1
|
Maji S, Aliabouzar M, Quesada C, Chiravuri A, Macpherson A, Pinch A, Kazyak K, Emara Z, Abeid BA, Kent RN, Midekssa FS, Zhang M, Baker BM, Franceschi RT, Fabiilli ML. Ultrasound-generated bubbles enhance osteogenic differentiation of mesenchymal stromal cells in composite collagen hydrogels. Bioact Mater 2025; 43:82-97. [PMID: 39345992 PMCID: PMC11439547 DOI: 10.1016/j.bioactmat.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Hydrogels can improve the delivery of mesenchymal stromal cells (MSCs) by providing crucial biophysical cues that mimic the extracellular matrix. The differentiation of MSCs is dependent on biophysical cues like stiffness and viscoelasticity, yet conventional hydrogels cannot be dynamically altered after fabrication and implantation to actively direct differentiation. We developed a composite hydrogel, consisting of type I collagen and phase-shift emulsion, where osteogenic differentiation of MSCs can be non-invasively modulated using ultrasound. When exposed to ultrasound, the emulsion within the hydrogel was non-thermally vaporized into bubbles, which locally compacted and stiffened the collagen matrix surrounding each bubble. Bubble growth and matrix compaction were correlated, with collagen regions proximal (i.e., ≤ ∼60 μm) to the bubble displaying a 2.5-fold increase in Young's modulus compared to distal regions (i.e., > ∼60 μm). The viability and proliferation of MSCs, which were encapsulated within the composite hydrogel, were not impacted by bubble formation. In vitro and in vivo studies revealed encapsulated MSCs exhibited significantly elevated levels of RUNX2 and osteocalcin, markers of osteogenic differentiation, in collagen regions proximal to the bubble compared to distal regions. Additionally, alkaline phosphatase activity and calcium deposition were enhanced adjacent to the bubble. An opposite trend was observed for CD90, a marker of MSC stemness. Following subcutaneous implantation, bubbles persisted in the hydrogels for two weeks, which led to localized collagen alignment and increases in nuclear asymmetry. These results are a significant step toward controlling the 3D differentiation of MSCs in a non-invasive and on-demand manner.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Chiravuri
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aidan Macpherson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abigail Pinch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karsyn Kazyak
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ziyad Emara
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Firaol S Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Choi W, Mangal U, Yu JH, Ryu JH, Kim JY, Jun T, Lee Y, Cho H, Choi M, Lee M, Ryu DY, Lee SY, Jung SY, Cha JK, Cha JY, Lee KJ, Lee S, Choi SH, Hong J. Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle. Nat Commun 2024; 15:9205. [PMID: 39448605 PMCID: PMC11502779 DOI: 10.1038/s41467-024-53489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Medical plastic-appliance-based healthcare services, especially in dentistry, generate tremendous amounts of plastic waste. Given the physiological features of our mouth, it is desirable to substitute dental care plastics with viscoelastic and antimicrobial bioplastics. Herein, we develop a medical-grade and sustainable bioplastic that is viscoelastic enough to align the tooth positions, resists microbial contamination, and exhibits recyclable life cycles. In particular, we devise a molecular template involving entanglement-inducing and antimicrobial groups and prepare a silk fibroin-based dental care bioplastic. The generated compactly entangled structure endows great flexibility, toughness, and viscoelasticity. Therefore, a satisfactory orthodontic outcome is accomplished, as demonstrated by the progressive alignment of male rabbit incisors within the 2.5 mm range. Moreover, the prepared bioplastic exhibits resistance to pathogenic colonization of intraoral microbes such as Streptococcaceae and Veillonellaceae. Because the disentanglement of entangled domains enables selective separation and extraction of the components, the bioplastic can be recycled into a mechanically identical one. The proposed medical-grade and sustainable bioplastic could potentially contribute to a green healthcare future.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Hun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoojin Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Heesu Cho
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Se Yong Jung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Jung Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu K, Li L, Li Y, Luo Y, Zhang Z, Wen W, Ding S, Huang Y, Liu M, Zhou C, Luo B. Creating a bionic scaffold via light-curing liquid crystal ink to reveal the role of osteoid-like microenvironment in osteogenesis. Bioact Mater 2024; 40:244-260. [PMID: 38973990 PMCID: PMC11226751 DOI: 10.1016/j.bioactmat.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.
Collapse
Affiliation(s)
- Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Zhaoyu Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangzhou, 510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| |
Collapse
|
4
|
Adam CE, Piacenti AR, Waters SL, Contera S. Enhancing nanoscale viscoelasticity characterization in bimodal atomic force microscopy. SOFT MATTER 2024; 20:7457-7470. [PMID: 39258835 DOI: 10.1039/d4sm00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Polymeric, soft, and biological materials exhibit viscoelasticity, which is a time dependent mechanical response to deformation. Material viscoelasticity emerges from the movement of a material's constituent molecules at the nano- and microscale in response to applied deformation. Therefore, viscoelastic properties depend on the speed at which a material is deformed. Recent technological advances, especially in atomic force microscopy (AFM), have provided tools to measure and map material viscoelasticity with nanoscale resolution. However, to obtain additional information about the viscoelastic behavior of a material from such measurements, theoretical grounding during data analysis is required. For example, commercially available bimodal AFM imaging maps two different viscoelastic properties of a sample, the storage modulus, E', and loss tangent, tan δ, with each property being measured by a different resonance frequency of the AFM cantilever. While such techniques provide high resolution maps of E' and tan δ, the different measurement frequencies make it difficult to calculate key viscoelastic properties of the sample such as: the model of viscoelasticity that describes the sample, the loss modulus, E'', at either frequency, elasticity E, viscosity η, and characteristic response times τ. To overcome this difficulty, we present a new data analysis procedure derived from linear viscoelasticity theory. This procedure is applied and validated by performing amplitude modulation-frequency modulation (AM-FM) AFM, a commercially available bimodal imaging technique, on a styrene-butadiene rubber (SBR) with known mechanical behavior. The new analysis procedure correctly identified the type of viscoelasticity exhibited by the SBR and accurately calculated SBR E, η, and τ, providing a useful means of enhancing the amount of information gained about a sample's nanoscale viscoelastic properties from bimodal AFM measurements. Additionally, being derived from fundamental models of linear viscoelasticity, the procedure can be employed for any technique where different viscoelastic properties are measured at different and discrete frequencies with applied deformations in the linear viscoelastic regime of a sample.
Collapse
Affiliation(s)
- Casey Erin Adam
- Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
| | | | - Sarah L Waters
- Department of Applied Mathematics, Mathematical Institute, University of Oxford, OX2 6GG, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
5
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612534. [PMID: 39345483 PMCID: PMC11429934 DOI: 10.1101/2024.09.11.612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. Statement of significance Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications. Graphical abstract
Collapse
|
6
|
Zigan C, Benito Alston C, Chatterjee A, Solorio L, Chan DD. Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture. Ann Biomed Eng 2024:10.1007/s10439-024-03613-x. [PMID: 39277549 DOI: 10.1007/s10439-024-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose-2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.
Collapse
Affiliation(s)
- Clarisse Zigan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Aritra Chatterjee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion. J Biol Eng 2024; 18:47. [PMID: 39237992 PMCID: PMC11378474 DOI: 10.1186/s13036-024-00442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
9
|
Lan M, Liu Y, Liu J, Zhang J, Haider MA, Zhang Y, Zhang Q. Matrix Viscoelasticity Tunes the Mechanobiological Behavior of Chondrocytes. Cell Biochem Funct 2024; 42:e4126. [PMID: 39324844 DOI: 10.1002/cbf.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Minhua Lan
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Junjiang Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Muhammad Adnan Haider
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Nam S, Lou J, Lee S, Kartenbender JM, Mooney DJ. Dynamic injectable tissue adhesives with strong adhesion and rapid self-healing for regeneration of large muscle injury. Biomaterials 2024; 309:122597. [PMID: 38696944 PMCID: PMC11144078 DOI: 10.1016/j.biomaterials.2024.122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Wounds often necessitate the use of instructive biomaterials to facilitate effective healing. Yet, consistently filling the wound and retaining the material in place presents notable challenges. Here, we develop a new class of injectable tissue adhesives by leveraging the dynamic crosslinking chemistry of Schiff base reactions. These adhesives demonstrate outstanding mechanical properties, especially in regard to stretchability and self-healing capacity, and biodegradability. Furthermore, they also form robust adhesion to biological tissues. Their therapeutic potential was evaluated in a rodent model of volumetric muscle loss (VML). Ultrasound imaging confirmed that the adhesives remained within the wound site, effectively filled the void, and degraded at a rate comparable to the healing process. Histological analysis indicated that the adhesives facilitated muscle fiber and blood vessel formation, and induced anti-inflammatory macrophages. Notably, the injured muscles of mice treated with the adhesives displayed increased weight and higher force generation than the control groups. This approach to adhesive design paves the way for the next generation of medical adhesives in tissue repair.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junzhe Lou
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sangmin Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jan-Marc Kartenbender
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Zubiarrain-Laserna A, Martínez-Moreno D, López de Andrés J, de Lara-Peña L, Guaresti O, Zaldua AM, Jiménez G, Marchal JA. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Biofabrication 2024; 16:042002. [PMID: 38862006 DOI: 10.1088/1758-5090/ad5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedin vitrousing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Collapse
Affiliation(s)
- Ana Zubiarrain-Laserna
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
| | - Daniel Martínez-Moreno
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
| | - Julia López de Andrés
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Laura de Lara-Peña
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Olatz Guaresti
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Gema Jiménez
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain
| | - Juan Antonio Marchal
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Ollier RC, Webber MJ. Strain-Stiffening Mechanoresponse in Dynamic-Covalent Cellulose Hydrogels. Biomacromolecules 2024; 25:4406-4419. [PMID: 38847048 DOI: 10.1021/acs.biomac.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or noncovalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels cross-linked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective cross-link density. Furthermore, these materials are found to exhibit self-healing and strain-memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester cross-links, interchain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain-stiffening. The multiresponsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications.
Collapse
Affiliation(s)
- Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Zhao S, Xue C, Burns DC, Shoichet MS. Viscoelastic Supramolecular Hyaluronan-Peptide Cross-Linked Hydrogels. Biomacromolecules 2024; 25:3946-3958. [PMID: 38913947 DOI: 10.1021/acs.biomac.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Viscoelasticity plays a key role in hydrogel design. We designed a physically cross-linked hydrogel with tunable viscoelasticity, comprising supramolecular-assembled peptides coupled to hyaluronan (HA), a native extracellular matrix component. We then explored the structural and molecular mechanisms underlying the mechanical properties of a series of these HA-peptide hydrogels. By modifying the peptide sequence, we modulated both long- and short-time stress relaxation rates as a way to target viscoelasticity with limited impact on stiffness, leading to gels that relax up to 60% of stress in 10 min. Gels with the highest viscoelasticity exhibited large mesh sizes and β-sheet secondary structures. The stiffness of the gel correlated with hydrogen bonding between the peptide chains. These gels are cytocompatible: highly viscoelastic gels that mimic the native skin microenvironment promote dermal fibroblast cell spreading. Moreover, HA-peptide gels enabled cell encapsulation, as shown with primary human T cells. Overall, these physically-cross-linked hydrogels enable tunable viscoelasticity that can be used to modulate cell morphology.
Collapse
Affiliation(s)
- Spencer Zhao
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Chang Xue
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Molly S Shoichet
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
14
|
Ohnsorg ML, Mash KM, Khang A, Rao VV, Kirkpatrick BE, Bera K, Anseth KS. Nonlinear Elastic Bottlebrush Polymer Hydrogels Modulate Actomyosin Mediated Protrusion Formation in Mesenchymal Stromal Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403198. [PMID: 38655776 PMCID: PMC11239315 DOI: 10.1002/adma.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The nonlinear elasticity of many tissue-specific extracellular matrices is difficult to recapitulate without the use of fibrous architectures, which couple strain-stiffening with stress relaxation. Herein, bottlebrush polymers are synthesized and crosslinked to form poly(ethylene glycol)-based hydrogels and used to study how strain-stiffening behavior affects human mesenchymal stromal cells (hMSCs). By tailoring the bottlebrush polymer length, the critical stress associated with the onset of network stiffening is systematically varied, and a unique protrusion-rich hMSC morphology emerges only at critical stresses within a biologically accessible stress regime. Local cell-matrix interactions are quantified using 3D traction force microscopy and small molecule inhibitors are used to identify cellular machinery that plays a critical role in hMSC mechanosensing of the engineered, strain-stiffening microenvironment. Collectively, this study demonstrates how covalently crosslinked bottlebrush polymer hydrogels can recapitulate strain-stiffening biomechanical cues at biologically relevant stresses and be used to probe how nonlinear elastic matrix properties regulate cellular processes.
Collapse
Affiliation(s)
- Monica L. Ohnsorg
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Kayla M. Mash
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Varsha V. Rao
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80308, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80308, USA
| |
Collapse
|
15
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Jazwinska DE, Cho Y, Zervantonakis IK. Enhancing PKA-dependent mesothelial barrier integrity reduces ovarian cancer transmesothelial migration via inhibition of contractility. iScience 2024; 27:109950. [PMID: 38812549 PMCID: PMC11134878 DOI: 10.1016/j.isci.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer-mesothelial cell interactions are critical for multiple solid tumors to colonize the surface of peritoneal organs. Understanding mechanisms of mesothelial barrier dysfunction that impair its protective function is critical for discovering mesothelial-targeted therapies to combat metastatic spread. Here, we utilized a live cell imaging-based assay to elucidate the dynamics of ovarian cancer spheroid transmesothelial migration and mesothelial-generated mechanical forces. Treatment of mesothelial cells with the adenylyl cyclase agonist forskolin strengthens cell-cell junctions, reduces actomyosin fibers, contractility-driven matrix displacements, and cancer spheroid transmigration in a protein kinase A (PKA)-dependent mechanism. We also show that inhibition of the cytoskeletal regulator Rho-associated kinase in mesothelial cells phenocopies the anti-metastatic effects of forskolin. Conversely, upregulation of contractility in mesothelial cells disrupts cell-cell junctions and increases the clearance rates of ovarian cancer spheroids. Our findings demonstrate the critical role of mesothelial cell contractility and mesothelial barrier integrity in regulating metastatic dissemination within the peritoneal microenvironment.
Collapse
Affiliation(s)
- Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
18
|
Xu Z, Lu J, Lu D, Li Y, Lei H, Chen B, Li W, Xue B, Cao Y, Wang W. Rapidly damping hydrogels engineered through molecular friction. Nat Commun 2024; 15:4895. [PMID: 38851753 PMCID: PMC11162443 DOI: 10.1038/s41467-024-49239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Hydrogels capable of swift mechanical energy dissipation hold promise for a range of applications including impact protection, shock absorption, and enhanced damage resistance. Traditional energy absorption in such materials typically relies on viscoelastic mechanisms, involving sacrificial bond breakage, yet often suffers from prolonged recovery times. Here, we introduce a hydrogel designed for friction-based damping. This hydrogel features an internal structure that facilitates the motion of a chain walker within its network, effectively dissipating mechanical stress. The hydrogel network architecture allows for rapid restoration of its damping capacity, often within seconds, ensuring swift material recovery post-deformation. We further demonstrate that this hydrogel can significantly shield encapsulated cells from mechanical trauma under repetitive compression, owing to its proficient energy damping and rapid rebound characteristics. Therefore, this hydrogel has potential for dynamic load applications like artificial muscles and synthetic cartilage, expanding the use of hydrogel dampers in biomechanics and related areas.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiajun Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Di Lu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
19
|
Karimi A, Aga M, Khan T, D'costa SD, Thaware O, White E, Kelley MJ, Gong H, Acott TS. Comparative analysis of traction forces in normal and glaucomatous trabecular meshwork cells within a 3D, active fluid-structure interaction culture environment. Acta Biomater 2024; 180:206-229. [PMID: 38641184 PMCID: PMC11095374 DOI: 10.1016/j.actbio.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Omkar Thaware
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
20
|
Choi W, Lee M, Yong H, Heo D, Jun T, Ryu H, Kim JY, Cui D, Ryu DY, Lee SY, Choi SH, Kim BS, Kim J, Jung SY, Lee S, Hong J. Anisotropic Liesegang pattern for the nonlinear elastic biomineral-hydrogel complex. SCIENCE ADVANCES 2024; 10:eadl3075. [PMID: 38669324 PMCID: PMC11051667 DOI: 10.1126/sciadv.adl3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The Liesegang pattern is a beautiful natural anisotropic patterning phenomenon observed in rocks and sandstones. This study reveals that the Liesegang pattern can induce nonlinear elasticity. Here, a Liesegang-patterned complex with biomineral-hydrogel repetitive layers is prepared. This Liesegang-patterned complex is obtained only when the biomineralization is performed under the supersaturated conditions. The Liesegang-patterned complex features a nonlinear elastic response, whereas a complex with a single biomineral shell shows a linear behavior, thus demonstrating that the Liesegang pattern is essential in achieving nonlinear elasticity. The stiff biomineral layers have buffered the concentrated energy on behalf of soft hydrogels, thereby exposing the hydrogel components to reduced stress and, in turn, enabling them to perform the elasticity continuously. Moreover, the nonlinear elastic Liesegang-patterned complex exhibits excellent stress relaxation to the external loading, which is the biomechanical characteristic of cartilage. This stress relaxation allows the bundle of fiber-type Liesegang-patterned complex to endure greater deformation.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungseok Yong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deokjae Heo
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hanwook Ryu
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Dingyun Cui
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Se Yong Jung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Srbova L, Arasalo O, Lehtonen AJ, Pokki J. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. SOFT MATTER 2024; 20:3483-3498. [PMID: 38587658 DOI: 10.1039/d3sm01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.
Collapse
Affiliation(s)
- Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| |
Collapse
|
22
|
Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, Ghotekar S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol 2024; 265:130991. [PMID: 38521336 DOI: 10.1016/j.ijbiomac.2024.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems. The use of diverse cellulose particles as fundamental components gives rise to materials with distinct microstructures and characteristics, fulfilling the requirements of various biological applications. Although cellulose boasts substantial potential across various sectors, its exploration has predominantly unfolded within industrial realms, leaving the biomedical domain somewhat overlooked in its initial stages. This investigation, therefore, endeavors to shed light on the contemporary strides made in synthesizing cellulose and its derivatives. These innovative techniques give rise to distinctive attributes, presenting a treasure trove of advantages for their compelling integration into the intricate tapestry of biomedical applications.
Collapse
Affiliation(s)
- Satheesh Selvaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ritesh Verma
- Department of Physics, Amity University, Gurugram, Haryana 122413, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute for Science and Technology, Chennai 600119, India
| | - Arunkumar Radhakrishnan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa 396230, UT of DNH & DD, India.
| |
Collapse
|
23
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
24
|
Shi N, Wang J, Tang S, Zhang H, Wei Z, Li A, Ma Y, Xu F. Matrix Nonlinear Viscoelasticity Regulates Skeletal Myogenesis through MRTF Nuclear Localization and Nuclear Mechanotransduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305218. [PMID: 37847903 DOI: 10.1002/smll.202305218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Mechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain-enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen-based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization-mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.
Collapse
Affiliation(s)
- Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
25
|
Bernero M, Zauchner D, Müller R, Qin XH. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis. Biomater Sci 2024; 12:919-932. [PMID: 38231154 PMCID: PMC10863643 DOI: 10.1039/d3bm01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
During bone formation, osteoblasts are embedded in a collagen-rich osteoid tissue and differentiate into an extensive 3D osteocyte network throughout the mineralizing matrix. However, how these cells dynamically remodel the matrix and undergo 3D morphogenesis remains poorly understood. Although previous reports investigated the impact of matrix stiffness in osteocyte morphogenesis, the role of matrix viscoelasticity is often overlooked. Here, we report a viscoelastic alginate-collagen interpenetrating network (IPN) hydrogel for 3D culture of murine osteocyte-like IDG-SW3 cells. The IPN hydrogels consist of an ionically crosslinked alginate network to tune stress relaxation as well as a permissive collagen network to promote cell adhesion and matrix remodeling. Two IPN hydrogels were developed with comparable stiffnesses (4.4-4.7 kPa) but varying stress relaxation times (t1/2, 1.5 s and 14.4 s). IDG-SW3 cells were pre-differentiated in 2D under osteogenic conditions for 14 days to drive osteoblast-to-osteocyte transition. Cellular mechanosensitivity to fluid shear stress (2 Pa) was confirmed by live-cell calcium imaging. After embedding in the IPN hydrogels, cells remained highly viable following 7 days of 3D culture. After 24 h, osteocytes in the fast-relaxing hydrogels showed the largest cell area and long dendritic processes. However, a significantly larger increase of some osteogenic markers (ALP, Dmp1, hydroxyapatite) as well as intercellular connections via gap junctions were observed in slow-relaxing hydrogels on day 14. Our results imply that fast-relaxing IPN hydrogels promote early cell spreading, whereas slow relaxation favors osteogenic differentiation. These findings may advance the development of 3D in vivo-like osteocyte models to better understand bone mechanobiology.
Collapse
Affiliation(s)
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Switzerland.
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Switzerland.
| |
Collapse
|
26
|
Fan W, Adebowale K, Váncza L, Li Y, Rabbi MF, Kunimoto K, Chen D, Mozes G, Chiu DKC, Li Y, Tao J, Wei Y, Adeniji N, Brunsing RL, Dhanasekaran R, Singhi A, Geller D, Lo SH, Hodgson L, Engleman EG, Charville GW, Charu V, Monga SP, Kim T, Wells RG, Chaudhuri O, Török NJ. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature 2024; 626:635-642. [PMID: 38297127 PMCID: PMC10866704 DOI: 10.1038/s41586-023-06991-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic β-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-β1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.
Collapse
Affiliation(s)
- Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Kolade Adebowale
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Lóránd Váncza
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Yuan Li
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Md Foysal Rabbi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Dongning Chen
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - David Kung-Chun Chiu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Division of Immunology, Stanford University, Stanford, CA, USA
| | - Yisi Li
- Department of Automation, Tsinghua University, Beijing, China
| | - Junyan Tao
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi Wei
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Nia Adeniji
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Ryan L Brunsing
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Renumathy Dhanasekaran
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Geller
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA, USA
- Division of Immunology, Stanford University, Stanford, CA, USA
| | | | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Rebecca G Wells
- Departments of Medicine and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ovijit Chaudhuri
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.
- VA, Palo Alto, CA, USA.
| |
Collapse
|
27
|
Sun L, Jiang Y, Tan H, Liang R. Collagen and derivatives-based materials as substrates for the establishment of glioblastoma organoids. Int J Biol Macromol 2024; 254:128018. [PMID: 37967599 DOI: 10.1016/j.ijbiomac.2023.128018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Glioblastoma (GBM) is a common primary brain malignancy known for its ability to invade the brain, resistance to chemotherapy and radiotherapy, tendency to recur frequently, and unfavorable prognosis. Attempts have been undertaken to create 2D and 3D models, such as glioblastoma organoids (GBOs), to recapitulate the glioma microenvironment, explore tumor biology, and develop efficient therapies. However, these models have limitations and are unable to fully recapitulate the complex networks formed by the glioma microenvironment that promote tumor cell growth, invasion, treatment resistance, and immune escape. Therefore, it is necessary to develop advanced experimental models that could better simulate clinical physiology. Here, we review recent advances in natural biomaterials (mainly focus on collagen and its derivatives)-based GBO models, as in vitro experimental platforms to simulate GBM tumor biology and response to tested drugs. Special attention will be given to 3D models that use collagen, gelatin, further modified derivatives, and composite biomaterials (e.g., with other natural or synthetic polymers) as substrates. Application of these collagen/derivatives-constructed GBOs incorporate the physical as well as chemical characteristics of the GBM microenvironment. A perspective on future research is given in terms of current issues. Generally, natural materials based on collagen/derivatives (monomers or composites) are expected to enrich the toolbox of GBO modeling substrates and potentially help to overcome the limitations of existing models.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuelin Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Chen Z, Ezzo M, Zondag B, Rakhshani F, Ma Y, Hinz B, Kumacheva E. Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305964. [PMID: 37671420 DOI: 10.1002/adma.202305964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Indexed: 09/07/2023]
Abstract
The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Benjamen Zondag
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
29
|
Tan Y, Ma L, Cao X, Yi Z, Ma X, Li X. Tunable Stress Relaxing Biomimetic Matrices: Hyaluronan/Hydroxyapatite Hybridization Mediates Assembly of Collagen Fibrils. Biomacromolecules 2023; 24:5162-5174. [PMID: 37889885 DOI: 10.1021/acs.biomac.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The alluring correlations of cellular behaviors with viscoelastic extracellular matrices have driven increasing endeavors directed toward the understanding of mechanical cues on cell growth and differentiation via preparing biomimetic scaffolds/gels with viscoelastic controllability. Indeed, systematic investigations, especially into calcium phosphate-containing biomimetics, are relatively rare. Here, oxidized hyaluronic acid/hydroxyapatite hybrids (OHAHs) were synthesized by hyaluronan-mediated biomimetic mineralization with confined ion diffusion and subsequent oxidization treatment. The collagen self-assembly was applied to fabricate tunable stress relaxing fibrillar matrices in the presence of OHAHs in which the incorporated hyaluronic acid with aldehyde groups acted to improve the component compatibility as well as to supplement the molecular interactions with the occurrence of a Schiff-base reaction. With the addition of varying OHAH contents, the self-assembly behavior of collagen was altered, and the obtained collagen-hybrid (CH) matrices presented a heterogeneous fibrillar structure interspersed with OHAHs, characterized by large fibrillar bundles coexisting with small fibrils. The OHAHs improved the hydrogel stability of pure collagen, and according to rheological and nanoindentation measurements, CH matrices also exhibited tunable stress relaxation rates, following an OHAH concentration-dependent fashion. The proliferation and spreading of MC3T3-E1 cells cultured onto such CH matrices were further found to increase with the stress relaxing rate of the matrices. The present study showed that the introduction of hydroxyapatite incorporated with active hyaluronic acid during collagen reconstitution was a simple and effective strategy to realize the preparation of tunable stress relaxing biomimetic matrices potentially used for further appraising the regulation of mechanical cues on cell behaviors.
Collapse
Affiliation(s)
- Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Pajic-Lijakovic I, Milivojevic M. Physics of collective cell migration. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:625-640. [PMID: 37707627 DOI: 10.1007/s00249-023-01681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Movement of cell clusters along extracellular matrices (ECM) during tissue development, wound healing, and early stage of cancer invasion involve various inter-connected migration modes such as: (1) cell movement within clusters, (2) cluster extension (wetting) and compression (de-wetting), and (3) directional cluster movement. It has become increasingly evident that dilational and volumetric viscoelasticity of cell clusters and their surrounding substrate significantly influence these migration modes through physical parameters such as: tissue and matrix surface tensions, interfacial tension between cells and substrate, gradients of surface and interfacial tensions, as well as, the accumulation of cell and matrix residual stresses. Inhomogeneous distribution of tissue surface tension along the cell-matrix biointerface can appear as a consequence of different contractility of various cluster regions. While the directional cell migration caused by the matrix stiffness gradient (i.e., durotaxis) has been widely elaborated, the structural changes of matrix surface caused by cell tractions which lead to the generation of the matrix surface tension gradient has not been considered yet. The main goal of this theoretical consideration is to clarify the roles of various physical parameters in collective cell migration based on the formulation of a biophysical model. This complex phenomenon is discussed with the help of model systems such as the movement of cell clusters on a collagen I gel matrix, simultaneously reviewing various experimental data with and without cells.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
31
|
Choi S, Whitman MA, Shimpi AA, Sempertegui ND, Chiou AE, Druso JE, Verma A, Lux SC, Cheng Z, Paszek M, Elemento O, Estroff LA, Fischbach C. Bone-matrix mineralization dampens integrin-mediated mechanosignalling and metastatic progression in breast cancer. Nat Biomed Eng 2023; 7:1455-1472. [PMID: 37550422 DOI: 10.1038/s41551-023-01077-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2023] [Indexed: 08/09/2023]
Abstract
In patients with breast cancer, lower bone mineral density increases the risk of bone metastasis. Although the relationship between bone-matrix mineralization and tumour-cell phenotype in breast cancer is not well understood, mineralization-induced rigidity is thought to drive metastatic progression via increased cell-adhesion forces. Here, by using collagen-based matrices with adjustable intrafibrillar mineralization, we show that, unexpectedly, matrix mineralization dampens integrin-mediated mechanosignalling and induces a less proliferative stem-cell-like phenotype in breast cancer cells. In mice with xenografted decellularized physiological bone matrices seeded with human breast tumour cells, the presence of bone mineral reduced tumour growth and upregulated a gene-expression signature that is associated with longer metastasis-free survival in patients with breast cancer. Our findings suggest that bone-matrix changes in osteogenic niches regulate metastatic progression in breast cancer and that in vitro models of bone metastasis should integrate organic and inorganic matrix components to mimic physiological and pathologic mineralization.
Collapse
Affiliation(s)
- Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nicole D Sempertegui
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph E Druso
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie C Lux
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhu Cheng
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Gong X, Nguyen R, Chen Z, Wen Z, Zhang X, Mak M. Volumetric Compression Shifts Rho GTPase Balance and Induces Mechanobiological Cell State Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561452. [PMID: 37873466 PMCID: PMC10592676 DOI: 10.1101/2023.10.08.561452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During development and disease progression, cells are subject to osmotic and mechanical stresses that modulate cell volume, which fundamentally influences cell homeostasis and has been linked to a variety of cellular functions. It is not well understood how the mechanobiological state of cells is programmed by the interplay of intracellular organization and complex extracellular mechanics when stimulated by cell volume modulation. Here, by controlling cell volume via osmotic pressure, we evaluate physical phenotypes (including cell shape, morphodynamics, traction force, and extracellular matrix (ECM) remodeling) and molecular signaling (YAP), and we uncover fundamental transitions in active biophysical states. We demonstrate that volumetric compression shifts the ratiometric balance of Rho GTPase activities, thereby altering mechanosensing and cytoskeletal organization in a reversible manner. Specifically, volumetric compression controls cell spreading, adhesion formation, and YAP nuclear translocation, while maintaining cell contractile activity. Furthermore, we show that on physiologically relevant fibrillar collagen I matrices, which are highly non-elastic, cells exhibit additional modes of cell volume-dependent mechanosensing that are not observable on elastic substrates. Notably, volumetric compression regulates the dynamics of cell-ECM interactions and irreversible ECM remodeling via Rac-directed protrusion dynamics, at both the single-cell level and the multicellular level. Our findings support that cell volume is a master biophysical regulator and reveal its roles in cell mechanical state transition, cell-ECM interactions, and biophysical tissue programming.
Collapse
|
33
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
34
|
Xu D, Yang Y, Emmerich L, Wang Y, Zhang K. Divergent Deborah number-dependent transition from homogeneity to heterogeneity. Nat Commun 2023; 14:6003. [PMID: 37752163 PMCID: PMC10522598 DOI: 10.1038/s41467-023-41738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Heterogeneous structures are ubiquitous in natural organisms. Native heterogeneous structures inspire many artificial structures that are playing important roles in modern society, while it is challenging to identify the relevant factors in forming these structures due to the complexity of living systems. Here, hybrid hydrogels consisting of flexible polymer networks with embedded stiff cellulose nanocrystals (CNCs) are considered an open system to simulate the generalized formation of heterogeneous core-sheath structures. As the result of the modified air drying process of hybrid hydrogels, the formation of heterogeneous core-sheath structure is found to be correlated to the relative evaporation speed. Specifically, the formation of such heterogeneity in xerogel fibers is found to be correlated with the divergence of Deborah number (De). During the transition of De from large to small values with accompanying morphologies, the turning point is around De = 1. The mechanism can be considered a relative humidity-dependent glass transition behavior. These unique heterogeneous structures play a key role in tuning water permeation and water sorption capacity. Insights into these aspects can prospectively contribute to a better understanding of the native heterogeneous structures for bionics design.
Collapse
Affiliation(s)
- Dan Xu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, D-37077, Göttingen, Germany
| | - Yang Yang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, D-37077, Göttingen, Germany
| | - Lukas Emmerich
- Department of Wood Biology and Wood Products, University of Göttingen, Büsgenweg 4, D-37077, Göttingen, Germany
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, D-37077, Göttingen, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, D-37077, Göttingen, Germany.
| |
Collapse
|
35
|
Cacheux J, Ordonez-Miranda J, Bancaud A, Jalabert L, Alcaide D, Nomura M, Matsunaga YT. Asymmetry of tensile versus compressive elasticity and permeability contributes to the regulation of exchanges in collagen gels. SCIENCE ADVANCES 2023; 9:eadf9775. [PMID: 37531440 PMCID: PMC10396291 DOI: 10.1126/sciadv.adf9775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The Starling principle describes exchanges between blood and tissues based on the balance of hydrostatic and osmotic flows. However, the permeation properties of the main constituent of tissues, namely, collagen, in response to the stress exerted by blood pressure remain poorly characterized. Here, we develop an instrument to determine the elasticity and permeability of collagen gels under tensile and compressive stress based on measuring the temporal change in pressure in an air cavity sealed at the outlet of a collagen slab. Data analysis with an analytical model reveals a drop in the permeability and enhanced strain stiffening of native collagen gels under compression versus tension, both effects being essentially lost after chemical cross-linking. Furthermore, we report the control of the permeability of native collagen gels using sinusoidal fluid injection, an effect explained by the asymmetric response in tension and compression. We lastly suggest that blood-associated pulsations could contribute to exchanges within tissues.
Collapse
Affiliation(s)
- Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Jose Ordonez-Miranda
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Aurélien Bancaud
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Laurent Jalabert
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Masahiro Nomura
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yukiko T. Matsunaga
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS IRL 2820, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
36
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Moo EK, Ebrahimi M, Hrynevich A, de Ruijter M, Castilho M, Malda J, Korhonen RK. Load-induced fluid pressurisation in hydrogel systems before and after reinforcement by melt-electrowritten fibrous meshes. J Mech Behav Biomed Mater 2023; 143:105941. [PMID: 37285774 DOI: 10.1016/j.jmbbm.2023.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Fluid pressure develops transiently within mechanically-loaded, cell-embedding hydrogels, but its magnitude depends on the intrinsic material properties of the hydrogel and cannot be easily altered. The recently developed melt-electrowriting (MEW) technique enables three-dimensional printing of structured fibrous mesh with small fibre diameter (20 μm). The MEW mesh with 20 μm fibre diameter can synergistically increase the instantaneous mechanical stiffness of soft hydrogels. However, the reinforcing mechanism of the MEW meshes is not well understood, and may involve load-induced fluid pressurisation. Here, we examined the reinforcing effect of MEW meshes in three hydrogels: gelatin methacryloyl (GelMA), agarose and alginate, and the role of load-induced fluid pressurisation in the MEW reinforcement. We tested the hydrogels with and without MEW mesh (i.e., hydrogel alone, and MEW-hydrogel composite) using micro-indentation and unconfined compression, and analysed the mechanical data using biphasic Hertz and mixture models. We found that the MEW mesh altered the tension-to-compression modulus ratio differently for hydrogels that are cross-linked differently, which led to a variable change to their load-induced fluid pressurisation. MEW meshes only enhanced the fluid pressurisation for GelMA, but not for agarose or alginate. We speculate that only covalently cross-linked hydrogels (GelMA) can effectively tense the MEW meshes, thereby enhancing the fluid pressure developed during compressive loading. In conclusion, load-induced fluid pressurisation in selected hydrogels was enhanced by MEW fibrous mesh, and may be controlled by MEW mesh of different designs in the future, thereby making fluid pressure a tunable cell growth stimulus for tissue engineering involving mechanical stimulation.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Finland; Department of Mechanical and Aerospace Engineering, Carleton University, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Canada.
| | | | - Andrei Hrynevich
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands.
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands.
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Finland.
| |
Collapse
|
38
|
Yang H, Berthier E, Li C, Ronceray P, Han YL, Broedersz CP, Cai S, Guo M. Local response and emerging nonlinear elastic length scale in biopolymer matrices. Proc Natl Acad Sci U S A 2023; 120:e2304666120. [PMID: 37252962 PMCID: PMC10265995 DOI: 10.1073/pnas.2304666120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.
Collapse
Affiliation(s)
- Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Estelle Berthier
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Pierre Ronceray
- Aix Marseille University, CNRS, CINAM, Turing Center for Living Systems, 13288Marseille, France
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
39
|
Ollier RC, Xiang Y, Yacovelli AM, Webber MJ. Biomimetic strain-stiffening in fully synthetic dynamic-covalent hydrogel networks. Chem Sci 2023; 14:4796-4805. [PMID: 37181784 PMCID: PMC10171040 DOI: 10.1039/d3sc00011g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Mechanoresponsiveness is a ubiquitous feature of soft materials in nature; biological tissues exhibit both strain-stiffening and self-healing in order to prevent and repair deformation-induced damage. These features remain challenging to replicate in synthetic and flexible polymeric materials. In recreating both the mechanical and structural features of soft biological tissues, hydrogels have been often explored for a number of biological and biomedical applications. However, synthetic polymeric hydrogels rarely replicate the mechanoresponsive character of natural biological materials, failing to match both strain-stiffening and self-healing functionality. Here, strain-stiffening behavior is realized in fully synthetic ideal network hydrogels prepared from flexible 4-arm polyethylene glycol macromers via dynamic-covalent boronate ester crosslinks. Shear rheology reveals the strain-stiffening response in these networks as a function of polymer concentration, pH, and temperature. Across all three of these variables, hydrogels of lower stiffness exhibit higher degrees of stiffening, as quantified by the stiffening index. The reversibility and self-healing nature of this strain-stiffening response is also evident upon strain-cycling. The mechanism underlying this unusual stiffening response is attributed to a combination of entropic and enthalpic elasticity in these crosslink-dominant networks, contrasting with natural biopolymers that primarily strain-stiffen due to a strain-induced reduction in conformational entropy of entangled fibrillar structures. This work thus offers key insights into crosslink-driven strain-stiffening in dynamic-covalent phenylboronic acid-diol hydrogels as a function of experimental and environmental parameters. Moreover, the biomimetic mechano- and chemoresponsive nature of this simple ideal-network hydrogel offers a promising platform for future applications.
Collapse
Affiliation(s)
- Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Adriana M Yacovelli
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
40
|
Jimenez JM, Tuttle T, Guo Y, Miles D, Buganza-Tepole A, Calve S. Multiscale mechanical characterization and computational modeling of fibrin gels. Acta Biomater 2023; 162:292-303. [PMID: 36965611 PMCID: PMC10313219 DOI: 10.1016/j.actbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.
Collapse
Affiliation(s)
- Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Tyler Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dalton Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
41
|
Nguyen RY, Cabral AT, Rossello-Martinez A, Zulli A, Gong X, Zhang Q, Yan J, Mak M. Tunable Mesoscopic Collagen Island Architectures Modulate Stem Cell Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207882. [PMID: 36895051 PMCID: PMC10166061 DOI: 10.1002/adma.202207882] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Indexed: 05/10/2023]
Abstract
The extracellular matrix is the biophysical environment that scaffolds mammalian cells in the body. The main constituent is collagen. In physiological tissues, collagen network topology is diverse with complex mesoscopic features. While studies have explored the roles of collagen density and stiffness, the impact of complex architectures remains not well-understood. Developing in vitro systems that recapitulate these diverse collagen architectures is critical for understanding physiologically relevant cell behaviors. Here, methods are developed to induce the formation of heterogeneous mesoscopic architectures, referred to as collagen islands, in collagen hydrogels. These island-containing gels have highly tunable inclusions and mechanical properties. Although these gels are globally soft, there is regional enrichment in the collagen concentration at the cell-scale. Collagen-island architectures are utilized to study mesenchymal stem cell behavior, and it is demonstrated that cell migration and osteogenic differentiation are altered. Finally, induced pluripotent stem cells are cultured in island-containing gels, and it is shown that the architecture is sufficient to induce mesodermal differentiation. Overall, this work highlights complex mesoscopic tissue architectures as bioactive cues in regulating cell behavior and presents a novel collagen-based hydrogel that captures these features for tissue engineering applications.
Collapse
Affiliation(s)
- Ryan Y. Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Aidan T. Cabral
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Alessandro Zulli
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
43
|
Huang D, Li Y, Ma Z, Lin H, Zhu X, Xiao Y, Zhang X. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. SCIENCE ADVANCES 2023; 9:eade9497. [PMID: 36763657 PMCID: PMC9916999 DOI: 10.1126/sciadv.ade9497] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Mesenchymal stem cell (MSC) chondrogenesis in three-dimensional (3D) culture involves dynamic changes in cytoskeleton architecture during mesenchymal condensation before morphogenesis. However, the mechanism linking dynamic mechanical properties of matrix to cytoskeletal changes during chondrogenesis remains unclear. Here, we investigated how viscoelasticity, a time-dependent mechanical property of collagen hydrogel, coordinates MSC cytoskeleton changes at different stages of chondrogenesis. The viscoelasticity of collagen hydrogel was modulated by controlling the gelling process without chemical cross-linking. In slower-relaxing hydrogels, although a disordered cortical actin promoted early chondrogenic differentiation, persistent myosin hyperactivation resulted in Rho-associated kinase (ROCK)-dependent apoptosis. Meanwhile, faster-relaxing hydrogels promoted cell-matrix interactions and eventually facilitated long-term chondrogenesis with mitigated myosin hyperactivation and cell apoptosis, similar to the effect of ROCK inhibitors. The current work not only reveals how matrix viscoelasticity coordinates MSC chondrogenesis and survival in a ROCK-dependent manner but also highlights viscoelasticity as a design parameter for biomaterials for chondrogenic 3D culture.
Collapse
|
44
|
Li T, Hou J, Wang L, Zeng G, Wang Z, Yu L, Yang Q, Yin J, Long M, Chen L, Chen S, Zhang H, Li Y, Wu Y, Huang W. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater 2023; 156:21-36. [PMID: 36002128 DOI: 10.1016/j.actbio.2022.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023]
Abstract
Viscoelastic hydrogels can enhance 3D cell migration and proliferation due to the faster stress relaxation promoting the arrangement of the cellular microenvironment. However, most synthetic photocurable hydrogels used as bioink materials for 3D bioprinting are typically elastic. Developing a photocurable hydrogel bioink with fast stress relaxation would be beneficial for 3D bioprinting engineered 3D skeletal muscles in vitro and repairing volumetric muscle loss (VML) in vivo; however, this remains an ongoing challenge. This study aims to develop an interpenetrating network (IPN) hydrogel with tunable stress relaxation using a combination of gelatin methacryloyl (GelMA) and fibrinogen. These IPN hydrogels with faster stress relaxation showed higher 3D cellular proliferation and better differentiation. A 3D anisotropic biomimetic scaffold was further developed via a printing gel-in-gel strategy, where the extrusion printing of cell-laden viscoelastic FG hydrogel within Carbopol supported gel. The 3D engineered skeletal muscle tissue was further developed via 3D aligned myotube formation and contraction. Furthermore, the cell-free 3D printed scaffold was implanted into a rat VML model, and both the short and long-term repair results demonstrated its ability to enhance functional skeletal muscle tissue regeneration. These data suggest that such viscoelastic hydrogel provided a suitable 3D microenvironment for enhancing 3D myogenic differentiation, and the 3D bioprinted anisotropic structure provided a 3D macroenvironment for myotube organization, which indicated the potential in skeletal muscle engineering and VML regeneration. STATEMENT OF SIGNIFICANCE: The development of a viscoelastic 3D aligned biomimetic skeletal muscle scaffold has been focused on skeletal muscle regeneration. However, a credible technique combining viscoelastic hydrogel and printing gel-in-gel strategy for fabricating skeletal muscle tissue was rarely reported. Therefore, in this study, we present an interpenetrating network (IPN) hydrogel with fast stress relaxation for 3D bioprinting engineered skeletal muscle via a printing gel-in-gel strategy. Such IPN hydrogels with tunable fast stress relaxation resulted in high 3D cellular proliferation and adequate differentiation in vitro. Besides, the 3D hydrogel-based scaffolds also enhance functional skeletal muscle regeneration in situ. We believe that this study provides several notable advances in tissue engineering that can be potentially used for skeletal muscle injury treatment in clinical.
Collapse
Affiliation(s)
- Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juedong Hou
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou Guangdong 510515, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou Guangdong 510515, China
| | - Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lizhi Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongwu Zhang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Zhang Y, Wei D, Wang X, Wang B, Li M, Fang H, Peng Y, Fan Q, Ye F. Run-and-Tumble Dynamics and Mechanotaxis Discovered in Microglial Migration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0063. [PMID: 36939442 PMCID: PMC10013966 DOI: 10.34133/research.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.
Collapse
Affiliation(s)
- Yiyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Haiping Fang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Science,
East China University of Science and Technology, Shanghai 200237, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| |
Collapse
|
46
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
47
|
Liu K, Li L, Chen J, Li Y, Wen W, Lu L, Li L, Li H, Liu M, Zhou C, Luo B. Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration. ACS NANO 2022; 16:21020-21035. [PMID: 36469414 DOI: 10.1021/acsnano.2c08699] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Implanting a 3D printing scaffold is an effective therapeutic strategy for personalized bone repair. As the key factor for the success of bone tissue engineering, the scaffold should provide an appropriate bone regeneration microenvironment and excellent mechanical properties. In fact, the most ideal osteogenic microenvironment is undoubtedly provided by natural bone extracellular matrix (ECM), which exhibits liquid crystalline and viscoelastic characteristics. However, mimicking a bone ECM-like microenvironment in a 3D structure with outstanding mechanical properties is a huge challenge. Herein, we develop a facile approach to fabricate a bionic scaffold perfectly combining bone ECM-like microenvironment and robust mechanical properties. Creatively, 3D printing a poly(l-lactide) (PLLA) scaffold was effectively strengthened via layer-by-layer electrostatic self-assembly of chitin whiskers. More importantly, a kind of chitin whisker/chitosan composite hydrogel with bone ECM-like liquid crystalline state and viscoelasticity was infused into the robust PLLA scaffold to build the bone ECM-like microenvironment in 3D structure, thus highly promoting bone regeneration. Moreover, deferoxamine, an angiogenic factor, was encapsulated in the composite hydrogel and sustainably released, playing a long-term role in angiogenesis and thereby further promoting osteogenesis. This scaffold with bone ECM-like microenvironment and excellent mechanical properties can be considered as an effective implantation for bone repair.
Collapse
Affiliation(s)
- Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Jingsheng Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lihua Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Hong Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| |
Collapse
|
48
|
Naylor A, Zheng Y, Jiao Y, Sun B. Micromechanical remodeling of the extracellular matrix by invading tumors: anisotropy and heterogeneity. SOFT MATTER 2022; 19:9-16. [PMID: 36503977 PMCID: PMC9867555 DOI: 10.1039/d2sm01100j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Altered tissue mechanics is an important signature of invasive solid tumors. While the phenomena have been extensively studied by measuring the bulk rheology of the extracellular matrix (ECM) surrounding tumors, micromechanical remodeling at the cellular scale remains poorly understood. By combining holographic optical tweezers and confocal microscopy on in vitro tumor models, we show that the micromechanics of collagen ECM surrounding an invading tumor demonstrate directional anisotropy, spatial heterogeneity and significant variations in time as tumors invade. To test the cellular mechanisms of ECM micromechanical remodeling, we construct a simple computational model and verify its predictions with experiments. We find that collective force generation of a tumor stiffens the ECM and leads to anisotropic local mechanics such that the extension direction is more rigid than the compression direction. ECM degradation by cell-secreted matrix metalloproteinase softens the ECM, and active traction forces from individual disseminated cells re-stiffen the matrix. Together, these results identify plausible biophysical mechanisms responsible for the remodeled ECM micromechanics surrounding an invading tumor.
Collapse
Affiliation(s)
- Austin Naylor
- Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ, USA.
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, AZ, USA.
- Materials Science and Engineering, Arizona State University, Tempe, AZ, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
49
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
50
|
Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed Mater 2022; 18. [PMID: 36541468 DOI: 10.1088/1748-605x/aca501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Despite many efforts focusing on regenerative medicine, there are few clinically-available cell-delivery carriers to improve the efficacy of cell transplantation due to the lack of adequate scaffolds. Herein, we report an injectable scaffold composed of functionalized gelatin for application in cell transplantation. Injectable functionalized gelatin-based hydrogels crosslinked with reversible hydrogen bonding based on supramolecular chemistry were designed. The hydrogel exhibited thixotropy, enabling single syringe injection of cell-encapsulating hydrogels. Highly biocompatible and cell-adhesive hydrogels provide cellular scaffolds that promote cellular adhesion, spreading, and migration. Thein vivodegradation study revealed that the hydrogel gradually degraded for seven days, which may lead to prolonged retention of transplanted cells and efficient integration into host tissues. In volumetric muscle loss models of mice, cells were transplanted using hydrogels and proliferated in injured muscle tissues. Thixotropic and injectable hydrogels may serve as cell delivery scaffolds to improve graft survival in regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|