1
|
Byrne AQ. What Can Frogs Teach Us about Resilience? Adaptive Renewal in Amphibian and Academic Ecosystems. Integr Comp Biol 2024; 64:795-806. [PMID: 38821517 DOI: 10.1093/icb/icae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Examples of resilience in nature give us hope amid a growing biodiversity crisis. While resilience has many definitions across disciplines, here I discuss resilience as the ability to continue to adapt and persist. Naturally, as biologists, we seek to uncover the underlying mechanisms that can help us explain the secrets of resilience across scales, from individuals to species to ecosystems and beyond. Perhaps we also ponder what the secrets to resilience are in our own lives, in our own research practices, and academic communities. In this paper, I highlight insights gained through studies of amphibian resilience following a global disease outbreak to uncover shared patterns and processes linked to resilience across amphibian communities. I also reflect on how classical resilience heuristics could be more broadly applied to these processes and to our own academic communities. Focusing on the amphibian systems that I have worked in-the Golden Frogs of Panama (Atelopus zeteki/varius) and the Mountain Yellow-Legged Frogs of California (Rana muscosa/sierrae)-I highlight shared and unique characteristics of resilience across scales and systems and discuss how these relate to adaptive renewal cycles. Reflecting on this work and previous resilience scholarship, I also offer my own thoughts about academia and consider what lessons we could take from mapping our own adaptive trajectories and addressing threats to our own community resilience.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Schrock SA, Walsman JC, DeMarchi J, LeSage EH, Ohmer ME, Rollins-Smith LA, Briggs CJ, Richards-Zawacki CL, Woodhams DC, Knapp RA, Smith TC, Haddad CF, Becker CG, Johnson PT, Wilber MQ. Do fungi look like macroparasites? Quantifying the patterns and mechanisms of aggregation for host-fungal parasite relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.609018. [PMID: 39257819 PMCID: PMC11384020 DOI: 10.1101/2024.08.29.609018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes. To address these gaps, we characterized aggregation of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power Law, we found Bd intensity distributions were more aggregated than macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase-invasion, post-invasion, and enzootic-and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and is distinct from aggregation patterns in macroparasites, and contains signatures of potential biological processes of amphibian-Bd systems. Our work lays a foundation to unite host-fungal dynamics under a common theoretical framework and inform future modeling approaches that may elucidate host-fungus interactions.
Collapse
Affiliation(s)
- Sarah A.R. Schrock
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Jason C. Walsman
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Joseph DeMarchi
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Emily H. LeSage
- Biology Department, Skidmore College, Saratoga Springs, NY, USA
| | - Michel E.B. Ohmer
- Department of Biology, University of Mississippi, University, MS, USA
| | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cheryl J. Briggs
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | | | | | - Roland A. Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Thomas C. Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Célio F.B. Haddad
- Department of Biodiversity and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pieter T.J. Johnson
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mark Q. Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| |
Collapse
|
3
|
Adams AJ, Kamoroff C, Daniele NR, Grasso RL, Halstead BJ, Kleeman PM, Mengelt C, Powelson K, Seaborn T, Goldberg CS. From eDNA to decisions using a multi-method approach to restoration planning in streams. Sci Rep 2024; 14:14335. [PMID: 38906892 PMCID: PMC11192730 DOI: 10.1038/s41598-024-64612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Reintroduction efforts are increasingly used to mitigate biodiversity losses, but are frequently challenged by inadequate planning and uncertainty. High quality information about population status and threats can be used to prioritize reintroduction and restoration efforts and can transform ad hoc approaches into opportunities for improving conservation outcomes at a landscape scale. We conducted comprehensive environmental DNA (eDNA) and visual encounter surveys to determine the distribution of native and non-native aquatic species in two high-priority watersheds to address key uncertainties-such as the distribution of threats and the status of existing populations-inherent in restoration planning. We then used these occurrence data to develop a menu of potential conservation actions and a decision framework to benefit an endangered vertebrate (foothill yellow-legged frog, Rana boylii) in dynamic stream systems. Our framework combines the strengths of multiple methods, allowing managers and conservation scientists to incorporate conservation science and site-specific knowledge into the planning process to increase the likelihood of achieving conservation goals.
Collapse
Affiliation(s)
- A J Adams
- School of the Environment, Washington State University, Pullman, WA, 99164, USA.
- Earth Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| | - C Kamoroff
- Resource Management and Science, Yosemite National Park, El Portal, CA, 95318, USA
- Stillwater Sciences, Davis, CA, 95618, USA
| | - N R Daniele
- Resource Management and Science, Yosemite National Park, El Portal, CA, 95318, USA
| | - R L Grasso
- Resource Management and Science, Yosemite National Park, El Portal, CA, 95318, USA
| | - B J Halstead
- Western Ecological Research Center, Dixon Field Station, U.S. Geological Survey, Dixon, CA, 95620, USA
| | - P M Kleeman
- Western Ecological Research Center, Point Reyes Field Station, U.S. Geological Survey, Point Reyes Station, CA, 94956, USA
| | - C Mengelt
- Ecosystems Mission Area, U.S. Geological Survey, Modoc Hall, Sacramento, CA, 95819, USA
| | - K Powelson
- Tahoe National Forest, U.S. Forest Service, Nevada City, CA, 94949, USA
| | - T Seaborn
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND, 58047, USA
| | - C S Goldberg
- School of the Environment, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
Lapp S, Smith TC, Knapp RA, Lindauer A, Kitzes J. Aquatic Soundscape Recordings Reveal Diverse Vocalizations and Nocturnal Activity of an Endangered Frog. Am Nat 2024; 203:618-627. [PMID: 38635364 DOI: 10.1086/729422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractAutonomous sensors provide opportunities to observe organisms across spatial and temporal scales that humans cannot directly observe. By processing large data streams from autonomous sensors with deep learning methods, researchers can make novel and important natural history discoveries. In this study, we combine automated acoustic monitoring with deep learning models to observe breeding-associated activity in the endangered Sierra Nevada yellow-legged frog (Rana sierrae), a behavior that current surveys do not measure. By deploying inexpensive hydrophones and developing a deep learning model to recognize breeding-associated vocalizations, we discover three undocumented R. sierrae vocalization types and find an unexpected temporal pattern of nocturnal breeding-associated vocal activity. This study exemplifies how the combination of autonomous sensor data and deep learning can shed new light on species' natural history, especially during times or in locations where human observation is limited or impossible.
Collapse
|
5
|
Wilber MQ, DeMarchi JA, Briggs CJ, Streipert S. Rapid Evolution of Resistance and Tolerance Leads to Variable Host Recoveries following Disease-Induced Declines. Am Nat 2024; 203:535-550. [PMID: 38635360 DOI: 10.1086/729437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.
Collapse
|
6
|
Zhang W, Zhang W, Teng M, Xu J, Wang J, Yang J, Liu Y. The effect and mechanism of variable particle size microplastics and levofloxacin on the neurotoxicity of Rana nigromaculata based on the microorganism-intestine-brain axis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120329. [PMID: 38373375 DOI: 10.1016/j.jenvman.2024.120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs) usually appear in the aquatic environment as complex pollutants in combination with other environmental pollutants, such as levofloxacin (LVFX). After a 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, LVFX was neurotoxic to Rana nigromaculata tadpoles. The order of the effects of the exposure treatment on tadpole behavior was: LVFX-MP3>LVFX-MP1>LVFX-MP2 ≥ LVFX. Results of transcriptome analysis of tadpole brain tissue showed that LVFX in combination with 0.10 and 10.00 μm MP interferes with the nervous system through the cell adhesion molecules pathway. Interestingly, the order of effects of the co-exposure on oxidative stress in the intestine was inconsistent with that of tadpole behavior. We found that Paraacteroides might be a microplastic indicator species for the gut microbiota of aquatic organisms. The results of the targeted metabolism of neurotransmitters in the intestine suggest that in the LVFX-MP2 treatment, LVFX alleviated the intestinal microbiota disorder caused by 1.00 μm MP, by regulating intestinal microbiota participating in the TCA cycle VI and gluconeogenesis and tetrapyrrole biosynthesis I, while downregulating Met and Orn, and upregulating 5HIAA, thereby easing the neurotoxicity to tadpoles exposed to LVFX-MP2. This work is of great significance for the comprehensive assessment of the aquatic ecological risks of microplastics-antibiotic compound pollutants.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenjing Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jiashu Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiali Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiahang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuxi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Berger L, Skerratt LF, Kosch TA, Brannelly LA, Webb RJ, Waddle AW. Advances in Managing Chytridiomycosis for Australian Frogs: Gradarius Firmus Victoria. Annu Rev Anim Biosci 2024; 12:113-133. [PMID: 38358840 DOI: 10.1146/annurev-animal-021122-100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
Collapse
Affiliation(s)
- Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Laura A Brannelly
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Rebecca J Webb
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Anthony W Waddle
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
- Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
8
|
Hawley L, Smalling KL, Glaberman S. Critical review of the phytohemagglutinin assay for assessing amphibian immunity. CONSERVATION PHYSIOLOGY 2023; 11:coad090. [PMID: 38090122 PMCID: PMC10714196 DOI: 10.1093/conphys/coad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 04/26/2024]
Abstract
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, including genetics, stress, pollution, and climate change can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the laboratory and in the field. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Collapse
Affiliation(s)
- Lauren Hawley
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Kelly L Smalling
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, NJ, USA
| | - Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
10
|
Hollanders M, Grogan LF, McCallum HI, Brannelly LA, Newell DA. Limited impact of chytridiomycosis on juvenile frogs in a recovered species. Oecologia 2023:10.1007/s00442-023-05406-w. [PMID: 37349661 DOI: 10.1007/s00442-023-05406-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.
Collapse
Affiliation(s)
- Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | - Laura F Grogan
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
11
|
Ghose SL, Yap TA, Byrne AQ, Sulaeman H, Rosenblum EB, Chan-Alvarado A, Chaukulkar S, Greenbaum E, Koo MS, Kouete MT, Lutz K, McAloose D, Moyer AJ, Parra E, Portik DM, Rockney H, Zink AG, Blackburn DC, Vredenburg VT. Continent-wide recent emergence of a global pathogen in African amphibians. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1069490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
IntroductionEmerging infectious diseases are increasingly recognized as a global threat to wildlife. Pandemics in amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have resulted in biodiversity loss at a global scale. Genomic data suggest a complex evolutionary history of Bd lineages that vary in pathogenicity. Africa harbors a significant proportion of global amphibian biodiversity, and multiple Bd lineages are known to occur there; yet, despite the decline of many host species, there are currently no described Bd-epizootics. Here, we describe the historical and recent biogeographical spread of Bd and assess its risk to amphibians across the continent of Africa.MethodsWe provide a 165-year view of host-pathogen interactions by (i) employing a Bd assay to test 4,623 specimens (collected 1908–2013); (ii) compiling 12,297 published Bd records (collected 1852–2017); (iii) comparing the frequency of Bd-infected amphibians through time by both country and region; (iv) genotyping Bd lineages; (v) histologically identifying evidence of chytridiomycosis, and (vi) using a habitat suitability model to assess future Bd risk.ResultsWe found a pattern of Bd emergence beginning largely at the turn of the century. From 1852–1999, we found low Bd prevalence (3.2% overall) and limited geographic spread, but after 2000 we documented a sharp increase in prevalence (18.7% overall), wider geographic spread, and multiple Bd lineages that may be responsible for emergence in different regions. We found that Bd risk to amphibians was highest in much of eastern, central, and western Africa.DiscussionOur study documents a largely overlooked yet significant increase in a fungal pathogen that could pose a threat to amphibians across an entire continent. We emphasize the need to bridge historical and contemporary datasets to better describe and predict host-pathogen dynamics over larger temporal scales.
Collapse
|
12
|
Hollanders M, Grogan LF, Nock CJ, McCallum HI, Newell DA. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023. [PMID: 36054297 DOI: 10.5061/dryad.g1jwstqtb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.
Collapse
Affiliation(s)
- Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Laura F Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Catherine J Nock
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
13
|
Hollanders M, Grogan LF, Nock CJ, McCallum HI, Newell DA. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023. [PMID: 36054297 DOI: 10.5281/zenodo.6981761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.
Collapse
Affiliation(s)
- Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Laura F Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Catherine J Nock
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
14
|
Hollanders M, Grogan LF, Nock CJ, McCallum HI, Newell DA. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2724. [PMID: 36054297 PMCID: PMC10078584 DOI: 10.1002/eap.2724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 05/15/2023]
Abstract
Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.
Collapse
Affiliation(s)
- Matthijs Hollanders
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Catherine J. Nock
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - David A. Newell
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| |
Collapse
|
15
|
Kamoroff C, Goldberg CS, Grasso RL. Rapid detection of amphibian chytrid fungus Batrachochytrium dendrobatidis using in situ DNA extraction and a handheld mobile thermocycler. DISEASES OF AQUATIC ORGANISMS 2022; 152:99-108. [PMID: 36519681 DOI: 10.3354/dao03708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The amphibian chytrid fungus (Bd) has caused declines and some extinctions of amphibian populations worldwide. Early and accurate Bd detection is essential for management of susceptible anurans. We analyzed the effectiveness of in situ DNA extraction with a handheld mobile quantitative PCR (qPCR) thermocycler to detect Bd on frog skin swabs and in water samples using environmental DNA (eDNA). We collected duplicate eDNA samples and skin swabs from 3 Bd-positive Rana sierrae populations. We processed one set of samples using a field protocol (a handheld thermocycler) and the other half using a standard lab protocol. We detected Bd DNA in all R. sierrae swabbed using both the field and lab protocols. We also detected Bd DNA in eDNA samples at all sites, although the field and lab protocols failed to detect Bd eDNA at separate singular sites; results from the field and lab eDNA protocol did not match. The probability of detecting Bd DNA in the technical replicates was lower for the field protocol than the lab protocol, suggesting the field protocol has lower sensitivity and may not detect low quantities of DNA. Our results suggest that the field extraction protocol using a handheld qPCR platform is a promising tool for rapid detection of Bd in susceptible amphibian populations, yielding accurate results in less than 60 min. However, the applied field protocol may be prone to false negatives when analyzing low-quantity DNA samples such as eDNA water samples or frog swabs with low pathogen loads.
Collapse
Affiliation(s)
- Colleen Kamoroff
- Resources Management and Science, Yosemite National Park, CA 95318, USA
| | | | | |
Collapse
|
16
|
Adams AJ, Bushell J, Grasso RL. To treat or not to treat? Experimental pathogen exposure, treatment, and release of a threatened amphibian. Ecosphere 2022. [DOI: 10.1002/ecs2.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Andrea J. Adams
- Resources Management and Science Division Yosemite National Park El Portal California USA
- Earth Research Institute University of California Santa Barbara California USA
| | | | - Robert L. Grasso
- Resources Management and Science Division Yosemite National Park El Portal California USA
| |
Collapse
|
17
|
Wilber MQ, Knapp RA, Smith TC, Briggs CJ. Host density has limited effects on pathogen invasion, disease-induced declines and within-host infection dynamics across a landscape of disease. J Anim Ecol 2022; 91:2451-2464. [PMID: 36285540 DOI: 10.1111/1365-2656.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife populations following pathogen invasion. While the effects of host density on pathogen transmission have been extensively studied, these studies are dominated by theoretical analyses and small-scale experiments. This focus leads to an incomplete picture regarding how host density drives observed variability in disease outcomes in the field. 2. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders of magnitude in host density. We used these data to test the effects of host density on three outcomes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis (Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak, the magnitude of the host population-level decline following an outbreak and within-host infection dynamics that drive population-level outcomes in amphibian-pathogen systems. 3. Based on previous small-scale transmission experiments, we expected that populations with higher densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed. 4. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd invasion, the magnitude of population decline following Bd invasion and the dynamics of within-host infection intensity. Environmental conditions, such as summer temperature, winter severity and the presence of pathogen reservoirs, were more predictive of variability in disease outcomes. 5. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments to observed disease trajectories in the field and provide strong evidence that variability in host density does not necessarily drive variability in host population responses following pathogen arrival. In an applied context, we show that feedbacks between host density and disease will not necessarily affect the success of reintroduction efforts in amphibian-Bd systems of conservation concern.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Roland A Knapp
- Earth Research Institute, University of California, Santa Barbara, California, USA.,Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Thomas C Smith
- Earth Research Institute, University of California, Santa Barbara, California, USA.,Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
18
|
Womack MC, Steigerwald E, Blackburn DC, Cannatella DC, Catenazzi A, Che J, Koo MS, McGuire JA, Ron SR, Spencer CL, Vredenburg VT, Tarvin RD. State of the Amphibia 2020: A Review of Five Years of Amphibian Research and Existing Resources. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2022005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Molly C. Womack
- Department of Biology, Utah State University, Logan, Utah 84322; . ORCID: 0000-0002-3346-021X
| | - Emma Steigerwald
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - David C. Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611; . ORCID: 0000-0002-1810-9886
| | - David C. Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712; . ORCID: 0000-0001-8675-0520
| | | | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; . ORCID: 0000-0003-4246-6
| | - Michelle S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador; . ORCID: 0000-0001-6300-9350
| | - Carol L. Spencer
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Vance T. Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| |
Collapse
|
19
|
Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ. Landscape genetics of a sub-alpine toad: climate change predicted to induce upward range shifts via asymmetrical migration corridors. Heredity (Edinb) 2022; 129:257-272. [PMID: 36076071 PMCID: PMC9613655 DOI: 10.1038/s41437-022-00561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Climate change is expected to have a major hydrological impact on the core breeding habitat and migration corridors of many amphibians in the twenty-first century. The Yosemite toad (Anaxyrus canorus) is a species of meadow-specializing amphibian endemic to the high-elevation Sierra Nevada Mountains of California. Despite living entirely on federal lands, it has recently faced severe extirpations, yet our understanding of climatic influences on population connectivity is limited. In this study, we used a previously published double-digest RADseq dataset along with numerous remotely sensed habitat features in a landscape genetics framework to answer two primary questions in Yosemite National Park: (1) Which fine-scale climate, topographic, soil, and vegetation features most facilitate meadow connectivity? (2) How is climate change predicted to influence both the magnitude and net asymmetry of genetic migration? We developed an approach for simultaneously modeling multiple toad migration paths, akin to circuit theory, except raw environmental features can be separately considered. Our workflow identified the most likely migration corridors between meadows and used the unique cubist machine learning approach to fit and forecast environmental models of connectivity. We identified the permuted modeling importance of numerous snowpack-related features, such as runoff and groundwater recharge. Our results highlight the importance of considering phylogeographic structure, and asymmetrical migration in landscape genetics. We predict an upward elevational shift for this already high-elevation species, as measured by the net vector of anticipated genetic movement, and a north-eastward shift in species distribution via the network of genetic migration corridors across the park.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
- FamilyTreeDNA, Gene by Gene, 1445 N Loop W, Houston, TX, 77008, USA.
| | - Amy G Vandergast
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, San Diego, CA, 92101, USA
| | - Steven M Ostoja
- USDA California Climate Hub, Agricultural Research Service, John Muir Institute of the Environment, University of California, Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Andres Aguilar
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
20
|
Bending the curve: Simple but massive conservation action leads to landscape-scale recovery of amphibians. Proc Natl Acad Sci U S A 2022; 119:e2123070119. [PMID: 36215493 PMCID: PMC9586276 DOI: 10.1073/pnas.2123070119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The global decline of amphibians is part of the global freshwater biodiversity crisis. In human-dominated landscapes, amphibian population declines are driven by multiple stressors. A better understanding of the benefits of conservation action can contribute to the halting and reversal of population declines. Our analysis of 20 y of monitoring data shows that the large-scale construction of hundreds of new ponds in northern Switzerland has halted or even reversed declining trends for the majority of amphibian species, including multiple Red-Listed species undergoing declines at the national level. This conservation success suggests that increasing habitat availability benefits threatened amphibian species despite the continued presence of stressors known to negatively affect populations. Success stories are rare in conservation science, hindered also by the research-implementation gap, where scientific insights rarely inform practice and practical implementation is rarely evaluated scientifically. Amphibian population declines, driven by multiple stressors, are emblematic of the freshwater biodiversity crisis. Habitat creation is a straightforward conservation action that has been shown to locally benefit amphibians, as well as other taxa, but does it benefit entire amphibian communities at large spatial scales? Here, we evaluate a landscape-scale pond-construction program by fitting dynamic occupancy models to 20 y of monitoring data for 12 pond-breeding amphibian species in the Swiss state Aargau, a densely populated area of the Swiss lowlands with intensive land use. After decades of population declines, the number of occupied ponds increased statewide for 10 out of 12 species, while one species remained stable and one species further declined between 1999 and 2019. Despite regional differences, in 77% of all 43 regional metapopulations, the colonization and subsequent occupation of new ponds stabilized (14%) or increased (63%) metapopulation size. Likely mechanisms include increased habitat availability, restoration of habitat dynamics, and increased connectivity between ponds. Colonization probabilities reflected species-specific preferences for characteristics of ponds and their surroundings, which provides evidence-based information for future pond construction targeting specific species. The relatively simple but landscape-scale and persistent conservation action of constructing hundreds of new ponds halted declines and stabilized or increased the state-wide population size of all but one species, despite ongoing pressures from other stressors in a human-dominated landscape.
Collapse
|
21
|
Cook K, Pope K, Cummings A, Piovia‐Scott J. In situ treatment of juvenile frogs for disease can reverse population declines. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kimberly Cook
- School of Biological Sciences Washington State University Vancouver WA USA
| | - Karen Pope
- Pacific Southwest Research Station United States Forest Service California USA
| | - Adam Cummings
- Pacific Southwest Research Station United States Forest Service California USA
| | - Jonah Piovia‐Scott
- School of Biological Sciences Washington State University Vancouver WA USA
| |
Collapse
|
22
|
Garnham JI, Bower DS, Stockwell MP, Pickett EJ, Pollard CJ, Clulow J, Mahony MJ. Seasonal variation in the prevalence of a fungal pathogen and unexpected clearance from infection in a susceptible frog species. DISEASES OF AQUATIC ORGANISMS 2022; 148:1-11. [PMID: 35142293 DOI: 10.3354/dao03628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is a primary driver for amphibian population declines and extinctions worldwide. For highly susceptible species, such as the green and golden bell frog Litoria aurea, large numbers of Bd-related mortalities are thought to occur during the colder season (winter), when low temperatures favour the growth of the pathogen. However, extant L. aurea populations are persisting with Bd. We measured Bd prevalence and infection levels of wild L. aurea using capture-mark-recapture and radio-tracking methods. Using this information, we sought to determine host and environmental correlates of Bd prevalence and infection load. Mean ± SE infection load was higher in frogs sampled in autumn (431.5 ± 310.4 genomic equivalents; GE) and winter (1147.5 ± 735.8 GE), compared to spring (21.8 ± 19.3 GE) and summer (0.9 ± 0.8 GE). Furthermore, prevalence of Bd infection in L. aurea was highest in winter (43.6%; 95% CI 33.1-54.7%) and lowest in summer (11.2%; 95% CI 6.8-17.9%). Both prevalence and infection load decreased with increasing temperature. Seven frogs cleared their fungal infection during the coolest months when Bd prevalence was highest; however, these clearances were not permanent, as 5 frogs became infected again. Understanding the factors that allow amphibians to clear their Bd infections when temperatures are optimal for Bd growth presents the potential for manipulating such factors and provides an important step in future research.
Collapse
Affiliation(s)
- James I Garnham
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Hardy BM, Muths E, Koons DN. Context-dependent variation in persistence of host populations in the face of disease. J Anim Ecol 2022; 91:282-286. [PMID: 35112351 DOI: 10.1111/1365-2656.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Research Highlight: Valenzuela-Sánchez, A., Azat, C., Cunningham, A. A., Delgado, S., Bacigalupe, L. D., Beltrand, J., Serrano, J. M., Sentenac, H., Haddow, N., Toledo, V., Schmidt, B. R., & Cayuela, H. (2022). Interpopulation differences in male reproductive effort drive the population dynamics of a host exposed to an emerging fungal pathogen. Journal of Animal Ecology, 00, 1- 12. https://doi.org/10.1111/1365-2656.13603. Understanding the nuances of population persistence in the face of a stressor can help predict extinction risk and guide conservation actions. However, the exact mechanisms driving population stability may not always be known. In this paper, Valenzuela-Sánchez et al. (2022) integrate long-term mark-recapture data, focal measurements of reproductive effort, a population matrix model and inferences on life-history variation to reveal differences in demographic response to disease in a susceptible frog species (Rhinoderma darwinii). Valenzuela-Sánchez et al. found that demographic compensation via recruitment explained the positive population growth rate in their high disease prevalence population whereas the low disease prevalence population did not compensate and thus had decreasing population growth. Compensatory recruitment was likely due to the high probability of males brooding, and the high number of brooded larvae in the high prevalence population compared to low prevalence and disease-free populations. Valenzuela-Sánchez et al. also document faster generation times in the high prevalence population, which may indicate a faster life history that may be contributing to the population's ability to compensate for reduced survival. Lastly, the authors find a positive relationship between disease prevalence and the proportion of juveniles in a given population that suggest that there may be a threshold for disease prevalence that triggers increased reproductive effort. Altogether, their study provides novel support for increased reproductive effort as the pathway for compensatory recruitment leading to increasing population growth despite strong negative effects of disease on adult survival. Their results also caution the overgeneralization of the effects of stressors (e.g. disease) on population dynamics, where context-dependent responses may differ among host populations of a given species.
Collapse
Affiliation(s)
- Bennett M Hardy
- Department of Fish, Wildlife and Conservation Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - David N Koons
- Department of Fish, Wildlife and Conservation Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
Knapp RA, Joseph MB, Smith TC, Hegeman EE, Vredenburg VT, Erdman Jr JE, Boiano DM, Jani AJ, Briggs CJ. Effectiveness of antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog. PeerJ 2022; 10:e12712. [PMID: 35036095 PMCID: PMC8742549 DOI: 10.7717/peerj.12712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
The recently-emerged amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has had an unprecedented impact on global amphibian populations, and highlights the urgent need to develop effective mitigation strategies. We conducted in-situ antifungal treatment experiments in wild populations of the endangered mountain yellow-legged frog during or immediately after Bd-caused mass die-off events. The objective of treatments was to reduce Bd infection intensity ("load") and in doing so alter frog-Bd dynamics and increase the probability of frog population persistence despite ongoing Bd infection. Experiments included treatment of early life stages (tadpoles and subadults) with the antifungal drug itraconazole, treatment of adults with itraconazole, and augmentation of the skin microbiome of subadults with Janthinobacterium lividum, a commensal bacterium with antifungal properties. All itraconazole treatments caused immediate reductions in Bd load, and produced longer-term effects that differed between life stages. In experiments focused on early life stages, Bd load was reduced in the 2 months immediately following treatment and was associated with increased survival of subadults. However, Bd load and frog survival returned to pre-treatment levels in less than 1 year, and treatment had no effect on population persistence. In adults, treatment reduced Bd load and increased frog survival over the entire 3-year post-treatment period, consistent with frogs having developed an effective adaptive immune response against Bd. Despite this protracted period of reduced impacts of Bd on adults, recruitment into the adult population was limited and the population eventually declined to near-extirpation. In the microbiome augmentation experiment, exposure of subadults to a solution of J. lividum increased concentrations of this potentially protective bacterium on frogs. However, concentrations declined to baseline levels within 1 month and did not have a protective effect against Bd infection. Collectively, these results indicate that our mitigation efforts were ineffective in causing long-term changes in frog-Bd dynamics and increasing population persistence, due largely to the inability of early life stages to mount an effective immune response against Bd. This results in repeated recruitment failure and a low probability of population persistence in the face of ongoing Bd infection.
Collapse
Affiliation(s)
- Roland A. Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, United States
- Earth Research Institute, University of California, Santa Barbara, California, United States
| | | | - Thomas C. Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, United States
- Earth Research Institute, University of California, Santa Barbara, California, United States
| | - Ericka E. Hegeman
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, United States
- Earth Research Institute, University of California, Santa Barbara, California, United States
| | - Vance T. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California, United States
| | - James E. Erdman Jr
- California Department of Fish and Wildlife, Bishop, California, United States
| | - Daniel M. Boiano
- Sequoia and Kings Canyon National Parks, National Park Service, Three Rivers, California, United States
| | - Andrea J. Jani
- Pacific Biosciences Research Center, University of Hawai’i at Mànoa, Honolulu, Hawai’i, United States
| | - Cheryl J. Briggs
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, United States
| |
Collapse
|
25
|
Cowgill M, Zink AG, Sparagon W, Yap TA, Sulaeman H, Koo MS, Vredenburg VT. Social Behavior, Community Composition, Pathogen Strain, and Host Symbionts Influence Fungal Disease Dynamics in Salamanders. Front Vet Sci 2021; 8:742288. [PMID: 34938792 PMCID: PMC8687744 DOI: 10.3389/fvets.2021.742288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae, and the arboreal salamander, Aneides lugubris. We (1) conduct a retrospective Bd-infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% (B. luciae and A. lugubris, respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd-caused mortality (88 and 71% for B. luciae and A. lugubris, respectively). Our GLM revealed that Bd-infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics.
Collapse
Affiliation(s)
- Mae Cowgill
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Wesley Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, UUniversity of Hawai'i at Mānoa, HI, United States
| | - Tiffany A Yap
- Center for Biological Diversity, Oakland, CA, United States
| | - Hasan Sulaeman
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
26
|
Overwinter behavior, movement, and survival in a recently reintroduced, endangered amphibian, Rana muscosa. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Ellison S, Knapp R, Vredenburg V. Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California. ISME COMMUNICATIONS 2021; 1:45. [PMID: 37938625 PMCID: PMC9723788 DOI: 10.1038/s43705-021-00047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 05/29/2023]
Abstract
The amphibian skin microbiome has been the focus of numerous studies because of the protective effects that some bacteria provide against the pathogenic fungus Batrachochytrium dendrobatidis, which has caused a global panzootic among amphibians. However, the mechanisms driving community structure and function in the amphibian skin microbiome are still poorly understood, and longitudinal analyses of the skin microbiome have not yet been conducted in wild populations. In this study, we investigate longitudinal patterns in the skin microbiome of 19 individually marked adult frogs from two wild populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae), sampled over the course of 2 years. We found that individuals with low bacterial diversity (dominated by order Burkhorderiales) had significantly more stable bacterial communities than those with higher diversity. Amplicon sequence variants (ASVs) with high relative abundance were significantly less transient than those with low relative abundance, and ASVs with intermediate-level relative abundances experienced the greatest volatility over time. Based on these results, we suggest that efforts to develop probiotic treatments to combat B. dendrobatidis should focus on bacteria that are found at high relative abundances in some members of a population, as these strains are more likely to persist and remain stable in the long term.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, San Francisco, California, USA.
| | - Roland Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
| | - Vance Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| |
Collapse
|
28
|
Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB, McFadden M, Gilbert DJ, Grogan LF. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Emily P. Hoffmann
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - David A. Newell
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Michael McFadden
- Taronga Conservation Society Australia Mosman New South Wales Australia
| | - Deon J. Gilbert
- Wildlife Conservation and Science Zoos Victoria Parkville Victoria Australia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Southport Queensland Australia
| |
Collapse
|
29
|
Fisher MC, Pasmans F, Martel A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu Rev Microbiol 2021; 75:673-693. [PMID: 34351790 DOI: 10.1146/annurev-micro-052621-124212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London W2 1PG, United Kingdom;
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
30
|
Olson DH, Ronnenberg KL, Glidden CK, Christiansen KR, Blaustein AR. Global Patterns of the Fungal Pathogen Batrachochytrium dendrobatidis Support Conservation Urgency. Front Vet Sci 2021; 8:685877. [PMID: 34336978 PMCID: PMC8322974 DOI: 10.3389/fvets.2021.685877] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a skin pathogen that can cause the emerging infectious disease chytridiomycosis in susceptible species. It has been considered one of the most severe threats to amphibian biodiversity. We aimed to provide an updated compilation of global Bd occurrences by host taxon and geography, and with the larger global Bd dataset we reanalyzed Bd associations with environmental metrics at the world and regional scales. We also compared our Bd data compilation with a recent independent assessment to provide a more comprehensive count of species and countries with Bd occurrences. Bd has been detected in 1,375 of 2,525 (55%) species sampled, more than doubling known species infections since 2013. Bd occurrence is known from 93 of 134 (69%) countries at this writing; this compares to known occurrences in 56 of 82 (68%) countries in 2013. Climate-niche space is highly associated with Bd detection, with different climate metrics emerging as key predictors of Bd occurrence at regional scales; this warrants further assessment relative to climate-change projections. The accretion of Bd occurrence reports points to the common aims of worldwide investigators to understand the conservation concerns for amphibian biodiversity in the face of potential disease threat. Renewed calls for better mitigation of amphibian disease threats resonate across continents with amphibians, especially outside Asia. As Bd appears to be able to infect about half of amphibian taxa and sites, there is considerable room for biosecurity actions to forestall its spread using both bottom-up community-run efforts and top-down national-to-international policies. Conservation safeguards for sensitive species and biodiversity refugia are continuing priorities.
Collapse
Affiliation(s)
- Deanna H Olson
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | | | - Kelly R Christiansen
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
31
|
Rothstein AP, Byrne AQ, Knapp RA, Briggs CJ, Voyles J, Richards-Zawacki CL, Rosenblum EB. Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proc Biol Sci 2021; 288:20210782. [PMID: 34157877 PMCID: PMC8220259 DOI: 10.1098/rspb.2021.0782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.
Collapse
Affiliation(s)
- Andrew P Rothstein
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA.,Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Cheryl J Briggs
- Earth Research Institute, University of California, Santa Barbara, CA, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
32
|
Schmidt BR, BĂncilĂ RI, Hartel T, Grossenbacher K, Schaub M. Shifts in amphibian population dynamics in response to a change in the predator community. Ecosphere 2021. [DOI: 10.1002/ecs2.3528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 ZurichCH‐8057Switzerland
- Info fauna karch UniMail, Bâtiment G, Bellevaux 51 NeuchatelCH‐2000Switzerland
| | - Raluca I. BĂncilĂ
- “Emil Racoviţă” Institute of Speleology of Romanian Academy 13 Sptembrie Road, No. 13 Bucharest050711Romania
- Hungarian Department of Biology and Ecology and Center of Systems Biology, Biodiversity and Bioresources Babes‐Bolyai University Cluj‐Napoca Romania
| | - Tibor Hartel
- Hungarian Department of Biology and Ecology and Center of Systems Biology, Biodiversity and Bioresources Babes‐Bolyai University Cluj‐Napoca Romania
| | | | | |
Collapse
|
33
|
Rollins-Smith LA, Le Sage EH. Batrachochytrium fungi: stealth invaders in amphibian skin. Curr Opin Microbiol 2021; 61:124-132. [PMID: 33964650 DOI: 10.1016/j.mib.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Amphibian populations around the world have been affected by two pathogenic fungi within the phylum Chytridiomycota. Batrachochytrium dendrobatidis (Bd) has infected hundreds of species and led to widespread declines and some species extinctions. Batrachochytrium salamandrivorans (Bsal) has devastated some native European salamanders, especially the iconic fire salamanders (Salamandra salamandra). Comparative genomic studies show that Bd is more diverse and widespread than previously thought, and global lineages occur together allowing for the development of hybrid lineages. New studies raise the concern of greater pathogenesis if both Bd and Bsal infect the same host. Although amphibians possess robust immune defenses, co-infected and many single-infected hosts seem unable to mount effective immune responses. A strong defense may actually be harmful. Analysis of Bd and Bsal secretions documents small metabolites that signal high density to limit their growth and to suppress adaptive immune defenses, thus enabling a stealth presence in the skin compartment.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Emily H Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
34
|
Tiberti R, Buchaca T, Boiano D, Knapp RA, Pou Rovira Q, Tavecchia G, Ventura M, Tenan S. Alien fish eradication from high mountain lakes by multiple removal methods: Estimating residual abundance and eradication probability in open populations. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rocco Tiberti
- Water Research Institute ‐ National Research Council (IRSA‐CNR) Verbania Italy
| | - Teresa Buchaca
- Integrative Freshwater Ecology GroupCentre for Advanced Studies of Blanes (CEAB‐CSIC) Blanes Spain
| | - Daniel Boiano
- National Park Service Sequoia and Kings Canyon National Parks Three Rivers CA USA
| | - Roland A. Knapp
- Sierra Nevada Aquatic Research Laboratory University of California Mammoth Lakes CA USA
| | - Quim Pou Rovira
- SorellóEstudis al Medi AquàticParc Científic i Tecnològic de la Universitat de Girona 17003 Girona Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit (GEDA) IMEDEA (CSIC‐UIB) Esporles Spain
| | - Marc Ventura
- Integrative Freshwater Ecology GroupCentre for Advanced Studies of Blanes (CEAB‐CSIC) Blanes Spain
| | - Simone Tenan
- Institute of Marine Sciences National Research Council (CNR‐ISMAR) Venezia Italy
| |
Collapse
|
35
|
Brown C, Keung NC, Dillingham CP, Mussulman S, Bushell J, Sollmann R, Todd BD, Lawler SP. Using Demography to Evaluate Reintroductions for Conservation of the Endangered Frog, Rana sierrae, in Streams. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.4.383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cathy Brown
- USDA Forest Service, Stanislaus National Forest, 19777 Greenley Rd., Sonora, CA 95370, USA
| | - Neil C. Keung
- University of California, Center for Watershed Sciences, 425 La Rue Road, Davis, CA 95616, USA
| | - Colin P. Dillingham
- USDA Forest Service, Plumas National Forest, 39696 Highway 70, Quincy, CA 95971, USA
| | - Sarah Mussulman
- California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA
| | - Jessie Bushell
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, CA 94132, USA
| | - Rahel Sollmann
- University of California, Department of Wildlife, Fish, and Conservation Biology, One Shields Avenue, Davis, CA 95616, USA
| | - Brian D. Todd
- University of California, Department of Wildlife, Fish, and Conservation Biology, One Shields Avenue, Davis, CA 95616, USA
| | - Sharon P. Lawler
- University of California, Department of Entomology and Nematology, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
36
|
Adams AJ, Pessier A, Cranston P, Grasso RL. Chytridiomycosis-induced mortality in a threatened anuran. PLoS One 2020; 15:e0241119. [PMID: 33156870 PMCID: PMC7647137 DOI: 10.1371/journal.pone.0241119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Effectively planning conservation introductions involves assessing the
suitability of both donor and recipient populations, including the landscape of
disease risk. Chytridiomycosis, caused by the fungal pathogen
Batrachochytrium dendrobatidis (Bd), has caused extensive
amphibian declines globally and may hamper reintroduction attempts. To determine
Bd dynamics in potential source populations for conservation translocations of
the threatened California red-legged frog (Rana draytonii) to
Yosemite National Park, we conducted Bd sampling in two populations in the
foothills of the Sierra Nevada Mountains, California, U.S.A. At one of two
sites, we observed lethally high Bd loads in early post-metamorphic life stages
and confirmed one chytridiomycosis-induced mortality, the first such report for
this species. These results informed source population site selection for
subsequent R. draytonii conservation
translocations. Conservation efforts aimed at establishing new populations of
R. draytonii in a landscape where Bd is
ubiquitous can benefit from an improved understanding of risk through disease
monitoring and ex situ infection studies.
Collapse
Affiliation(s)
- Andrea J. Adams
- Yosemite National Park, El Portal, California, United States of
America
- Earth Research Institute, University of California Santa Barbara, Santa
Barbara, California, United States of America
- * E-mail:
| | - Allan Pessier
- Department of Veterinary Microbiology and Pathology, College of
Veterinary Medicine, Washington State University, Pullman, Washington, United
States of America
| | - Peggy Cranston
- Mother Lode Field Office, U.S. Bureau of Land Management, Fair Oaks,
California, United States of America
| | - Robert L. Grasso
- Yosemite National Park, El Portal, California, United States of
America
| |
Collapse
|
37
|
LaBumbard B, Shepack A, Catenazzi A. After the epizootic: Host–pathogen dynamics in montane tropical amphibian communities with high prevalence of chytridiomycosis. Biotropica 2020. [DOI: 10.1111/btp.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon LaBumbard
- Department of Zoology Southern Illinois University Carbondale IL USA
- Department of Biology University of Massachusetts Boston Boston MA USA
| | - Alexander Shepack
- Department of Biological Sciences Florida International University Miami FL USA
| | | |
Collapse
|
38
|
Abstract
Degradation and habitat loss of natural grasslands in Southern Brazil has a negative impact on native organisms, potentially including the composition of anuran helminth communities. Here, we characterized the richness, abundance, taxonomic composition, prevalence and intensity of helminth infection in four anuran species. Host anurans were collected in 34 ponds (19 in native grasslands with livestock and 15 in agricultural cultivation) from the highland grasslands in the Brazilian states of Santa Catarina and Paraná. Our results showed a significant difference between native grasslands with livestock and agricultural cultivation regarding the structure of helminth communities for the hosts Aplastodiscus perviridis and Pseudis cardosoi. We also found a greater prevalence and intensity of infection in anurans in areas of agricultural cultivation than in native grasslands with livestock. We found that the environmental descriptors (local and landscape) seem to explain most of the differences in anuran parasitism recorded between native grasslands with livestock and agricultural areas. Thus, we emphasized that the loss of grassy habitat due to conversion to agricultural cultivation can alter helminth communities in anurans, with further work needed to understand the mechanisms involved.
Collapse
|
39
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
40
|
Rodriguez KM, Voyles J. The amphibian complement system and chytridiomycosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:706-719. [PMID: 33052039 PMCID: PMC7821119 DOI: 10.1002/jez.2419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.
Collapse
Affiliation(s)
| | - Jamie Voyles
- Department of Biology, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
41
|
Olivares-Miranda M, Vredenburg VT, García-Sánchez JC, Byrne AQ, Rosenblum EB, Rovito SM. Fungal infection, decline and persistence in the only obligate troglodytic Neotropical salamander. PeerJ 2020; 8:e9763. [PMID: 33024623 PMCID: PMC7518159 DOI: 10.7717/peerj.9763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) is implicated in global mass die-offs and declines in amphibians. In Mesoamerica, the Bd epidemic wave hypothesis is supported by detection of Bd in historic museum specimens collected over the last century, yet the timing and impact of the early stages of the wave remain poorly understood. Chiropterotriton magnipes, the only obligate troglodytic Neotropical salamander, was abundant in its small range in the decade following its description in 1965, but subsequently disappeared from known localities and was not seen for 34 years. Its decline is roughly coincident with that of other populations of Neotropical salamanders associated with the invasion and spread of Bd. To determine the presence and infection intensity of Bd on C. magnipes and sympatric amphibian species (which are also Bd hosts), we used a noninvasive sampling technique and qPCR assay to detect Bd on museum specimens of C. magnipes collected from 1952 to 2012, and from extant populations of C. magnipes and sympatric species of amphibians. We also tested for the presence of the recently discovered Batrachochytrium salamandivorans (Bsal), another fungal chytridiomycete pathogen of salamanders, using a similar technique specific for Bsal. We did not detect Bd in populations of C. magnipes before 1969, while Bd was detected at low to moderate prevalence just prior to and during declines. This pattern is consistent with Bd-caused epizootics followed by host declines and extirpations described in other hosts. We did not detect Bsal in any extant population of C. magnipes. We obtained one of the earliest positive records of the fungus to date in Latin America, providing additional historical evidence consistent with the Bd epidemic wave hypothesis. Genotyping results show that at least one population is currently infected with the Global Panzootic Lineage of Bd, but our genotyping of the historical positive samples was unsuccessful. The lack of large samples from some years and the difficulty in genotyping historical Bd samples illustrate some of the difficulties inherent in assigning causality to historical amphibian declines. These data also provide an important historical baseline for actions to preserve the few known remaining populations of C. magnipes.
Collapse
Affiliation(s)
- Mizraim Olivares-Miranda
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Julio C García-Sánchez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Erica B Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Sean M Rovito
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
42
|
Bell SC, Heard GW, Berger L, Skerratt LF. Connectivity over a disease risk gradient enables recovery of rainforest frogs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02152. [PMID: 32343856 DOI: 10.1002/eap.2152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Chytridiomycosis has been a key driver of global frog declines and extinctions, particularly for high-altitude populations across Australia and the Americas. While recent evidence shows some species are recovering, the extent of such recoveries and the mechanisms underpinning them remain poorly resolved. We surveyed the historical latitudinal and elevational range of four Australian rainforest frogs that disappeared from upland sites between 1989 and 1994 to establish their contemporary distribution and elevational limits, and investigate factors affecting population recovery. Five rainforest streams were surveyed from mountain-base to summit (30 sites in total), with swabs collected from the target species (Litoria dayi, L. nannotis, L. rheocola, and L. serrata) to determine their infection status, and data loggers deployed to measure microclimatic variation across the elevational gradient. Infection probability increased with elevation and canopy cover as it was tightly and inversely correlated with stream-side air temperature. Occupancy patterns suggest varying responses to this disease threat gradient. Two species, L. rheocola and L. serrata, were found over their full historical elevational range (≥1,000 m above sea level [asl]), while L. dayi was not detected above 400 m (formerly known up to 900 m asl) and L. nannotis was not detected above 800 m (formerly known up to 1,200 m asl). Site occupancy probability was negatively related to predicted infection prevalence for L. dayi, L. nannotis, and L. rheocola, but not L. serrata, which appears to now tolerate high fungal burdens. This study highlights the importance of environmental refuges and connectivity across disease risk gradients for the persistence and natural recovery of frogs susceptible to chytridiomycosis. Likewise, in documenting both interspecific variation in recovery rates and intraspecific differences between sites, this study suggests interactions between disease threats and host selection exist that could be manipulated. For example, translocations may be warranted where connectivity is poor or the increase in disease risk is too steep to allow recolonization, combined with assisted selection or use of founders from populations that have already undergone natural selection.
Collapse
Affiliation(s)
- Sara C Bell
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Geoffrey W Heard
- Institute of Land, Water and Society, Charles Sturt University, Albury, New South Wales, 2640, Australia
- Victorian Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, 3084, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
43
|
Sadinski W, Gallant AL, Cleaver JE. Climate’s cascading effects on disease, predation, and hatching success in Anaxyrus canorus, the threatened Yosemite toad. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
44
|
Silva AFD, Malhado AC, Correia RA, Ladle RJ, Vital MV, Mott T. Taxonomic bias in amphibian research: Are researchers responding to conservation need? J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Ford J, Hunt DA, Haines GE, Lewis M, Lewis Y, Green DM. Adrift on a Sea of Troubles: Can Amphibians Survive in a Human-Dominated World?1. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jessica Ford
- Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | | | - Grant E. Haines
- Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Micaela Lewis
- Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Yael Lewis
- Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - David M. Green
- Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
46
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
47
|
Waddle AW, Levy JE, Rivera R, van Breukelen F, Nash M, Jaeger JR. Population-Level Resistance to Chytridiomycosis is Life-Stage Dependent in an Imperiled Anuran. ECOHEALTH 2019; 16:701-711. [PMID: 31654279 DOI: 10.1007/s10393-019-01446-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Amphibian declines caused by chytridiomycosis have been severe, but some susceptible populations have persisted or even recovered. Resistance to the causal agent Batrachochytrium dendrobatidis (Bd) could result from alleles of the adaptive immune system. During metamorphosis, however, immune systems may not be fully functional, implying that an effective immune response to Bd may be life-stage dependent. We evaluated the susceptibility of the relict leopard frog (Rana onca) sourced from two areas where Bd was present or absent, and where the populations appeared to show differences in pathogen resistance. We evaluated whether population-level resistance manifested across life stages using challenge experiments with late-stage tadpoles (Gosner stage 31-38), metamorphs (stage 45-46), and juvenile frogs. We used three different Bd isolates including one from wild R. onca to challenge juvenile frogs and focused on the isolate from R. onca to challenge tadpoles and resulting metamorphs. We found that juveniles from the Bd exposed population were 5.5 times more likely to survive Bd infection and 10 times more likely to clear infections than those from the area without Bd. In contrast, and regardless of the source area, we observed 98% survivorship of tadpoles, but only 19% survivorship of resulting metamorphs following re-exposure. Given the low survivorship of exposed metamorphs in the laboratory, we speculate on how resistance characteristics, whether adaptive or innate, that do not manifest at each life stage could develop in the wild. We suggest that seasonal high temperatures during times when metamorphosis appears common may modulate the effects of the pathogen during this most susceptible life stage.
Collapse
Affiliation(s)
- Anthony W Waddle
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA.
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Hwy, Werribee, VIC, 3030, Australia.
| | - Joshua E Levy
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Rebeca Rivera
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Maliha Nash
- , 2111 SE Marine Science Dr., Newport, OR, 97365, USA
| | - Jef R Jaeger
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| |
Collapse
|
48
|
Brown C, Wilkinson LR, Wilkinson KK, Tunstall T, Foote R, Todd BD, Vredenburg VT. Demography, Habitat, and Movements of the Sierra Nevada Yellow-Legged Frog (Rana sierrae) in Streams. COPEIA 2019. [DOI: 10.1643/ce-19-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Cathy Brown
- Stanislaus National Forest, USDA Forest Service, 19777 Greenley Rd., Sonora, California 95370; (CB) ; (LRW) ; and (KKW) . Send reprint requests to CB
| | - Lucas R. Wilkinson
- Stanislaus National Forest, USDA Forest Service, 19777 Greenley Rd., Sonora, California 95370; (CB) ; (LRW) ; and (KKW) . Send reprint requests to CB
| | - Kathryn K. Wilkinson
- Stanislaus National Forest, USDA Forest Service, 19777 Greenley Rd., Sonora, California 95370; (CB) ; (LRW) ; and (KKW) . Send reprint requests to CB
| | - Tate Tunstall
- FocusVision 7 River Park Pl E #110, Fresno, California 93720;
| | - Ryan Foote
- Chattahoochee–Oconee National Forest, USDA Forest Service, 9975 Hwy 441 S., Lakemont, Georgia 30552;
| | - Brian D. Todd
- Wildlife, Fish, and Conservation Biology, University of California, One Shields Avenue, Davis, California 95616;
| | - Vance T. Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132;
| |
Collapse
|
49
|
Reinke BA, Miller DA, Janzen FJ. What Have Long-Term Field Studies Taught Us About Population Dynamics? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term studies have been crucial to the advancement of population biology, especially our understanding of population dynamics. We argue that this progress arises from three key characteristics of long-term research. First, long-term data are necessary to observe the heterogeneity that drives most population processes. Second, long-term studies often inherently lead to novel insights. Finally, long-term field studies can serve as model systems for population biology, allowing for theory and methods to be tested under well-characterized conditions. We illustrate these ideas in three long-term field systems that have made outsized contributions to our understanding of population ecology, evolution, and conservation biology. We then highlight three emerging areas to which long-term field studies are well positioned to contribute in the future: ecological forecasting, genomics, and macrosystems ecology. Overcoming the obstacles associated with maintaining long-term studies requires continued emphasis on recognizing the benefits of such studies to ensure that long-term research continues to have a substantial impact on elucidating population biology.
Collapse
Affiliation(s)
- Beth A. Reinke
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David A.W. Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
50
|
Wilkins LGE, Matthews KR, Steel ZL, Nusslé SC, Carlson SM. Population dynamics of
Rana sierrae
at Dusy Basin: influence of non‐native predators, drought, and restoration potential. Ecosphere 2019. [DOI: 10.1002/ecs2.2951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Laetitia G. E. Wilkins
- Department of Environmental Science, Policy & Management University of California, Berkeley Berkeley California USA
- Genome and Biomedical Sciences Facility University of California, Davis Davis California USA
| | | | - Zachary L. Steel
- Department of Environmental Science, Policy & Management University of California, Berkeley Berkeley California USA
- Department of Environmental Science & Policy University of California, Davis Davis California USA
| | - Sébastien C. Nusslé
- Department of Environmental Science, Policy & Management University of California, Berkeley Berkeley California USA
| | - Stephanie M. Carlson
- Department of Environmental Science, Policy & Management University of California, Berkeley Berkeley California USA
| |
Collapse
|