1
|
Ma Y, Xu D, Gan Y, Chen Z, Chen Y, Han X. Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125322. [PMID: 39549990 DOI: 10.1016/j.envpol.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.
Collapse
Affiliation(s)
- Yuhan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dihui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zining Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
2
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Liu ZL, Hua FF, Qu L, Yan N, Zhang HF. Evaluating serum CXCL12, sCD22, Lp-PLA2 levels and ratios as biomarkers for diagnosis of Alzheimer's disease. World J Psychiatry 2024; 14:380-387. [PMID: 38617987 PMCID: PMC11008386 DOI: 10.5498/wjp.v14.i3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease (AD) is still a work in progress, and existing diagnostic techniques encounter various obstacles. Therefore, the discovery of dependable biomarkers is essential for early detection, tracking the disease's advancement, and steering treatment strategies. AIM To explore the diagnostic potential of serum CXCL12, sCD22, Lp-PLA2, and their ratios in AD, aiming to enhance early detection and inform targeted treatment strategies. METHODS The study was conducted in Dongying people's Hospital from January 2021 to December 2022. Participants included 60 AD patients (AD group) and 60 healthy people (control group). Using a prospective case-control design, the levels of CXCL12, sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD. The differences between the two groups were analyzed by statistical methods, and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis. RESULTS Serum CXCL12 levels were higher in the AD group (47.2 ± 8.5 ng/mL) than the control group (32.8 ± 5.7 ng/mL, P < 0.001), while sCD22 levels were lower (14.3 ± 2.1 ng/mL vs 18.9 ± 3.4 ng/mL, P < 0.01). Lp-PLA2 levels were also higher in the AD group (112.5 ± 20.6 ng/mL vs 89.7 ± 15.2 ng/mL, P < 0.05). Significant differences were noted in CXCL12/sCD22 (3.3 vs 1.7, P < 0.001) and Lp-PLA2/sCD22 ratios (8.0 vs 5.2, P < 0.05) between the groups. Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD, with area under the curves ranging from 0.568 to 0.787. CONCLUSION Serum CXCL12 and Lp-PLA2 levels were significantly increased, while sCD22 were significantly decreased, as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22, are closely related to the onset of AD. These biomarkers and their ratios can be used as potential diagnostic indicators for AD, providing an important clinical reference for early intervention and treatment.
Collapse
Affiliation(s)
- Zeng-Ling Liu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Fei-Fei Hua
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Lei Qu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Na Yan
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Hui-Fang Zhang
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| |
Collapse
|
6
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Guffens L, Derua R, Janssens V. PME-1-regulated neural cell death: new therapeutic opportunities? Aging (Albany NY) 2023; 15:11694-11696. [PMID: 37950723 PMCID: PMC10683631 DOI: 10.18632/aging.205303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| |
Collapse
|
8
|
Tautou M, Descamps F, Larchanché PE, Buée L, El Bakali J, Melnyk P, Sergeant N. A Polyaminobiaryl-Based β-secretase Modulator Alleviates Cognitive Impairments, Amyloid Load, Astrogliosis, and Neuroinflammation in APPSwe/PSEN1ΔE9 Mice Model of Amyloid Pathology. Int J Mol Sci 2023; 24:ijms24065285. [PMID: 36982363 PMCID: PMC10048993 DOI: 10.3390/ijms24065285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The progress in Alzheimer’s disease (AD) treatment suggests a combined therapeutic approach targeting the two lesional processes of AD, which include amyloid plaques made of toxic Aβ species and neurofibrillary tangles formed of aggregates of abnormally modified Tau proteins. A pharmacophoric design, novel drug synthesis, and structure-activity relationship enabled the selection of a polyamino biaryl PEL24-199 compound. The pharmacologic activity consists of a non-competitive β-secretase (BACE1) modulatory activity in cells. Curative treatment of the Thy-Tau22 model of Tau pathology restores short-term spatial memory, decreases neurofibrillary degeneration, and alleviates astrogliosis and neuroinflammatory reactions. Modulatory effects of PEL24-199 towards APP catalytic byproducts are described in vitro, but whether PEL24-199 can alleviate the Aβ plaque load and associated inflammatory counterparts in vivo remains to be elucidated. We investigated short- and long-term spatial memory, Aβ plaque load, and inflammatory processes in APPSwe/PSEN1ΔE9 PEL24-199 treated transgenic model of amyloid pathology to achieve this objective. PEL24-199 curative treatment induced the recovery of spatial memory and decreased the amyloid plaque load in association with decreased astrogliosis and neuroinflammation. The present results underline the synthesis and selection of a promising polyaminobiaryl-based drug that modulates both Tau and, in this case, APP pathology in vivo via a neuroinflammatory-dependent process.
Collapse
Affiliation(s)
- Marie Tautou
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Florian Descamps
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
| | - Jamal El Bakali
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| |
Collapse
|
9
|
LCMT1 indicates poor prognosis and is essential for cell proliferation in hepatocellular carcinoma. Transl Oncol 2022; 27:101572. [PMID: 36401967 PMCID: PMC9673118 DOI: 10.1016/j.tranon.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.
Collapse
|
10
|
Li Y, Balakrishnan VK, Rowse M, Wu CG, Bravos AP, Yadav VK, Ivarsson YI, Strack S, Novikova IV, Xing Y. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. eLife 2022; 11:79736. [PMID: 35924897 PMCID: PMC9398451 DOI: 10.7554/elife.79736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme–PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.
Collapse
Affiliation(s)
- Yitong Li
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Michael Rowse
- Indiana University - Purdue University Columbus, Columbus, United States
| | - Cheng-Guo Wu
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Vikash K Yadav
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - YIva Ivarsson
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, United States
| | - Yongna Xing
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
11
|
Jester HM, Gosrani SP, Ding H, Zhou X, Ko MC, Ma T. Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. J Alzheimers Dis 2022; 88:957-970. [PMID: 35723096 PMCID: PMC9378582 DOI: 10.3233/jad-215303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic or late onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disease with aging the most known risk factor. Non-human primates (NHPs) may serve as an excellent model to study LOAD because of their close similarity to humans in many aspects including neuroanatomy and neurodevelopment. Recent studies reveal AD-like pathology in old NHPs. OBJECTIVE In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs. METHODS We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs. RESULTS We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation. CONCLUSION These findings may provide insights into the factors contributing to the development of LOAD, particularly during the early stage transitioning from middle to old age. Future endeavors are warranted to elucidate mechanisms underlying the regional (and perhaps cellular) vulnerability with aging and the functional correlation of such pathological changes in NHPs.
Collapse
Affiliation(s)
- Hannah M. Jester
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Saahj P. Gosrani
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
13
|
Gnanaprakash M, Staniszewski A, Zhang H, Pitstick R, Kavanaugh MP, Arancio O, Nicholls RE. Leucine Carboxyl Methyltransferase 1 Overexpression Protects Against Cognitive and Electrophysiological Impairments in Tg2576 APP Transgenic Mice. J Alzheimers Dis 2021; 79:1813-1829. [PMID: 33459709 PMCID: PMC8203222 DOI: 10.3233/jad-200462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The serine/threonine protein phosphatase, PP2A, is thought to play a central role in the molecular pathogenesis of Alzheimer’s disease (AD), and the activity and substrate specificity of PP2A is regulated, in part, through methylation and demethylation of its catalytic subunit. Previously, we found that transgenic overexpression of the PP2A methyltransferase, LCMT-1, or the PP2A methylesterase, PME-1, altered the sensitivity of mice to impairments caused by acute exposure to synthetic oligomeric amyloid-β (Aβ). Objective: Here we sought to test the possibility that these molecules also controlled sensitivity to impairments caused by chronically elevated levels of Aβ produced in vivo. Methods: To do this, we examined the effects of transgenic LCMT-1, or PME-1 overexpression on cognitive and electrophysiological impairments caused by chronic overexpression of mutant human APP in Tg2576 mice. Results: We found that LCMT-1 overexpression prevented impairments in short-term spatial memory and synaptic plasticity in Tg2576 mice, without altering APP expression or soluble Aβ levels. While the magnitude of the effects of PME-1 overexpression in Tg2576 mice was small and potentially confounded by the emergence of non-cognitive impairments, Tg2576 mice that overexpressed PME-1 showed a trend toward earlier onset and/or increased severity of cognitive and electrophysiological impairments. Conclusion: These data suggest that the PP2A methyltransferase, LCMT-1, and the PP2A methylesterase, PME-1, may participate in the molecular pathogenesis of AD by regulating sensitivity to the pathogenic effects of chronically elevated levels of Aβ.
Collapse
Affiliation(s)
- Madhumathi Gnanaprakash
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | | | | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Puzzo D, Argyrousi EK, Staniszewski A, Zhang H, Calcagno E, Zuccarello E, Acquarone E, Fa' M, Li Puma DD, Grassi C, D'Adamio L, Kanaan NM, Fraser PE, Arancio O. Tau is not necessary for amyloid-β-induced synaptic and memory impairments. J Clin Invest 2021; 130:4831-4844. [PMID: 32544084 DOI: 10.1172/jci137040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
The amyloid hypothesis posits that the amyloid-beta (Aβ) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer's disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aβ already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aβ-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition. Tau suppression could even unravel a defect in basal synaptic transmission in a mouse model of amyloid deposition. Similarly, tau suppression did not protect against exogenous oligomeric tau-induced impairment of long-term synaptic plasticity and memory. The protective effect of tau suppression was, in turn, confined to short-term plasticity and memory. Taken together, our data suggest that therapies downstream of Aβ and tau together are more suitable to combat AD than therapies against one or the other alone.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Elisa Calcagno
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Elisa Zuccarello
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Erica Acquarone
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Mauro Fa'
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| | - Domenica D Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico A. Gemelli-IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico A. Gemelli-IRCCS, Rome, Italy
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and.,Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Taleski G, Schuhmacher D, Su H, Sontag JM, Sontag E. Disturbances in PP2A methylation and one-carbon metabolism compromise Fyn distribution, neuritogenesis, and APP regulation. J Biol Chem 2021; 296:100237. [PMID: 33380425 PMCID: PMC7948947 DOI: 10.1074/jbc.ra120.016069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023] Open
Abstract
The nonreceptor protein tyrosine kinase Fyn and protein Ser/Thr phosphatase 2A (PP2A) are major multifunctional signaling molecules. Deregulation of Fyn and altered PP2A methylation are implicated in cancer and Alzheimer's disease (AD). Here, we tested the hypothesis that the methylation state of PP2A catalytic subunit, which influences PP2A subunit composition and substrate specificity, can affect Fyn regulation and function. Using Neuro-2a (N2a) neuroblastoma cell models, we first show that methylated PP2A holoenzymes containing the Bα subunit coimmunoprecipitate and copurify with Fyn in membrane rafts. PP2A methylation status regulates Fyn distribution and Fyn-dependent neuritogenesis, likely in part by affecting actin dynamics. A methylation-incompetent PP2A mutant fails to interact with Fyn. It perturbs the normal partitioning of Fyn and amyloid precursor protein (APP) in membrane microdomains, which governs Fyn function and APP processing. This correlates with enhanced amyloidogenic cleavage of APP, a hallmark of AD pathogenesis. Conversely, enhanced PP2A methylation promotes the nonamyloidogenic cleavage of APP in a Fyn-dependent manner. Disturbances in one-carbon metabolic pathways that control cellular methylation are associated with AD and cancer. Notably, they induce a parallel loss of membrane-associated methylated PP2A and Fyn enzymes in N2a cells and acute mouse brain slices. One-carbon metabolism also modulates Fyn-dependent process outgrowth in N2a cells. Thus, our findings identify a novel methylation-dependent PP2A/Fyn signaling module. They highlight the underestimated importance of cross talks between essential metabolic pathways and signaling scaffolds that are involved in normal cell homeostasis and currently being targeted for cancer and AD treatment.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diana Schuhmacher
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Henry Su
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
16
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
17
|
Zhang J, Zhu S, Jin P, Huang Y, Dai Q, Zhu Q, Wei P, Yang Z, Zhang L, Liu H, Xu G, Chen L, Gu E, Zhang Y, Wen L, Liu X. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics 2020; 10:11908-11920. [PMID: 33204319 PMCID: PMC7667672 DOI: 10.7150/thno.50616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Graphene oxide (GO) based nanomaterials have shown potential for the diagnosis and treatment of amyloid-β (Aβ)-related diseases, mainly on Alzheimer's disease (AD). However, these nanomaterials have limitations. How GO is beneficial to eliminate Aβ burden, and its physiological function in Aβ-related diseases, still needs to be investigated. Moreover, postoperative cognitive dysfunction (POCD) is an Aβ-related common central nervous system complication, however, nanomedicine treatment is lacking. Methods: To evaluate the effects of GO on Aβ levels, HEK293T-APP-GFP and SHSY5Y-APP-GFP cells are established. Intramedullary fixation surgery for tibial fractures under inhalation anesthesia is used to induce dysfunction of fear memory in mice. The fear memory of mice is assessed by fear conditioning test. Results: GO treatment maximally alleviated Aβ levels by simultaneously reducing Aβ generation and enhancing its degradation through inhibiting β-cleavage of amyloid precursor protein (APP) and improving endosomal Aβ delivery to lysosomes, respectively. In postoperative mice, the hippocampal Aβ levels were significantly increased and hippocampal-dependent fear memory was impaired. However, GO administration significantly reduced hippocampal Aβ levels and improved the cognitive function of the postoperative mice. Conclusion: GO improves fear memory of postoperative mice by maximally alleviating Aβ accumulation, providing new evidence for the application of GO-based nanomedicines in Aβ-related diseases.
Collapse
|
18
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
19
|
Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer's disease. Life Sci 2020; 262:118401. [PMID: 32926928 DOI: 10.1016/j.lfs.2020.118401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
AIM Insulin has a well-established role in cognition, neuronal detoxification and synaptic plasticity. Insulin transduction affect neurotransmitter functions, influence bioenergetics and regulate neuronal survival through regulating glucose energy metabolism and downward pathways. METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out with the help of the keywords like "Alzheimer's disease; Hypometabolism; Oxidative stress; energy failure in AD, Insulin; Insulin resistance; Bioenergetics" till June 2020. The review was conducted using the above keywords to collect the latest articles and to understand the nature of the extensive work carried out on insulin resistance and bioenergetic manifestations in Alzheimer's disease. KEY FINDINGS The article sheds light on insulin resistance mediated hypometabolic state on pathological progression of AD. The disrupted insulin signaling has pathological outcome in form of disturbed glucose homeostasis, altered bioenergetic state which increases build-up of senile plaques (Aβ), neurofibrillary tangles (τ), decline in transportation of glucose and activation of inflammatory pathways. The mechanistic link of insulin resistant state with therapeutically explorable potential transduction pathways is the focus of the reviewed work. SIGNIFICANCE The present work opines that the mechanism by which the insulin resistance mediates dysregulation of bioenergetics and progresses to neurodegenerative state holds the tangible potential to succeed in the development of novel dementia therapies. Further, hypometabolic complications and altered insulin signaling may be explored as a mechanistic relation between bioenergetic deficits and AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | | |
Collapse
|
20
|
Alzheimer's Disease Mouse as a Model of Testis Degeneration. Int J Mol Sci 2020; 21:ijms21165726. [PMID: 32785075 PMCID: PMC7460847 DOI: 10.3390/ijms21165726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer’s disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.
Collapse
|
21
|
Reduced Expression of the PP2A Methylesterase, PME-1, or the PP2A Methyltransferase, LCMT-1, Alters Sensitivity to Beta-Amyloid-Induced Cognitive and Electrophysiological Impairments in Mice. J Neurosci 2020; 40:4596-4608. [PMID: 32341098 DOI: 10.1523/jneurosci.2983-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Beta-amyloid (Aβ) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aβ produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aβ-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aβ oligomers in male and female mice heterozygous for either a PME-1 KO or an LCMT-1 gene-trap mutation. We found that heterozygous PME-1 KO mice were resistant to Aβ-induced impairments in cognition and synaptic plasticity, whereas LCMT-1 gene-trap mice showed increased sensitivity to Aβ-induced impairments. The heterozygous PME-1 KO mice produced normal levels of endogenous Aβ and exhibited normal electrophysiological responses to picomolar concentrations of Aβ, suggesting that reduced PME-1 expression in these animals protects against Aβ-induced impairments without impacting normal physiological Aβ functions. Together, these data provide additional support for roles for PME-1 and LCMT-1 in regulating sensitivity to Aβ-induced impairments, and suggest that inhibition of PME-1 may constitute a viable therapeutic approach for selectively protecting against the pathologic actions of Aβ in AD.SIGNIFICANCE STATEMENT Elevated levels of β-amyloid (Aβ) in the brain are thought to contribute to the cognitive impairments observed in Alzheimer's disease patients. Here we show that genetically reducing endogenous levels of the PP2A methylesterase, PME-1, prevents the cognitive and electrophysiological impairments caused by acute exposure to pathologic concentrations of Aβ without impairing normal physiological Aβ function or endogenous Aβ production. Conversely, reducing endogenous levels of the PP2A methyltransferase, LCMT-1, increases sensitivity to Aβ-induced impairments. These data offer additional insights into the molecular factors that control sensitivity to Aβ-induced impairments, and suggest that inhibiting PME-1 may constitute a viable therapeutic avenue for preventing Aβ-related impairments in Alzheimer's disease.
Collapse
|
22
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
23
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
24
|
Frohner IE, Mudrak I, Kronlachner S, Schüchner S, Ogris E. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Sci Signal 2020; 13:13/616/eaax6490. [PMID: 31992581 DOI: 10.1126/scisignal.aax6490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits. The tested antibodies preferentially recognized the nonmethylated form of the enzyme, and they did not coimmunoprecipitate trimeric holoenzymes containing the regulatory subunits B or B', an issue that precludes their use to monitor PP2A holoenzyme activity. Furthermore, some of the antibodies also recognized the phosphatase PP4, demonstrating a lack of specificity for PP2A. Together, these findings suggest that reinterpretation of the data generated by using these reagents is required.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stephanie Kronlachner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
25
|
Mahaman YAR, Huang F, Wu M, Wang Y, Wei Z, Bao J, Salissou MTM, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Moringa Oleifera Alleviates Homocysteine-Induced Alzheimer's Disease-Like Pathology and Cognitive Impairments. J Alzheimers Dis 2019; 63:1141-1159. [PMID: 29710724 PMCID: PMC6004908 DOI: 10.3233/jad-180091] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is multifactorial with unclear etiopathology. Due to the complexity of AD, many attempted single therapy treatments, like Aβ immunization, have generally failed. Therefore, there is a need for drugs with multiple benefits. Naturally occurring phytochemicals with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties could be a possible way out. In this study, the effect of Moringa oleifera (MO), a naturally occurring plant with high antioxidative, anti-inflammatory, and neuroprotective effects, was evaluated on hyperhomocysteinemia (HHcy) induced AD-like pathology in rats. Homocysteine (Hcy) injection for 14 days was used to induce AD-like pathology. Simultaneous MO extract gavage followed the injection as a preventive treatment or, after injection completion, MO gavage was performed for another 14 days as a curative treatment. MO was found to not only prevent but also rescue the oxidative stress and cognitive impairments induced by Hcy treatment. Moreover, MO recovered the decreased synaptic proteins PSD93, PSD95, Synapsin 1 and Synaptophysin, and improved neurodegeneration. Interestingly, MO decreased the Hyc-induced tau hyperphosphorylation at different sites including S-199, T-231, S-396, and S-404, and at the same time decreased Aβ production through downregulation of BACE1. These effects in HHcy rats were accompanied by a decrease in calpain activity under MO treatment, supporting that calpain activation might be involved in AD pathogenesis in HHcy rats. Taken together, our data, for the first time, provided evidence that MO alleviates tau hyperphosphorylation and Aβ pathology in a HHcy AD rat model. This and previous other studies support MO as a good candidate for, and could provide new insights into, the treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjuan Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
26
|
The Anti-Tumor Agent Sodium Selenate Decreases Methylated PP2A, Increases GSK3βY216 Phosphorylation, Including Tau Disease Epitopes and Reduces Neuronal Excitability in SHSY-5Y Neurons. Int J Mol Sci 2019; 20:ijms20040844. [PMID: 30781361 PMCID: PMC6412488 DOI: 10.3390/ijms20040844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Selenium application as sodium selenate was repeatedly shown to have anti-carcinogenic properties by increasing levels of the serine/ threonine protein phosphatase 2A (PP2A) in cancer cells. PP2A has a prominent role in cell development, homeostasis, and in neurons regulates excitability. PP2A, GSK3β and Tau reside together in a complex, which facilitates their interaction and (dys)-function as has been reported for several neurological disorders. In this study we recorded maximum increase in total PP2A at 3 µM sodium selenate in a neuron cell line. In conjunction with these data, whole-cell electrophysiological studies revealed that this concentration had maximum effect on membrane potentials, conductance and currents. Somewhat surprisingly, the catalytically active form, methylated PP2A (mePP2A) was significantly decreased. In close correlation to these data, the phosphorylation state of two substrate proteins, sensitive to PP2A activity, GSK3β and Tau were found to be increased. In summary, our data reveal that sodium selenate enhances PP2A levels, but reduces catalytic activity of PP2A in a dose dependent manner, which fails to reduce Tau and GSK3β phosphorylation under physiological conditions, indicating an alternative route in the rescue of cell pathology in neurological disorders.
Collapse
|
27
|
Pseudoginsenoside-F11 alleviates cognitive deficits and Alzheimer’s disease-type pathologies in SAMP8 mice. Pharmacol Res 2019; 139:512-523. [DOI: 10.1016/j.phrs.2018.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
28
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
29
|
McKenzie-Nickson S, Chan J, Perez K, Hung LW, Cheng L, Sedjahtera A, Gunawan L, Adlard PA, Hayne DJ, McInnes LE, Donnelly PS, Finkelstein DI, Hill AF, Barnham KJ. Modulating Protein Phosphatase 2A Rescues Disease Phenotype in Neurodegenerative Tauopathies. ACS Chem Neurosci 2018; 9:2731-2740. [PMID: 29920069 DOI: 10.1021/acschemneuro.8b00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide accounting for around 70% of all cases. There is currently no treatment for AD beyond symptom management and attempts at developing disease-modifying therapies have yielded very little. These strategies have traditionally targeted the peptide Aβ, which is thought to drive pathology. However, the lack of clinical translation of these Aβ-centric strategies underscores the need for diverse treatment strategies targeting other aspects of the disease. Metal dyshomeostasis is a common feature of several neurodegenerative diseases such as AD, Parkinson's disease, and frontotemporal dementia, and manipulation of metal homeostasis has been explored as a potential therapeutic avenue for these diseases. The copper ionophore glyoxalbis-[N4-methylthiosemicarbazonato]Cu(II) (CuII(gtsm)) has previously been shown to improve the cognitive deficits seen in an AD animal model; however, the molecular mechanism remained unclear. Here we report that the treatment of two animal tauopathy models (APP/PS1 and rTg4510) with CuII(gtsm) recovers the cognitive deficits seen in both neurodegenerative models. In both models, markers of tau pathology were significantly reduced with CuII(gtsm) treatment, and in the APP/PS1 model, the levels of Aβ remained unchanged. Analysis of tau kinases (GSK3β and CDK5) revealed no drug induced changes; however, both models exhibited a significant increase in the levels of the structural subunit of the tau phosphatase, PP2A. These findings suggest that targeting the tau phosphatase PP2A has therapeutic potential for preventing memory impairments and reducing the tau pathology seen in AD and other tauopathies.
Collapse
Affiliation(s)
- Simon McKenzie-Nickson
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Jacky Chan
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Keyla Perez
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Lin W. Hung
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Amelia Sedjahtera
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Lydia Gunawan
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Paul A. Adlard
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| |
Collapse
|
30
|
Koehler D, Shah ZA, Williams FE. The GSK3β inhibitor, TDZD-8, rescues cognition in a zebrafish model of okadaic acid-induced Alzheimer's disease. Neurochem Int 2018; 122:31-37. [PMID: 30392874 DOI: 10.1016/j.neuint.2018.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 01/01/2023]
Abstract
Currently, no treatments exist that are able to directly treat against Alzheimer's disease (AD), and we are facing an inevitable increase in the near future of the amount of patients who will suffer from AD. Most animal models of AD are limited by not being able to recapitulate the entire pathology of AD. Recently an AD model in zebrafish was established by using the protein phosphatase 2A inhibitor, okadaic acid (OKA). Administering OKA to zebrafish was able to recapitulate most of the neuropathology associated with AD. Therefore, providing a drug discovery model for AD that is also time and cost efficient. This study was designed to investigate the effects of GSK3β inhibition by 4-benzyl-2-methyl-1, 2, 4-thiadiazolidine-3, 5-dione (TDZD-8) on this newly developed AD model. Fish were divided into 4 groups and each group received a different treatment. The fish were divided into a control group, a group treated with 1 μM TDZD-8 only, a group treated with 1 μM TDZD-8 + 100 nM OKA, and a group treated with 100 nM OKA only. Administering the GSK3β inhibitor to zebrafish concomitantly with OKA proved to be protective. TDZD-8 treatment reduced the mortality rate, the ratio of active: inactive GSK3β, pTau (Ser199), and restored PP2A activity. This further corroborates the use of GSKβ inhibitors in the treatment against AD and bolsters the use of the OKA-induced AD-like zebrafish model for drug discovery.
Collapse
Affiliation(s)
- Daniel Koehler
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
31
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Shentu YP, Huo Y, Feng XL, Gilbert J, Zhang Q, Liuyang ZY, Wang XL, Wang G, Zhou H, Wang XC, Wang JZ, Lu YM, Westermarck J, Man HY, Liu R. CIP2A Causes Tau/APP Phosphorylation, Synaptopathy, and Memory Deficits in Alzheimer's Disease. Cell Rep 2018; 24:713-723. [PMID: 30021167 PMCID: PMC6095478 DOI: 10.1016/j.celrep.2018.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/29/2018] [Accepted: 05/31/2018] [Indexed: 11/01/2022] Open
Abstract
Protein phosphatase 2A (PP2A) inhibition causes hyperphosphorylation of tau and APP in Alzheimer's disease (AD). However, the mechanisms underlying the downregulation of PP2A activity in AD brain remain unclear. We demonstrate that Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is overexpressed in AD brain. CIP2A-mediated PP2A inhibition drives tau/APP hyperphosphorylation and increases APP β-cleavage and Aβ production. Increase in CIP2A expression also leads to tau mislocalization to dendrites and spines and synaptic degeneration. In mice, injection of AAV-CIP2A to hippocampus induced AD-like cognitive deficits and impairments in long-term potentiation (LTP) and exacerbated AD pathologies in neurons. Indicative of disease exacerbating the feedback loop, we found that increased CIP2A expression and PP2A inhibition in AD brains result from increased Aβ production. In summary, we show that CIP2A overexpression causes PP2A inhibition and AD-related cellular pathology and cognitive deficits, pointing to CIP2A as a potential target for AD therapy.
Collapse
Affiliation(s)
- Yang-Ping Shentu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuda Huo
- Department of Biology, Boston University, Boston, MA, USA
| | - Xiao-Long Feng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Gilbert
- Department of Biology, Boston University, Boston, MA, USA
| | - Qing Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Lian Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan Wang
- Department of Biology, Boston University, Boston, MA, USA
| | - Huan Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Ming Lu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Tang S, Qin F, Wang X, Liang Z, Cai H, Mo L, Huang Y, Liang B, Wei X, Ao Q, Xu Y, Liu Y, Xiao D, Guo S, Lu C, Li X. H 2 O 2 induces PP2A demethylation to downregulate mTORC1 signaling in HEK293 cells. Cell Biol Int 2018; 42:1182-1191. [PMID: 29752834 DOI: 10.1002/cbin.10987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase that functions as an ATP and amino acid sensor to govern cell growth and proliferation by mediating mitogen- and nutrient-dependent signal transduction. Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, negatively regulates mTOR signaling. Methylation of PP2A is catalyzed by leucine carboxyl methyltransferase-1 (LCMT1) and reversed by protein phosphatase methylesterase 1 (PME-1), which regulates PP2A activity and substrate specificity. However, whether PP2A methylation is related to mTOR signaling is still unknown. In this study, we examined the effect of PP2A methylation on mTOR signaling in HEK293 cells under oxidative stress. Our results show that oxidative stress induces PP2A demethylation and inhibits the mTORC1 signaling pathway. Next, we examined two strategies to block PP2A demethylation under oxidative stress. One strategy was to prevent PP2A demethylation using a PME-1 inhibitor; the other strategy was to activate PP2A methylation via overexpression of LCMT1. The results show that both the PME-1 inhibitor and LCMT1 overexpression prevent the mTORC1 signaling suppression induced by oxidative stress. Additionally, LCMT1 overexpression rescued cell viability and the mitochondrial membrane potential decrease in response to oxidative stress. These results demonstrate that H2 O2 induces PP2A demethylation to downregulate mTORC1 signaling. These findings provide a novel mechanism for the regulation of PP2A demethylation and mTORC1 signaling under oxidative stress.
Collapse
Affiliation(s)
- Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Fu Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinhang Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziwei Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiqing Cai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Laiming Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Huang
- School of Medicine, University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Boyin Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xuejing Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingqing Ao
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yilu Xu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuyang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Songchao Guo
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Cailing Lu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyi Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
34
|
Hoffman A, Taleski G, Qian H, Wasek B, Arning E, Bottiglieri T, Sontag JM, Sontag E. Methylenetetrahydrofolate Reductase Deficiency Deregulates Regional Brain Amyloid-β Protein Precursor Expression and Phosphorylation Levels. J Alzheimers Dis 2018; 64:223-237. [DOI: 10.3233/jad-180032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Helena Qian
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
35
|
Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H. Leucine Carboxyl Methyltransferase Downregulation and Protein Phosphatase Methylesterase Upregulation Contribute Toward the Inhibition of Protein Phosphatase 2A by α-Synuclein. Front Aging Neurosci 2018; 10:173. [PMID: 29950985 PMCID: PMC6008559 DOI: 10.3389/fnagi.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by intracellular neurofibrillary tangles of phosphorylated α-synuclein (α-syn). Protein phosphatase 2A (PP2A) is responsible for α-syn dephosphorylation. Previous work has demonstrated that α-syn can regulate PP2A activity. However, the mechanisms underlying α-syn regulation of PP2A activity are not well understood. In this study, we found that α-syn overexpression induced increased α-syn phosphorylation at serine 129 (Ser129), and PP2A inhibition, in vitro and in vivo. α-syn overexpression resulted in PP2A demethylation. This demethylation was mediated via downregulated leucine carboxyl methyltransferase (LCMT-1) expression, and upregulated protein phosphatase methylesterase (PME-1) expression. Furthermore, LCMT-1 overexpression, or PME-1 inhibition, reversed α-syn-induced increases in α-syn phosphorylation and apoptosis. In addition to post-translational modifications of the catalytic subunit, regulatory subunits are involved in the regulation of PP2A activity. We found that the levels of regulatory subunits which belong to the PPP2R2 subfamily, not the PPP2R5 subfamily, were downregulated in the examined brain regions of transgenic mice. Our work identifies a novel mechanism to explain how α-syn regulates PP2A activity, and provides the optimization of PP2A methylation as a new target for PD treatment.
Collapse
Affiliation(s)
- Hao Tian
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Yongquan Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Jia Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Weijin Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Lingling Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Chunli Duan
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Ge Gao
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Hui Yang
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
36
|
Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, D’Adamio L, Grassi C, Devanand D, Honig LS, Puzzo D, Arancio O. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. J Alzheimers Dis 2018; 64:S611-S631. [PMID: 29865055 PMCID: PMC8371153 DOI: 10.3233/jad-179935] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "Amyloid Cascade Hypothesis" has dominated the Alzheimer's disease (AD) field in the last 25 years. It posits that the increase of amyloid-β (Aβ) is the key event in AD that triggers tau pathology followed by neuronal death and eventually, the disease. However, therapeutic approaches aimed at decreasing Aβ levels have so far failed, and tau-based clinical trials have not yet produced positive findings. This begs the question of whether the hypothesis is correct. Here we have examined literature on the role of Aβ and tau in synaptic dysfunction, memory loss, and seeding and spreading of AD, highlighting important parallelisms between the two proteins in all of these phenomena. We discuss novel findings showing binding of both Aβ and tau oligomers to amyloid-β protein precursor (AβPP), and the requirement for the presence of this protein for both Aβ and tau to enter neurons and induce abnormal synaptic function and memory. Most importantly, we propose a novel view of AD pathogenesis in which extracellular oligomers of Aβ and tau act in parallel and upstream of AβPP. Such a view will call for a reconsideration of therapeutic approaches directed against Aβ and tau, paving the way to an increased interest toward AβPP, both for understanding the pathogenesis of the disease and elaborating new therapeutic strategies.
Collapse
Affiliation(s)
- Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniele Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Marian A. Baltrons
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biology and Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Arianna Amato
- Department of Anaesthesiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - D.P. Devanand
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018; 15:156-175. [PMID: 29340929 PMCID: PMC5794704 DOI: 10.1007/s13311-017-0593-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-Adenosyl methionine (SAMe), as a major methyl donor, exerts its influence on central nervous system function through cellular transmethylation pathways, including the methylation of DNA, histones, protein phosphatase 2A, and several catecholamine moieties. Based on available evidence, this review focuses on the lifelong range of severe neuropsychiatric and neurodegenerative diseases and their associated neuropathologies, which have been linked to the deficiency/load of SAMe production or/and the disturbance in transmethylation pathways. Also included in this review are the present-day applications of SAMe in the treatment in these diseases in each age group.
Collapse
Affiliation(s)
- Jin Gao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Asam K, Staniszewski A, Zhang H, Melideo SL, Mazzeo A, Voronkov M, Huber KL, Pérez E, Stock M, Stock JB, Arancio O, Nicholls RE. Eicosanoyl-5-hydroxytryptamide (EHT) prevents Alzheimer's disease-related cognitive and electrophysiological impairments in mice exposed to elevated concentrations of oligomeric beta-amyloid. PLoS One 2017; 12:e0189413. [PMID: 29253878 PMCID: PMC5734769 DOI: 10.1371/journal.pone.0189413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023] Open
Abstract
Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzheimer's disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aβ-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aβ-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.
Collapse
Affiliation(s)
- Kesava Asam
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
| | - Hong Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
| | - Scott L. Melideo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Adolfo Mazzeo
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
| | - Michael Voronkov
- Signum Biosciences, 133 Wall Street, Princeton, New Jersey, United States of America
| | - Kristen L. Huber
- Signum Biosciences, 133 Wall Street, Princeton, New Jersey, United States of America
| | - Eduardo Pérez
- Signum Biosciences, 133 Wall Street, Princeton, New Jersey, United States of America
| | - Maxwell Stock
- Signum Biosciences, 133 Wall Street, Princeton, New Jersey, United States of America
| | - Jeffry B. Stock
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Signum Biosciences, 133 Wall Street, Princeton, New Jersey, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
- Department of Medicine, Columbia University, New York, NY, United States of America
| | - Russell E. Nicholls
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2017; 96:182-193. [PMID: 29107183 DOI: 10.1016/j.biocel.2017.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Collapse
|
40
|
Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer's disease. Mol Cell Neurosci 2017; 83:83-91. [DOI: 10.1016/j.mcn.2017.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 01/24/2023] Open
|
41
|
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139:153-167. [PMID: 28800454 DOI: 10.1016/j.ejmech.2017.07.070] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative brain disorder in which many biological dysfunctions are involved. Among them, two main types of lesions were discovered and widely studied: the amyloid plaques and the neurofibrillary tangles (NFTs). These two lesions are caused by the dysfunction and the accumulation of two proteins which are, respectively, the beta-amyloid peptide and the tau protein. The process that leads these two proteins to aggregate is complex and is the subject of current studies. After a brief description of the aggregation mechanisms, we will provide an overview of new therapeutic agents targeting the different dysfunctions and toxic species found during aggregation.
Collapse
Affiliation(s)
- Marie Jouanne
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Sylvain Rault
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Anne-Sophie Voisin-Chiret
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France.
| |
Collapse
|
42
|
Sun L, Zhao M, Zhang J, Liu A, Ji W, Li Y, Yang X, Wu Z. MiR-144 promotes β-amyloid accumulation-induced cognitive impairments by targeting ADAM10 following traumatic brain injury. Oncotarget 2017; 8:59181-59203. [PMID: 28938628 PMCID: PMC5601724 DOI: 10.18632/oncotarget.19469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
The dysregulation expression of microRNAs (miRNAs) including miR-144, has been widely documented in TBI. However, little is known about the potential roles of miR-144 in the pathogenesis of TBI. In this study, we investigated the potential effects of miR-144 on cognitive function in vivo and in vitro. The results indicated that inhibition of miR-144 conferred a better neurological outcome after TBI in vivo, as evidenced by reduced lesion volume, alleviated brain edema and increased mNSS, of particular importance, improved cognitive deficits. In vitro, miR-144 knockdown protected neuron against Glu-induced injury, by enhancing cell viability, suppressing LDH release and caspase-3 activity, and reducing cognitive-related proteins levels. However, overexpression of miR-144 in vivo and in vitro showed the opposite effects. To further explore the molecular mechanisms underlying miR-144-induced cognitive dysfunctions, we found a significant inverse correlation between miR-144 and ADAM10 expression. Moreover, the direct interaction between miR-144 and ADAM10 3’-UTR was identified by dual-luciferase reporter assay. Also, we found miR-144 negatively regulated ADAM10 protein expression. Additionally, ADAM10 could modulate β-amyloid formation involved in cognitive deficits. Notably, ADAM10 knockdown by siRNA apparently abrogated miR-144 inhibitor-mediated neuroprotection. Taken together, these findings demonstrated that elevated miR-144 promoted cognitive impairments induced by β-amyloid accumulation post-TBI through suppressing of ADAM10 expression.
Collapse
Affiliation(s)
- Liqian Sun
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Manman Zhao
- Department of Histology and Embryology, School of Basic Medical Science, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Jingbo Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wenjun Ji
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhongxue Wu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
43
|
Liu G, Ji H, Liu J, Xu C, Chang L, Cui W, Ye C, Hu H, Chen Y, Zhou X, Duan S, Wang Q. Association of OPRK1 and OPRM1 methylation with mild cognitive impairment in Xinjiang Han and Uygur populations. Neurosci Lett 2017; 636:170-176. [DOI: 10.1016/j.neulet.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022]
|
44
|
Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochem Soc Trans 2016; 44:1683-1693. [DOI: 10.1042/bst20160161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.
Collapse
|
45
|
Park H, Lee K, Park ES, Oh S, Yan R, Zhang J, Beach TG, Adler CH, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM. Dysregulation of protein phosphatase 2A in parkinson disease and dementia with lewy bodies. Ann Clin Transl Neurol 2016; 3:769-780. [PMID: 27752512 PMCID: PMC5048387 DOI: 10.1002/acn3.337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/08/2016] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme composed of a catalytic C subunit, a structural A subunit, and one of several regulatory B subunits that confer substrate specificity. The assembly and activity of PP2A are regulated by reversible methylation of the C subunit. α-Synuclein, which aggregates in Parkinson disease (PD) and dementia with Lewy bodies (DLB), is phosphorylated at Ser129, and PP2A containing a B55α subunit is a major phospho-Ser129 phosphatase. The objective of this study was to investigate PP2A in α-synucleinopathies. METHODS We compared the state of PP2A methylation, as well as the expression of its methylating enzyme, leucine carboxyl methyltransferase (LCMT-1), and demethylating enzyme, protein phosphatase methylesterase (PME-1), in postmortem brains from PD and DLB cases as well as age-matched Controls. Immunohistochemical studies and quantitative image analysis were employed. RESULTS LCMT-1 was significantly reduced in the substantia nigra (SN) and frontal cortex in both PD and DLB. PME-1, on the other hand, was elevated in the PD SN. In concert with these changes, the ratio of methylated PP2A to demethylated PP2A was markedly decreased in PD and DLB brains in both SN and frontal cortex. No changes in total PP2A or total B55α subunit were detected. INTERPRETATION These findings support the hypothesis that PP2A dysregulation in α-synucleinopathies may contribute to the accumulation of hyperphosphorylated α-synuclein and to the disease process, raising the possibility that pharmacological means to enhance PP2A phosphatase activity may be a useful disease-modifying therapeutic approach.
Collapse
Affiliation(s)
- Hye‐Jin Park
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Kang‐Woo Lee
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
- Present address: Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Eun S. Park
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
- Present address: Albert Einstein College of MedicineBronxNew Jersey10461
| | - Stephanie Oh
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Run Yan
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Jie Zhang
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | | | | | | | - Steven P. Braithwaite
- Signum Biosciences133 Wall StreetPrincetonNew Jersey08540
- Present address: Alkahest75 Shoreway Drive, Suite DSan CarlosCalifornia94070
| | - Jeffry B. Stock
- Signum Biosciences133 Wall StreetPrincetonNew Jersey08540
- Department of Molecular BiologyPrinceton UniversityPrincetonNew Jersey08544
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| |
Collapse
|