proteins, especially reductions in CYP17A1 at high midazolam levels, also result in an accumulation of progesterone. In addition to changes in T, increases in progesterone could have additional impacts on male reproduction. The loss in steroidogenic proteins at high midazolam levels may be mediated in part by the inactivation of protein kinase B/cAMP response element-binding protein (AKT/CREB) signaling pathway. CONCLUSION Midazolam has the potential to affect adult Leydig cell (ALC) development at concentrations comparable with the blood serum levels in human patients. Further studies are needed to test the effects on human cells.
Collapse
Affiliation(s)
- Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoqi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| |
Collapse
|
46
|
Hao X, Guan X, Zhao X, Ji M, Wen X, Chen P, Chen F, Yang J, Lian Q, Ye L, Chen H. Phthalate inhibits Leydig cell differentiation and promotes adipocyte differentiation. CHEMOSPHERE 2021; 262:127855. [PMID: 32799149 DOI: 10.1016/j.chemosphere.2020.127855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Studies have shown that phthalates are capable of affecting the development and functions of male reproductive system. The effect of phthalates on Leydig cell functions is well documented. However, little is known about their potential effects on the functions of stem Leydig cells (SLC). In the present study, we have examined the effects of mono-(2-ethylhexyl) phthalate (MEHP) on SLC functions in vitro by culturing seminiferous tubules and isolated SLCs. The results indicate that MEHP can significantly inhibit the proliferation and differentiation of SLCs in both the organ and cell culture systems. Interestingly, the minimal effective concentration that is able to affect SLC function was lower in the tubule culture system (1 μM) than in the isolated cells (10 μM), suggesting a possible involvement of the niche cells. Also, MEHP appeared to affect both the efficiency of SLCs to form Leydig cells and a selected group of Leydig cell-specific genes, including Lhcgr, Scarb1, Hsd3b1, Cyp17a1, Star, Srd5a1, Akr1c14, Insl3, Hao2 and Pah. Since SLCs are multipotent, we also tested the effect of MEHP on the differentiation of SLCs to adipocytes. Though MEHP by itself can not specify SLCs into adipocyte lineage, it indeed significantly increased the adipogenic activity of SLCs if used with an adipocyte inducing medium by up-regulation of multiple adipogenic-related genes, including Pparg and Cebpa. Overall, the results indicate that MEHP inhibits SLCs differentiating into Leydig lineage while stimulates the differentiating potential of SLCs to adipocytes.
Collapse
Affiliation(s)
- Xinrui Hao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoju Guan
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Minpeng Ji
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Haolin Chen
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
47
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
49
|
Yu Y, Li Z, Ma F, Chen Q, Lin L, Xu Q, Li Y, Xin X, Pan P, Huang T, Wang Y, Fei Q, Ge RS. Neurotrophin-3 stimulates stem Leydig cell proliferation during regeneration in rats. J Cell Mol Med 2020; 24:13679-13689. [PMID: 33090725 PMCID: PMC7753877 DOI: 10.1111/jcmm.15886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Neurotrophin‐3 (NT‐3) acts as an important growth factor to stimulate and control tissue development. The NT‐3 receptor, TRKC, is expressed in rat testis. Its function in regulation of stem Leydig cell development and its underlying mechanism remain unknown. Here, we reported the role of NT‐3 to regulate stem Leydig cell development in vivo and in vitro. Ethane dimethane sulphonate was used to kill all Leydig cells in adult testis, and NT‐3 (10 and 100 ng/testis) was injected intratesticularly from the 14th day after ethane dimethane sulphonate injection for 14 days. NT‐3 significantly reduced serum testosterone levels at doses of 10 and 100 ng/testis without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. NT‐3 increased CYP11A1‐positive Leydig cell number at 100 ng/testis and lowered Leydig cell size and cytoplasmic size at doses of 10 and 100 ng/testis. After adjustment by the Leydig cell number, NT‐3 significantly down‐regulated the expression of Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, Insl3, Trkc and Nr5a1) and the proteins. NT‐3 increased the phosphorylation of AKT1 and mTOR, decreased the phosphorylation of 4EBP, thereby increasing ATP5O. In vitro study showed that NT‐3 dose‐dependently stimulated EdU incorporation into stem Leydig cells and inhibited stem Leydig cell differentiation into Leydig cells, thus leading to lower medium testosterone levels and lower expression of Lhcgr, Scarb1, Trkc and Nr5a1 and their protein levels. NT‐3 antagonist Celitinib can antagonize NT‐3 action in vitro. In conclusion, the present study demonstrates that NT‐3 stimulates stem Leydig cell proliferation but blocks the differentiation via TRKC receptor.
Collapse
Affiliation(s)
- Yige Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanxu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liben Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Xu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Zhan X, Zhang J, Li S, Zhang X, Li L, Song T, Liu Q, Lu J, Xu Y, Ge RS. Monocyte Chemoattractant Protein-1 stimulates the differentiation of rat stem and progenitor Leydig cells during regeneration. BMC DEVELOPMENTAL BIOLOGY 2020; 20:20. [PMID: 33023470 PMCID: PMC7541273 DOI: 10.1186/s12861-020-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Background Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro. Results Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1. Conclusion MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.
Collapse
Affiliation(s)
- Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingwei Zhang
- Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Saiyang Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Xiaolu Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linchao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Tiantian Song
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qunlong Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Jun Lu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Tongji University School of Medicine, Shanghai, 200092, China. .,Nanjing Medical University, Nanjing, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|