1
|
Ma Y, Huang Y, Hu F, Shu K. Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). Int J Mol Med 2024; 54:102. [PMID: 39301636 PMCID: PMC11414527 DOI: 10.3892/ijmm.2024.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gliomas are the most prevailing brain malignancy in both children and adults. Microglia, which are resident in the central nervous system (CNS), are distributed throughout the brain and serve an important role in the immunity of the CNS. Microglial cells exhibit varying phenotypic and metabolic properties during different stages of glioma development, making them a highly dynamic cell population. In particular, glioma‑associated microglia/macrophages (GAMs) can alter their metabolic characteristics and influence malignancies in response to the signals they receive. The significance of macrophage metabolic reprogramming in tumor growth is becoming increasingly acknowledged in recent years. However, to the best of our knowledge, there is currently a scarcity of data from investigations into the lipid metabolic profiles of microglia/macrophages in the glioma setting. Therefore, the present review aims to provide a thorough review of the role that lipid metabolism serves in tumor‑associated macrophages. In addition, it outlines potential targets for therapy based on lipid metabolism. The present review aims to serve as a reference source for future investigations into GAMs.
Collapse
Affiliation(s)
- Yixuan Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
da Fonseca IIM, Nagamine MK, Gentile LB, Nishiya AT, da Fonseca JM, de Oliveira Massoco C, Ward JM, Liu S, Leppla SH, Dagli MLZ. Targeting canine mammary neoplastic epithelial cells with a reengineered anthrax toxin: first study. Vet Res Commun 2024; 48:2407-2428. [PMID: 38805149 DOI: 10.1007/s11259-024-10400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Mammary tumors are the most frequent type of neoplasms in intact female dogs. New therapies that target neoplastic cells without affecting normal cells are highly sought. The Bacillus anthracis toxin has been reengineered to target tumor cells that express urokinase plasminogen activators and metalloproteinases. In previous studies carried out in our laboratory, the reengineered anthrax toxin had inhibitory effects on canine oral mucosal melanoma and canine osteosarcoma cells. In this study, five canine neoplastic epithelial cell lines (four adenocarcinomas and one adenoma) and one non-neoplastic canine mammary epithelial cell line were treated with different concentrations of reengineered anthrax toxin components. Cell viability was quantified using an MTT assay and half-maximal inhibitory concentration (IC50) values. Cell lines were considered sensitive when the IC50 was lower than 5000 ng/ml. One canine mammary adenocarcinoma cell line and one mammary adenoma cell line showed significantly decreased viability after treatment, whereas the non-neoplastic cell line was resistant. We conclude that the reengineered anthrax toxin may be considered a targeted therapy for canine mammary neoplasms while preserving normal canine mammary epithelial cells.
Collapse
Affiliation(s)
- Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Márcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Luciana Boffoni Gentile
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
3
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
4
|
ERK and c-Myc signaling in host-derived tumor endothelial cells is essential for solid tumor growth. Proc Natl Acad Sci U S A 2023; 120:e2211927120. [PMID: 36574698 PMCID: PMC9910475 DOI: 10.1073/pnas.2211927120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The limited efficacy of the current antitumor microenvironment strategies is due in part to the poor understanding of the roles and relative contributions of the various tumor stromal cells to tumor development. Here, we describe a versatile in vivo anthrax toxin protein delivery system allowing for the unambiguous genetic evaluation of individual tumor stromal elements in cancer. Our reengineered tumor-selective anthrax toxin exhibits potent antiproliferative activity by disrupting ERK signaling in sensitive cells. Since this activity requires the surface expression of the capillary morphogenesis protein-2 (CMG2) toxin receptor, genetic manipulation of CMG2 expression using our cell-type-specific CMG2 transgenic mice allows us to specifically define the role of individual tumor stromal cell types in tumor development. Here, we established mice with CMG2 only expressed in tumor endothelial cells (ECs) and determined the specific contribution of tumor stromal ECs to the toxin's antitumor activity. Our results demonstrate that disruption of ERK signaling only within tumor ECs is sufficient to halt tumor growth. We discovered that c-Myc is a downstream effector of ERK signaling and that the MEK-ERK-c-Myc central metabolic axis in tumor ECs is essential for tumor progression. As such, disruption of ERK-c-Myc signaling in host-derived tumor ECs by our tumor-selective anthrax toxins explains their high efficacy in solid tumor therapy.
Collapse
|
5
|
Zuo Z, Liu J, Sun Z, Silverstein R, Zou M, Finkel T, Bugge TH, Leppla SH, Liu S. A potent tumor-selective ERK pathway inactivator with high therapeutic index. PNAS NEXUS 2022; 1:pgac104. [PMID: 35899070 PMCID: PMC9308561 DOI: 10.1093/pnasnexus/pgac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
FDA-approved BRAF and MEK small molecule inhibitors have demonstrated some level of efficacy in patients with metastatic melanomas. However, these "targeted" therapeutics have a very low therapeutic index, since these agents affect normal cells, causing undesirable, even fatal, side effects. To address these significant drawbacks, here, we have reengineered the anthrax toxin-based protein delivery system to develop a potent, tumor-selective MEK inactivator. This toxin-based MEK inactivator exhibits potent activity against a wide range of solid tumors, with the highest activity seen when directed toward tumors containing the BRAFV600E mutation. We demonstrate that this reengineered MEK inactivator also exhibits an extremely high therapeutic index (>15), due to its in vitro and in vivo activity being strictly dependent on the expression of multiple tumor-associated factors including tumor-associated proteases matrix metalloproteinase, urokinase plasminogen activator, and anthrax toxin receptor capillary morphogenesis protein-2. Furthermore, we have improved the specificity of this MEK inactivator, restricting its enzymatic activity to only target the ERK pathway, thereby greatly diminishing off-target toxicity. Together, these data suggest that engineered bacterial toxins can be modified to have significant in vitro and in vivo therapeutic effects with high therapeutic index.
Collapse
Affiliation(s)
| | | | - Zhihao Sun
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Rachel Silverstein
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Meijuan Zou
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA,Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shihui Liu
- To whom correspondence should be addressed:
| |
Collapse
|
6
|
Si T, Ning X, Chen H, Hu Z, Dun L, Zheng N, Huang P, Yang L, Yi P. ANTXR1 as a potential prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma identified by a weighted gene correlation network analysis. J Gastrointest Oncol 2021; 12:3079-3092. [PMID: 35070431 PMCID: PMC8748048 DOI: 10.21037/jgo-21-764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND With high incidence and mortality rates, hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. Chronic hepatitis B virus (HBV) infection is a leading cause of HCC, especially for Asians and blacks. However, the molecular mechanisms underlying HBV-related HCC are unclear. This study sought to identify novel prognostic biomarkers and explore the potential pathogenesis of HBV-related HCC. METHODS The gene expression profiles and corresponding clinical information of HCC from The Cancer Genome Atlas Liver Hepatocellular Carcinoma data set were analyzed by a weighted gene co-expression network analysis. Correlations between the co-expression modules and clinical traits were calculated. Next, key modules associated with HBV infection were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for the genes in the key modules. The hub genes were identified based on the protein-protein interaction (PPI) network via the Cytoscape. Finally, an overall survival (OS) analysis was performed. RESULTS The two modules (i.e., the brown and yellow modules) most relevant to HBV infection were constructed. A functional enrichment analysis revealed that the genes in the two modules were mainly enriched in HCC-related pathways, such as the phosphatidylinositol-3-kinase and protein kinase B signaling pathway, focal adhesion, human papillomavirus infection, the Rap1 signaling pathway, and the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. Ten hub genes [i.e., COL3A1, ANTXR1, COL14A1, THBS2, ADAMTS2, AEBP1, PRELP, EMILIN1, DCN and PODN] in the brown module, and 10 hub genes [i.e., USP34, SEC24C, ZNF770, STAG1, TSTD2, PKD1P6, CCNK, GFT2I, NT5C2 and SMG6] in the yellow module were identified. Among the hub genes, ANTXR1 (Anthrax-toxin receptor 1) was significantly correlated with HBV-related HCC patients' OS. CONCLUSIONS ANTXR1 represents a potential therapeutic target for HBV-related HCC. This study offers novel insights into the molecular mechanisms of HBV-induced tumorigenesis, which needs to be further validated by basic experiments and large-scale cohort studies.
Collapse
Affiliation(s)
- Tao Si
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Haihui Chen
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Zhengguo Hu
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Linglu Dun
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Na Zheng
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Ping Huang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Liu Yang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Ping Yi
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| |
Collapse
|
7
|
An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proc Natl Acad Sci U S A 2021; 118:2101596118. [PMID: 34417313 DOI: 10.1073/pnas.2101596118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, K d We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.
Collapse
|
8
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
9
|
Lu Z, Truex NL, Melo MB, Cheng Y, Li N, Irvine DJ, Pentelute BL. IgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS CENTRAL SCIENCE 2021; 7:365-378. [PMID: 33655074 PMCID: PMC7908032 DOI: 10.1021/acscentsci.0c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/05/2023]
Abstract
Therapeutic immunotoxins composed of antibodies and bacterial toxins provide potent activity against malignant cells, but joining them with a defined covalent bond while maintaining the desired function is challenging. Here, we develop novel immunotoxins by dovetailing full-length immunoglobulin G (IgG) antibodies and nontoxic anthrax proteins, in which the C terminus of the IgG heavy chain is connected to the side chain of anthrax toxin protective antigen. This strategy enabled efficient conjugation of protective antigen variants to trastuzumab (Tmab) and cetuximab (Cmab) antibodies. The conjugates effectively perform intracellular delivery of edema factor and N terminus of lethal factor (LFN) fused with diphtheria toxin and Ras/Rap1-specific endopeptidase. Each conjugate shows high specificity for cells expressing human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), respectively, and potent activity across six Tmab- and Cmab-resistant cell lines. The conjugates also exhibit increased pharmacokinetics and pronounced in vivo safety, which shows promise for further therapeutic development.
Collapse
Affiliation(s)
- Zeyu Lu
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mariane B. Melo
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiran Cheng
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Na Li
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J. Irvine
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Howard Hughes
Medical Institute, 4000
Jones Bridge Road, Chevy Chase, Maryland 20815, United
States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- E-mail:
| |
Collapse
|
10
|
Sadeghpour SD, Karimi F, Alizadeh H. Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020; 160:1158-1167. [DOI: 10.1016/j.ijbiomac.2020.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
11
|
Mackowiak da Fonseca J, Mackowiak da Fonseca II, Nagamine MK, Massoco CDO, Nishiya AT, Ward JM, Liu S, Leppla SH, Bugge TH, Dagli MLZ. Inhibitory Effects of a Reengineered Anthrax Toxin on Canine and Human Osteosarcoma Cells. Toxins (Basel) 2020; 12:toxins12100614. [PMID: 32987941 PMCID: PMC7601267 DOI: 10.3390/toxins12100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/03/2022] Open
Abstract
Canine and human osteosarcomas (OSA) share similarities. Novel therapies are necessary for these tumours. The Bacillus anthracis toxin was reengineered to target and kill cells with high expressions of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA). Since canine OSA express MMPs and uPA, we assessed whether the reengineered toxin could show efficacy against these tumours. Two OSA cell lines (canine D17 and human MG63) and a non-neoplastic canine osteoblastic cell line (COBS) were used. Cells were treated with different concentrations of the reengineered anthrax toxin and cell viability was quantified using MTT assay. The cell cycle, apoptosis, and necrosis were analysed by flow cytometry. The wound-healing assay was performed to quantify the migration capacity of treated cells. D17 and MG63 cells had significantly decreased viability after 24 h of treatment. Cell cycle analysis revealed that OSA cells underwent apoptosis when treated with the toxin, whereas COBS cells arrested in the G1 phase. The wound-healing assay showed that D17 and MG63 cells had a significantly reduced migration capacity after treatment. These results point for the first time towards the in vitro inhibitory effects of the reengineered anthrax toxin on OSA cells; this reengineered toxin could be further tested as a new therapy for OSA.
Collapse
Affiliation(s)
- Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Marcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA;
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Thomas Henrik Bugge
- Proteases & Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA;
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
- Correspondence: ; Tel.: +55-11-30917712
| |
Collapse
|
12
|
Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat Microbiol 2020; 5:1464-1471. [PMID: 32895527 DOI: 10.1038/s41564-020-0782-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Anthrax lethal toxin (LT), produced by Bacillus anthracis, comprises a receptor-binding moiety, protective antigen and the lethal factor (LF) protease1,2. Although LF is known to cleave mitogen-activated protein kinase kinases (MEKs/MKKs) and some variants of the NLRP1 inflammasome sensor, targeting of these pathways does not explain the lethality of anthrax toxin1,2. Here we report that the regulatory subunits of phosphoinositide-3 kinase (PI3K)-p85α (PIK3R1) and p85β (PIK3R2)3,4-are substrates of LF. Cleavage of these proteins in a proline-rich region between their N-terminal Src homology and Bcr homology domains disrupts homodimer formation and impacts PI3K signalling. Mice carrying a mutated p85α that cannot be cleaved by LF show a greater resistance to anthrax toxin challenge. The LF(W271A) mutant cleaves p85α with lower efficiency and is non-toxic to mice but can regain lethality when combined with PI3K pathway inhibitors. We provide evidence that LF targets two signalling pathways that are essential for growth and metabolism and that the disabling of both pathways is likely necessary for lethal anthrax infection.
Collapse
|
13
|
Wei S, Lu J, Lou J, Shi C, Mo S, Shao Y, Ni J, Zhang W, Cheng X. Gastric Cancer Tumor Microenvironment Characterization Reveals Stromal-Related Gene Signatures Associated With Macrophage Infiltration. Front Genet 2020; 11:663. [PMID: 32695142 PMCID: PMC7339942 DOI: 10.3389/fgene.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
The tumor microenvironment (TME) has attracted attention owing to its essential role in tumor initiation, progression, and metastasis. With the emergence of immunotherapies for various cancers, and their high efficacy, an understanding of the TME in gastric cancer (GC) is critical. The aim of this study was to investigate the effect of various components within the GC TME, and to identify mechanisms that exhibit potential as therapeutic targets. The ESTIMATE algorithm was used to quantify immune and stromal components in GC samples, whose clinicopathological significance and relationship with predicted outcomes were explored. Low tumor mutational burden and high M2 macrophage infiltration, which are considered immune suppressive characteristics and may be responsible for unfavorable prognoses in GC, were observed in the high stromal group (HR = 1.585; 95% CI, 1.112–2.259; P = 0.009). Furthermore, weighted correlation network, differential expression, and univariate Cox analyses were used, along with machine learning methods (LASSO and SVM-RFE), to reveal genome-wide immune phenotypic correlations. Eight stromal-relevant genes cluster (FSTL1, RAB31, FBN1, ANTXR1, LRRC32, CTSK, COL5A2, and ENG) were identified as adverse prognostic factors in GC. Finally, using a combination of TIMER database and single-sample gene set enrichment analyses, we found that the identified genes potentially contribute to macrophage recruitment and polarization of tumor-associated macrophages. These findings provide a different perspective into the immune microenvironment and indicate potential prognostic and therapeutic targets for GC immunotherapies.
Collapse
Affiliation(s)
- Shenyu Wei
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianying Lou
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengwei Shi
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaowei Mo
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaojian Shao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junjie Ni
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wu Zhang
- Shulan Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Cheng
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
14
|
Lu Z, Paolella BR, Truex NL, Loftis AR, Liao X, Rabideau AE, Brown MS, Busanovich J, Beroukhim R, Pentelute BL. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chem Biol 2020; 15:1358-1369. [PMID: 32348107 PMCID: PMC7521945 DOI: 10.1021/acschembio.9b01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisense oligonucleotide therapies are important cancer treatments, which can suppress genes in cancer cells that are critical for cell survival. SF3B1 has recently emerged as a promising gene target that encodes a key splicing factor in the SF3B protein complex. Over 10% of cancers have lost one or more copies of the SF3B1 gene, rendering these cancers vulnerable after further suppression. SF3B1 is just one example of a CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) gene, but over 120 additional candidate CYCLOPS genes are known. Antisense oligonucleotide therapies for cancer offer the promise of effective suppression for CYCLOPS genes, but developing these treatments is difficult due to their limited permeability into cells and poor cytosolic stability. Here, we develop an effective approach to suppress CYCLOPS genes by delivering antisense peptide nucleic acids (PNAs) into the cytosol of cancer cells. We achieve efficient cytosolic PNA delivery with the two main nontoxic components of the anthrax toxin: protective antigen (PA) and the 263-residue N-terminal domain of lethal factor (LFN). Sortase-mediated ligation readily enables the conjugation of PNAs to the C terminus of the LFN protein. LFN and PA work together in concert to translocate PNAs into the cytosol of mammalian cells. Antisense SF3B1 PNAs delivered with the LFN/PA system suppress the SF3B1 gene and decrease cell viability, particularly of cancer cells with partial copy-number loss of SF3B1. Moreover, antisense SF3B1 PNAs delivered with a HER2-binding PA variant selectively target cancer cells that overexpress the HER2 cell receptor, demonstrating receptor-specific targeting of cancer cells. Taken together, our efforts illustrate how PA-mediated delivery of PNAs provides an effective and general approach for delivering antisense PNA therapeutics and for targeting gene dependencies in cancer.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Brenton R. Paolella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Alexander R. Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Amy E. Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Meredith S. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - John Busanovich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM, Deshane JS. Lung Tumor Cell-Derived Exosomes Promote M2 Macrophage Polarization. Cells 2020; 9:cells9051303. [PMID: 32456301 PMCID: PMC7290460 DOI: 10.3390/cells9051303] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular cross-talk within the tumor microenvironment (TME) by exosomes is known to promote tumor progression. Tumor promoting macrophages with an M2 phenotype are suppressors of anti-tumor immunity. However, the impact of tumor-derived exosomes in modulating macrophage polarization in the lung TME is largely unknown. Herein, we investigated if lung tumor-derived exosomes alter transcriptional and bioenergetic signatures of M0 macrophages and polarize them to an M2 phenotype. The concentration of exosomes produced by p53 null H358 lung tumor cells was significantly reduced compared to A549 (p53 wild-type) lung tumor cells, consistent with p53-mediated regulation of exosome production. In co-culture studies, M0 macrophages internalized tumor-derived exosomes, and differentiated into M2 phenotype. Importantly, we demonstrate that tumor-derived exosomes enhance the oxygen consumption rate of macrophages, altering their bioenergetic state consistent with that of M2 macrophages. In vitro co-cultures of M0 macrophages with H358 exosomes demonstrated that exosome-induced M2 polarization may be p53 independent. Murine bone marrow cells and bone marrow-derived myeloid-derived suppressor cells (MDSCs) co-cultured with lewis lung carcinoma (LLC)-derived exosomes differentiated to M2 macrophages. Collectively, these studies provide evidence for a novel role for lung tumor-exosomes in M2 macrophage polarization, which then offers new therapeutic targets for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Alexandra Pritchard
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Sultan Tousif
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Yong Wang
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Kenneth Hough
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Saad Khan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - John Strenkowski
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Balu K. Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Jessy S. Deshane
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
- Correspondence: ; Tel.: +1-205-996-2041
| |
Collapse
|
16
|
Nishiya AT, Nagamine MK, da Fonseca IIM, Miraldo AC, Villar Scattone N, Guerra JL, Xavier JG, Santos M, Massoco de Salles Gomes CO, Ward JM, Liu S, Leppla SH, Bugge TH, Dagli MLZ. Inhibitory Effects of a Reengineered Anthrax Toxin on Canine Oral Mucosal Melanomas. Toxins (Basel) 2020; 12:toxins12030157. [PMID: 32121654 PMCID: PMC7150776 DOI: 10.3390/toxins12030157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.
Collapse
Affiliation(s)
- Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Marcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Andrea Caringi Miraldo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Nayra Villar Scattone
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - José Luiz Guerra
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - José Guilherme Xavier
- Rous Animal Pathology, Private Veterinary Pathology Services. Av. Lacerda Franco 127, Sao Paulo 01536-000, SP, Brazil; (J.G.X.); (M.S.)
| | - Mário Santos
- Rous Animal Pathology, Private Veterinary Pathology Services. Av. Lacerda Franco 127, Sao Paulo 01536-000, SP, Brazil; (J.G.X.); (M.S.)
| | - Cristina Oliveira Massoco de Salles Gomes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA;
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Thomas Henrik Bugge
- Proteases & Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA;
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
- Correspondence:
| |
Collapse
|
17
|
Fischer ES, Campbell WA, Liu S, Ghirlando R, Fattah RJ, Bugge TH, Leppla SH. Bismaleimide cross-linked anthrax toxin forms functional octamers with high specificity in tumor targeting. Protein Sci 2019; 28:1059-1070. [PMID: 30942916 PMCID: PMC6511737 DOI: 10.1002/pro.3613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
In recent years, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic, shown to kill tumors in animal models. This has been achieved by modifying protective antigen (PA) so that its activation and toxicity require the presence of two proteases, matrix metalloproteinase (MMP) and urokinase plasminogen activator (uPA), which are upregulated in tumor microenvironments. These therapeutics consist of intercomplementing PA variants, which are individually nontoxic, but form functional toxins upon complementary oligomerization. Here, we have created a dual-protease requiring PA targeting system which utilizes bismaleimide cross-linked PA (CLPA) rather than the intercomplementing PA variants. Three different CLPA agents were tested and, as expected, found to exclusively form octamers. Two of the CLPA agents have in vitro toxicities equal to those of previous intercomplementing agents, while the third CLPA agent had compromised in vitro cleavage and was significantly less cytotoxic. We hypothesize this difference was due to steric hindrance caused by cross-linking two PA monomers in close proximity to the PA cleavage site. Overall, this work advances the development and use of the PA and LF tumor-targeting system as a practical cancer therapeutic, as it provides a way to reduce the drug components of the anthrax toxin drug delivery system from three to two, which may lower the cost and simplify testing in clinical trials. HIGHLIGHT: Previously, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic. Here, we present a version, which utilizes bismaleimide cross-linked protective antigen (PA) rather than intercomplementing PA variants. This advances the development of anthrax toxin as a practical cancer therapeutic as it reduces the components of the drug delivery system to two, which may lower the cost and simplify testing in clinical trials.
Collapse
Affiliation(s)
- Elyse S. Fischer
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Warren A. Campbell
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Shihui Liu
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMaryland, 20892
| | - Rasem J. Fattah
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Stephen H. Leppla
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| |
Collapse
|
18
|
Wang G, Yang Q, Li M, Zhang Y, Cai Y, Liang X, Fu Y, Xiao Z, Zhou M, Xie Z, Huang H, Huang Y, Chen Y, He Q, Peng F, Chen Z. Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. Biol Open 2019; 8:bio.042838. [PMID: 31036754 PMCID: PMC6550088 DOI: 10.1242/bio.042838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the global proteomic profiles of vascular endothelial cells (VECs) in the tumor microenvironment and antiangiogenic therapy for colorectal cancer (CRC), matched pairs of normal (NVECs) and tumor-associated VECs (TVECs) were purified from CRC tissues by laser capture microdissection and subjected to iTRAQ-based quantitative proteomics analysis. Here, 216 differentially expressed proteins (DEPs) were identified and used for bioinformatics analysis. Interestingly, these proteins were implicated in epithelial mesenchymal transition (EMT), ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, angiogenesis and HIF-1 signaling pathway, which may play important roles in CRC angiogenesis. Among these DEPs we found that Tenascin-C (TNC) was upregulated in TVECs of CRC and correlated with CRC multistage carcinogenesis and metastasis. Furthermore, the reduction of tumor-derived TNC could attenuate human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation through ITGB3/FAK/Akt signaling pathway. Based on the present work, we provided a large-scale proteomic profiling of VECs in CRC with quantitative information, a certain number of potential antiangiogenic targets and a novel vision in the angiogenesis bio-mechanism of CRC. Summary: We provided large-scale proteomic profiling of vascular endothelial cells in colorectal cancer with quantitative information, a number of potential antiangiogenic targets and a novel vision in the angiogenesis bio-mechanism of CRC.
Collapse
Affiliation(s)
- Guoqiang Wang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiongzhi Yang
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Maoyu Li
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ye Zhang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuxiang Cai
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Fu
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhefeng Xiao
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minze Zhou
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhongpeng Xie
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huichao Huang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yahui Huang
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiongqiong He
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China .,Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Time-resolved protein activation by proximal decaging in living systems. Nature 2019; 569:509-513. [PMID: 31068699 DOI: 10.1038/s41586-019-1188-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
A universal gain-of-function approach for selective and temporal control of protein activity in living systems is crucial to understanding dynamic cellular processes. Here we report development of a computationally aided and genetically encoded proximal decaging (hereafter, CAGE-prox) strategy that enables time-resolved activation of a broad range of proteins in living cells and mice. Temporal blockage of protein activity was computationally designed and realized by genetic incorporation of a photo-caged amino acid in proximity to the functional site of the protein, which can be rapidly removed upon decaging, resulting in protein re-activation. We demonstrate the wide applicability of our method on diverse protein families, which enabled orthogonal tuning of cell signalling and immune responses, temporal profiling of proteolytic substrates upon caspase activation as well as the development of protein-based pro-drug therapy. We envision that CAGE-prox will open opportunities for the gain-of-function study of proteins and dynamic biological processes with high precision and temporal resolution.
Collapse
|
20
|
Koo S, Cheley S, Bayley H. Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. ACS CENTRAL SCIENCE 2019; 5:629-639. [PMID: 31041382 PMCID: PMC6487460 DOI: 10.1021/acscentsci.8b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 05/03/2023]
Abstract
α-Hemolysin (αHL), a β-barrel pore-forming toxin (βPFT), is secreted as a water-soluble monomer by Staphylococcus aureus. Upon binding to receptors on target cell membranes, αHL assembles to form heptameric membrane-spanning pores. We have previously engineered αHL to create a protease-activatable toxin that is activated by site-specific proteolysis including by tumor proteases. In this study, we redesigned αHL so that it requires 2-fold activation on target cells through (i) binding to specific receptors, and (ii) extracellular proteolytic cleavage. To assess our strategy, we constructed a fusion protein of αHL with galectin-1 (αHLG1, αHL-Galectin-1 chimera). αHLG1 was cytolytic toward cells that lack a receptor for wild-type αHL. We then constructed protease-activatable mutants of αHLG1 (PAMαHLG1s). PAMαHLG1s were activated by matrix metalloproteinase 2 (MMP-2) and had approximately 50-fold higher cytolytic activity toward MMP-2 overexpressing cells (HT-1080 cells) than toward non-overexpressing cells (HL-60 cells). Our approach provides a novel strategy for tailoring pore-forming toxins for therapeutic applications.
Collapse
Affiliation(s)
- Sunwoo Koo
- Department
of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, Texas 77807, United States
- E-mail: . Phone: 1-979-436-0381
| | - Stephen Cheley
- Department
of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1 Alberta, Canada
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield
Road, Oxford, OX1 3TA England, United Kingdom
- E-mail: . Phone: +44 1865 285101
| |
Collapse
|
21
|
Bai M, Dong Y, Huang H, Fu H, Duan Y, Wang Q, Du L. Tumour targeted contrast enhanced ultrasound imaging dual-modal microbubbles for diagnosis and treatment of triple negative breast cancer. RSC Adv 2019; 9:5682-5691. [PMID: 35515929 PMCID: PMC9060891 DOI: 10.1039/c8ra09737b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/02/2019] [Indexed: 01/17/2023] Open
Abstract
At present, the treatment of triple negative breast cancer (TNBC) is a worldwide problem, urgently requiring early precise diagnosis and effective treatment methods. In our study, we designed a type of tumour targeted dual-modal microbubbles, paclitaxel (PTX)-loaded RGD-lipid microbubbles (PTX@RGD-MBs), combined with ultrasonic targeted microbubble destruction (UTMD) to precisely diagnose TNBC and to improve the curative effect. As the first-line drug, PTX, lacking specific tumour targeting and the ability to be effectively internalized by TNBC cells, is still not effective in killing TNBC cells. For this reason, we used the tumour active targeting peptide RGD to precisely guide MBs around TNBC cells through the high affinity to the integrin αvβ3 receptor, and use UTMD to generate shear stress on cells to open transient pores in the cellular membrane, so as to improve MB penetration into the cellular membrane. Sulfur hexafluoride (SF6) as the internal gas of MBs can greatly improve the resolution and sensitivity of conventional US images through nonlinear harmonics to enhance the comparison between lesions and surrounding normal tissues. The results in our study demonstrated that RGD-MBs with UTMD were internalized by TNBC cells more effectively, leading to significant increase in intercellular drug concentrations of TNBC cells, thus achieving the best inhibitory effect on TNBC cells in vitro. Ultrasonic experiment showed that PTX@RGD-MBs produced high quality contrast enhanced ultrasound (CEUS) images in vitro and in vivo, providing a better method for diagnosis and evaluation of the TNBC. Therefore, we conclude the advantages of excellent anti-tumour effect and CEUS imaging of PTX@RGD-MBs provided a better application for diagnosis and treatment of TNBC. Tumour targeted contrast-enhanced ultrasound imaging dual-modal microbubbles (PTX@RGD-MBs) combined with UTMD for diagnosing and treating triple negative breast cancer.![]()
Collapse
Affiliation(s)
- Min Bai
- Department of Ultrasound
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200080
- China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Hui Huang
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Lianfang Du
- Department of Ultrasound
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200080
- China
| |
Collapse
|
22
|
Katti KV, Khoobchandani M, Thipe VC, Al-Yasiri AY, Katti KK, Loyalka SK, Sakr TM, Lugão AB. Prostate tumor therapy advances in nuclear medicine: green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6320-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene 2018; 37:3953-3966. [PMID: 29662192 PMCID: PMC6053357 DOI: 10.1038/s41388-018-0226-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
A growing body of evidence shows that the development and progression of gastric cancer (GC) is mainly associated to the presence of gastric cancer stem-like cells (GCSLCs). However, it is unclear how GCSLC population is maintained. This study aimed to explore the role of capillary morphogenesis gene 2 (CMG2) in GCSLC maintenance and the relevance to GC progression. We found that CMG2 was highly expressed in GC tissues and the expression levels were associated with the invasion depth and lymph node metastasis of GC, and inversely correlated with the survival of GC patients. Sorted CMG2High GC cells preferentially clustered in CD44High stem-like cell population, which expressed high levels of stemness-related genes with increased capabilities of self-renewal and tumorigenicity. Depletion of CMG2 gene resulted in reduction of GCSLC population with attenuated stemness and decrease of invasive and metastatic capabilities with subdued epithelial–mesenchymal transition phenotype in GC cells. Mechanistically, CMG2 interacted with LRP6 in GCSLCs to activate a Wnt/β-catenin pathway. Thus, our results demonstrate that CMG2 promotes GC progression by maintaining GCSLCs and can serve as a new prognostic indicator and a target for human GC therapy.
Collapse
|
24
|
Khandia R, Pattnaik B, Rajukumar K, Pateriya A, Bhatia S, Murugkar H, Prakash A, Pradhan HK, Dhama K, Munjal A, Joshi SK. Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 2018; 8:35835-35847. [PMID: 28415766 PMCID: PMC5482621 DOI: 10.18632/oncotarget.16214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis secretes three secretary proteins; lethal factor (LF), protective antigen (PA) and edema factor (EF). The LF has ability to check proliferation of mammary tumors, chiefly depending on mitogen activated protein kinase (MAPK) signaling pathway. Evaluation of therapeutic potential of recombinant LF (rLF), recombinant PA (rPA) and lethal toxin (rLF + rPA = LeTx) on the primary mammary ductal carcinoma cells revealed significant (p < 0.01) reduction in proliferation of tumor cells with mean inhibition indices of 28.0 ± 1.37% and 19.6 ± 1.47% respectively. However, treatment with rPA alone had no significant anti-proliferative effect as evident by low mean inhibition index of 3.4 ± 3.87%. The higher inhibition index observed for rLF alone as compared to LeTx is contrary to the existing knowledge on LF, which explains the requirement of PA dependent endocytosis for its enzymatic activity. Therefore, the plausible existence of PA independent mode of action of LF including direct receptor mediated endocytosis or modulation of signal transduction cascade via unknown means is hypothesized. In silico protein docking analysis of other cellular receptors for any plausibility to play the role of receptor for LF revealed c-Met receptor showing strongest affinity for LF (H bond = 19; Free energy = −773.96), followed by nerve growth factor receptor (NGFR) and human epidermal growth factor receptor (HER)-1. The study summarizes the use of rLF or LeTx as therapeutic molecule against primary mammary ductal carcinoma cells and also the c-Met as potential alternative receptor for LF to mediate and modulate PA independent signal transduction.
Collapse
Affiliation(s)
- Rekha Khandia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, India
| | | | - Atul Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Harshad Murugkar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Hare Krishna Pradhan
- Ex-Avian Influenza National Consultant, Indian Office of WHO Consultant, Bhartiya Kala Kendra, New Delhi, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly Uttar Pradesh, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Sunil K Joshi
- Cellular Immunology Laboratory, Frank Reidy Research Center of Bioelectrics, College of Health Sciences, Old Dominion University Norfolk, VA USA
| |
Collapse
|
25
|
Greither T, Wedler A, Rot S, Keßler J, Kehlen A, Holzhausen HJ, Bache M, Würl P, Taubert H, Kappler M. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients. Int J Mol Sci 2017; 18:ijms18122648. [PMID: 29215551 PMCID: PMC5751250 DOI: 10.3390/ijms18122648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University, 06120 Halle (Saale), Germany.
| | - Alice Wedler
- Center for Reproductive Medicine and Andrology, Martin Luther University, 06120 Halle (Saale), Germany.
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Astrid Kehlen
- Institute of Medical Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Hans-Jürgen Holzhausen
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Peter Würl
- Department of General and Visceral Surgery, Hospital Dessau, 06847 Dessau-Roßlau, Germany.
| | - Helge Taubert
- Clinic of Urology, FA University Hospital Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
26
|
Zhong P, Gu X, Cheng R, Deng C, Meng F, Zhong Z. α vβ 3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int J Nanomedicine 2017; 12:7913-7921. [PMID: 29138558 PMCID: PMC5667790 DOI: 10.2147/ijn.s146505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibody-mertansine (DM1) conjugates (AMCs) are among the very few active targeting therapeutics that are approved or clinically investigated for treating various cancers including metastatic breast cancer. However, none of the AMCs are effective for the treatment of triple-negative breast cancers (TNBCs). Here, we show that cRGD-decorated, redox-activatable micellar mertansine prodrug (cRGD-MMP) can effectively target and deliver DM1 to αvβ3 integrin overexpressing MDA-MB-231 TNBC xenografts in nude mice, resulting in potent tumor growth inhibition. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed that cRGD-MMP had obvious targetability to MDA-MB-231 cells with a low half-maximal inhibitory concentration (IC50) of 0.18 μM, which was close to that of free DM1 and 2.2-fold lower than that of micellar mertansine prodrug (MMP; nontargeting control). The confocal microscopy studies demonstrated that cRGD-MMP mediated a clearly more efficient cellular uptake and intracellular release of doxorubicin (used as a fluorescent anticancer drug model) in MDA-MB-231 cells. Notably, cRGD-MMP loaded with 1,1′-dioctadecyltetramethyl indotricarbocyanine iodide (DiR; a hydrophobic near-infrared dye) was shown to quickly accumulate in the MDA-MB-231 tumor with strong DiR fluorescence from 2 to 24 h post injection. MMP loaded with DiR could also accumulate in the tumor, although significantly less than cRGD-MMP. The biodistribution studies revealed a high DM1 accumulation of 8.1%ID/g in the tumor for cRGD-MMP at 12 h post injection. The therapeutic results demonstrated that cRGD-MMP effectively suppressed MDA-MB-231 tumor growth at 1.6 mg DM1 equiv./kg without causing noticeable side effects, as shown by little body weight loss and histological analysis. This MMP has appeared as a promising platform for potent treatment of TNBCs.
Collapse
Affiliation(s)
- Ping Zhong
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Ru Cheng
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Chao Deng
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory.,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Ouyang W, Guo P, Fang H, Frucht DM. Anthrax lethal toxin rapidly reduces c-Jun levels by inhibiting c-Jun gene transcription and promoting c-Jun protein degradation. J Biol Chem 2017; 292:17919-17927. [PMID: 28893904 DOI: 10.1074/jbc.m117.805648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
Anthrax is a life-threatening disease caused by infection with Bacillus anthracis, which expresses lethal factor and the receptor-binding protective antigen. These two proteins combine to form anthrax lethal toxin (LT), whose proximal targets are mitogen-activated kinase kinases (MKKs). However, the downstream mediators of LT toxicity remain elusive. Here we report that LT exposure rapidly reduces the levels of c-Jun, a key regulator of cell proliferation and survival. Blockade of proteasome-dependent protein degradation with the 26S proteasome inhibitor MG132 largely restored c-Jun protein levels, suggesting that LT promotes degradation of c-Jun protein. Using the MKK1/2 inhibitor U0126, we further show that MKK1/2-Erk1/2 pathway inactivation similarly reduces c-Jun protein, which was also restored by MG132 pre-exposure. Interestingly, c-Jun protein rebounded to normal levels 4 h following U0126 exposure but not after LT exposure. The restoration of c-Jun in U0126-exposed cells was associated with increased c-Jun mRNA levels and was blocked by inactivation of the JNK1/2 signaling pathway. These results indicate that LT reduces c-Jun both by promoting c-Jun protein degradation via inactivation of MKK1/2-Erk1/2 signaling and by blocking c-Jun gene transcription via inactivation of MKK4-JNK1/2 signaling. In line with the known functions of c-Jun, LT also inhibited cell proliferation. Ectopic expression of LT-resistant MKK2 and MKK4 variants partially restored Erk1/2 and JNK1/2 signaling in LT-exposed cells, enabling the cells to maintain relatively normal c-Jun protein levels and cell proliferation. Taken together, these findings indicate that LT reduces c-Jun protein levels via two distinct mechanisms, thereby inhibiting critical cell functions, including cellular proliferation.
Collapse
Affiliation(s)
- Weiming Ouyang
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Pengfei Guo
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Hui Fang
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - David M Frucht
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
28
|
Longmate W, DiPersio CM. Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000Res 2017; 6:1612. [PMID: 29026524 PMCID: PMC5583736 DOI: 10.12688/f1000research.11877.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
While integrins were originally discovered as cell adhesion receptors, recent studies have reinforced the concept that integrins have central roles in cancer that extend far beyond controlling cell adhesion and migration. Indeed, as transmembrane cell surface receptors that occupy a critical position at the interface of cellular and extracellular interactions and are capable of both "inside-out" and "outside-in" signaling, integrins are uniquely poised to regulate the cell's ability to promote, sense, and react to changes in the tumor microenvironment. Moreover, integrins are present on all cell types in the tumor microenvironment, and they have important roles in regulating intercellular communication. Decades of promising pre-clinical studies have implicated certain integrins as attractive therapeutic targets in the cancer clinic. Nevertheless, results of the few clinical trials that target integrins in cancer have thus far been disappointing. Importantly, these clinical failures likely reflect the emerging complexity of individual and combinatorial integrin function within both tumor cells and other cell types of the tumor microenvironment, together with a need to explore integrin-targeting agents not just as monotherapies but also as adjuvants to more conventional radiotherapies or chemotherapies. In this review, we will examine recent advances toward understanding how integrins regulate cancer progression, including their roles in intercellular communication and modulation of the tumor microenvironment. Additionally, we will discuss factors that underlie the limited efficacy of current efforts to target integrins in the cancer clinic as well as potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Whitney Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.,Department of Surgery, Albany Medical College, Albany , New York, USA
| |
Collapse
|
29
|
Genome engineering in Bacillus anthracis using tyrosine site-specific recombinases. PLoS One 2017; 12:e0183346. [PMID: 28829806 PMCID: PMC5567495 DOI: 10.1371/journal.pone.0183346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Tyrosine site-specific recombinases (T-SSR) are polynucleotidyltransferases that catalyze cutting and joining reactions between short specific DNA sequences. We developed three systems for performing genetic modifications in Bacillus anthracis that use T-SSR and their cognate target sequences, namely Escherichia coli bacteriophage P1 Cre-loxP, Saccharomyces cerevisiae Flp-FRT, and a newly discovered IntXO-PSL system from B. anthracis plasmid pXO1. All three tyrosine recombinase systems were used for creation of a B. anthracis sporulation-deficient, plasmid-free strain deleted for ten proteases which had been identified by proteomic analysis as being present in the B. anthracis secretome. This strain was used successfully for production of various recombinant proteins, including several that are candidates for inclusion in improved anthrax vaccines. These genetic tools developed for DNA manipulation in B. anthracis were also used for construction of strains having chromosomal insertions of 1, 2, or 3 adjacent atxA genes. AtxA is a B. anthracis global transcriptional regulator required for the response of B. anthracis virulence factor genes to bicarbonate. We found a positive correlation between the atxA copy number and the expression level of the pagA gene encoding B. anthracis protective antigen, when strains were grown in a carbon dioxide atmosphere. These results demonstrate that the three T-SSR systems described here provide effective tools for B. anthracis genome editing. These T-SSR systems may also be applicable to other prokaryotes and to eukaryotes.
Collapse
|
30
|
Zhong P, Meng H, Qiu J, Zhang J, Sun H, Cheng R, Zhong Z. αvβ3 Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced stability, and effective inhibition of melanoma growth in vivo. J Control Release 2017; 259:176-186. [DOI: 10.1016/j.jconrel.2016.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 11/16/2022]
|
31
|
Zhong P, Qiu M, Zhang J, Sun H, Cheng R, Deng C, Meng F, Zhong Z. cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. NANOTECHNOLOGY 2017; 28:295103. [PMID: 28574851 DOI: 10.1088/1361-6528/aa76cc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Combinatorial chemotherapy, which has emerged as a promising treatment modality for intractable cancers, is challenged by a lack of tumor-targeting, robust and ratiometric dual drug release systems. Here, docetaxel-loaded cRGD peptide-decorated redox-activable micellar mertansine prodrug (DTX-cRGD-MMP) was developed for targeted and synergistic treatment of B16F10 melanoma-bearing C57BL/6 mice. DTX-cRGD-MMP exhibited a small size of ca. 49 nm, high DTX and DM1 loading, low drug leakage under physiological conditions, with rapid release of both DTX and DM1 under a cytoplasmic reductive environment. Notably, MTT and flow cytometry assays showed that DTX-cRGD-MMP brought about a synergistic antitumor effect to B16F10 cancer cells, with a combination index of 0.37 and an IC50 over 3- and 13-fold lower than cRGD-MMP (w/o DTX) and DTX-cRGD-Ms (w/o DM1) controls, respectively. In vivo studies revealed that DTX-cRGD-MMP had a long circulation time and a markedly improved accumulation in the B16F10 tumor compared with the non-targeting DTX-MMP control (9.15 versus 3.13% ID/g at 12 h post-injection). Interestingly, mice treated with DTX-cRGD-MMP showed almost complete growth inhibition of B16F10 melanoma, with tumor inhibition efficacy following an order of DTX-cRGD-MMP > DTX-MMP (w/o cRGD) > cRGD-MMP (w/o DTX) > DTX-cRGD-Ms (w/o DM1) > free DTX. Consequently, DTX-cRGD-MMP significantly improved the survival rates of B16F10 melanoma-bearing mice. Importantly, DTX-cRGD-MMP caused little adverse effects as revealed by mice body weights and histological analyses. The combination of two mitotic inhibitors, DTX and DM1, appears to be an interesting approach for effective cancer therapy.
Collapse
Affiliation(s)
- Ping Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu S, Ma Q, Fattah R, Bugge TH, Leppla SH. Anti-tumor activity of anthrax toxin variants that form a functional translocation pore by intermolecular complementation. Oncotarget 2017; 8:65123-65131. [PMID: 29029417 PMCID: PMC5630317 DOI: 10.18632/oncotarget.17729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/16/2017] [Indexed: 12/31/2022] Open
Abstract
Anthrax lethal toxin is a typical A-B type protein toxin secreted by Bacillus anthracis. Lethal factor (LF) is the catalytic A-subunit, a metalloprotease having MEKs as targets. LF relies on the cell-binding B-subunit, protective antigen (PA), to gain entry into the cytosol of target cells. PA binds to cell surface toxin receptors and is activated by furin protease to form an LF-binding-competent oligomer-PA pre-pore, which converts to a functional protein-conductive pore in the acidic endocytic vesicles, allowing translocation of LF into the cytosol. During PA pre-pore-to-pore conversion, the intermolecular salt bridge interactions between Lys397 and Asp426 on adjacent PA protomers play a critical role in positioning neighboring luminal Phe427 residues to form the Phe-clamp, an essential element of the PA functional pore. This essential intermolecular interaction affords the opportunity to create pairs of PA variants that depend on intermolecular complementation to form a functional pore. We have previously generated PA variants with furin-cleavage site replaced by substrate sequences of tumor-associated proteases, such as urokinase or MMPs. Here we show that PA-U2-K397Q, a urokinase-activated PA variant with Lys397 residue replaced by glutamine, and PA-L1-D426K, a MMP-activated PA variant with Asp426 changed to lysine, do not form functional pores both in vitro or in vivo unless they are used together. Further, the mixture of PA-U2-K397Q and PA-L1-D426K displayed potent anti-tumor activity in the presence of LF. Thus, PA-U2-K397Q and PA-L1-D426K form a novel intermolecular complementation system with toxin activation relying on the presence of two distinct tumor-associated proteases, i.e., urokinase and MMPs.
Collapse
Affiliation(s)
- Shihui Liu
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Ma
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rasem Fattah
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Chen KH, Liu S, Leysath CE, Miller-Randolph S, Zhang Y, Fattah R, Bugge TH, Leppla SH. Anthrax Toxin Protective Antigen Variants That Selectively Utilize either the CMG2 or TEM8 Receptors for Cellular Uptake and Tumor Targeting. J Biol Chem 2016; 291:22021-22029. [PMID: 27555325 DOI: 10.1074/jbc.m116.753301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding. Our previous study identified PAD4 variants having enhanced TEM8 binding specificity. To obtain PA variants that selectively bind to CMG2, here we performed phage display selections using magnetic beads having bound CMG2. We found that PA residue isoleucine 656 plays a critical role in PA binding to TEM8 but has a much lesser effect on PA binding to CMG2. We further characterized the role of residue 656 in distinguishing PA binding to CMG2 versus TEM8 by substituting it with the other 19 amino acids. Of the resulting variants, PA I656Q and PA I656V had significantly reduced activity on TEM8-expressing CHO cells but maintained their activity on CMG2-expressing CHO cells. The preference of these PA mutants for CMG2 over TEM8 was further demonstrated using mouse embryonic fibroblast cells and mice deficient in the CMG2 and/or the TEM8 receptors. The structural basis of the alterations in the receptor binding activities of these mutants is also discussed.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Shihui Liu
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Clinton E Leysath
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Sharmina Miller-Randolph
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Yi Zhang
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Rasem Fattah
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Thomas H Bugge
- the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| |
Collapse
|