1
|
Fenn KL, Horne JE, Crossley JA, Böhringer N, Horne RJ, Schäberle TF, Calabrese AN, Radford SE, Ranson NA. Outer membrane protein assembly mediated by BAM-SurA complexes. Nat Commun 2024; 15:7612. [PMID: 39218969 PMCID: PMC11366764 DOI: 10.1038/s41467-024-51358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The outer membrane is a formidable barrier that protects Gram-negative bacteria against environmental threats. Its integrity requires the correct folding and insertion of outer membrane proteins (OMPs) by the membrane-embedded β-barrel assembly machinery (BAM). Unfolded OMPs are delivered to BAM by the periplasmic chaperone SurA, but how SurA and BAM work together to ensure successful OMP delivery and folding remains unclear. Here, guided by AlphaFold2 models, we use disulphide bond engineering in an attempt to trap SurA in the act of OMP delivery to BAM, and solve cryoEM structures of a series of complexes. The results suggest that SurA binds BAM at its soluble POTRA-1 domain, which may trigger conformational changes in both BAM and SurA that enable transfer of the unfolded OMP to the BAM lateral gate for insertion into the outer membrane. Mutations that disrupt the interaction between BAM and SurA result in outer membrane assembly defects, supporting the key role of SurA in outer membrane biogenesis.
Collapse
Affiliation(s)
- Katherine L Fenn
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Joel A Crossley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392, Giessen, Germany
| | - Romany J Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392, Giessen, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Ikujuni AP, Dhar R, Cordova A, Bowman AM, Noga S, Slusky JSG. Discovery and Characterization of Two Folded Intermediates for Outer Membrane Protein TolC Biogenesis. J Mol Biol 2024; 436:168652. [PMID: 38871177 PMCID: PMC11297670 DOI: 10.1016/j.jmb.2024.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.
Collapse
Affiliation(s)
- Ayotunde Paul Ikujuni
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Andres Cordova
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Sarah Noga
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States; Computational Biology Program, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534, United States.
| |
Collapse
|
3
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Devlin T, Fleming PJ, Loza N, Fleming KG. Generation of unfolded outer membrane protein ensembles defined by hydrodynamic properties. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:415-425. [PMID: 36899114 DOI: 10.1007/s00249-023-01639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the periplasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uOMP) conformational ensembles using the experimental properties of two well-studied OMPs. The overall sizes and shapes of the unfolded ensembles in the absence of a denaturant were experimentally defined by measuring the sedimentation coefficient as a function of urea concentration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper torsion angles. The final conformational ensembles have polymer properties different from unfolded soluble and intrinsically disordered proteins and reveal inherent differences in the unfolded states that necessitate further investigation. Building these uOMP ensembles advances the understanding of OMP biogenesis and provides essential information for interpreting structures of uOMP-chaperone complexes.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nicole Loza
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
6
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
7
|
Devlin T, Marx DC, Roskopf MA, Bubb QR, Plummer AM, Fleming KG. FkpA enhances membrane protein folding using an extensive interaction surface. Protein Sci 2023; 32:e4592. [PMID: 36775935 PMCID: PMC10031210 DOI: 10.1002/pro.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Outer membrane protein (OMP) biogenesis in gram-negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat-shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo-crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171 by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo-crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full-length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone-client interface to tightly bind clients.
Collapse
Affiliation(s)
- Taylor Devlin
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dagan C. Marx
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michaela A. Roskopf
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Quenton R. Bubb
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ashlee M. Plummer
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Karen G. Fleming
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Svirina A, Chamachi N, Schlierf M. Single‐molecule approaches reveal outer membrane protein biogenesis dynamics. Bioessays 2022; 44:e2200149. [DOI: 10.1002/bies.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Svirina
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Neharika Chamachi
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Michael Schlierf
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
- Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
| |
Collapse
|
10
|
Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. Proc Natl Acad Sci U S A 2022; 119:2118919119. [PMID: 35217619 PMCID: PMC8892499 DOI: 10.1073/pnas.2118919119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Outer membrane proteins (OMPs) are crucial for the survival of bacteria. The two chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) play key roles in OMP maturation by keeping unfolded OMP proteins soluble in the periplasm. However, their functionalities are incompletely understood. Here, we establish connections between structural and energetic features employed by the two chaperones when interacting with unfolded OmpX. We find that expansion, accompanied with fast polypeptide chain reconfiguration, prevents unfolded OmpX from misfolding and aggregating. Moreover, chaperone interaction with unfolded OmpX is thermodynamically calibrated, allowing for a fine-tuned association of chaperones with OMPs in the adenosine triphosphate-depleted periplasm. We further discovered that Skp and SurA act together as disaggregases and are able to disassemble oligomeric OMP aggregates, revealing remarkable functionalities of this periplasmic chaperone system. Periplasmic chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA associations with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy–entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multifaceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.
Collapse
|
11
|
Sučec I, Bersch B, Schanda P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front Mol Biosci 2021; 8:762005. [PMID: 34760928 PMCID: PMC8573040 DOI: 10.3389/fmolb.2021.762005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.
Collapse
Affiliation(s)
- Iva Sučec
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Beate Bersch
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Paul Schanda
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
12
|
The challenges and prospects of Escherichia coli as an organic acid production host under acid stress. Appl Microbiol Biotechnol 2021; 105:8091-8107. [PMID: 34617140 DOI: 10.1007/s00253-021-11577-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Organic acids have a wide range of applications and have attracted the attention of many industries, and their large-scale applications have led fermentation production to low-cost development. Among them, the microbial fermentation method, especially using Escherichia coli as the production host, has the advantages of fast growth and low energy consumption, and has gradually shown better advantages and prospects in organic acid fermentation production. IMPORTANCE However, when the opportunity comes, the acidified environment caused by the acid products accumulated during the fermentation process also challenges E. coli. The acid sensitivity of E. coli is a core problem that needs to be solved urgently. The addition of neutralizers in traditional operations led to the emergence of osmotic stress inadvertently, the addition of strong acid substances to recover products in the salt state not only increases production costs, but the discharged sewage is also harmful to the environment. ELABORATION This article summarizes the current status of the application of E. coli in the production of organic acids, and based on the impact of acid stress on the physiological state of cells and the impact of industrial production profits, put forward some new conjectures that can make up for the deficiencies in existing research and application. IMPLICATION At this point, the diversified transformation of E. coli has become a chassis microbe that is more suitable for industrial fermentation, enhancing industrial application value. KEY POINTS • E. coli is a potential host for high value-added organic acids production. • Classify the damage mechanism and coping strategies of E. coli when stimulated by acid molecules. • Multi-dimensional expansion tools are needed to create acid-resistant E. coli chassis.
Collapse
|
13
|
The Carbapenemase BKC-1 from Klebsiella pneumoniae Is Adapted for Translocation by Both the Tat and Sec Translocons. mBio 2021; 12:e0130221. [PMID: 34154411 PMCID: PMC8262980 DOI: 10.1128/mbio.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. β-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of β-lactam drugs is to populate the periplasmic space with β-lactamases. Resistance to β-lactam drugs is spread by lateral transfer of genes encoding β-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these “alien” protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a β-lactamase adapting to functionality in a new host.
Collapse
|
14
|
Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics 2021; 22:74. [PMID: 33482720 PMCID: PMC7821729 DOI: 10.1186/s12864-021-07376-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Toxin-antitoxin (TA) systems, abundant in prokaryotes, are composed of a toxin gene and its cognate antitoxin. Several toxins are implied to affect the physiological state and stress tolerance of bacteria in a population. We previously identified a chromosomally encoded hok-sok type I TA system in Erwinia amylovora, the causative agent of fire blight disease on pome fruit trees. A high-level induction of the hok gene was lethal to E. amylovora cells through unknown mechanisms. The molecular targets or regulatory roles of Hok were unknown. Results Here, we examined the physiological and transcriptomic changes of Erwinia amylovora cells expressing hok at subtoxic levels that were confirmed to confer no cell death, and at toxic levels that resulted in killing of cells. In both conditions, hok caused membrane rupture and collapse of the proton motive force in a subpopulation of E. amylovora cells. We demonstrated that induction of hok resulted in upregulation of ATP biosynthesis genes, and caused leakage of ATP from cells only at toxic levels. We showed that overexpression of the phage shock protein gene pspA largely reversed the cell death phenotype caused by high levels of hok induction. We also showed that induction of hok at a subtoxic level rendered a greater proportion of stationary phase E. amylovora cells tolerant to the antibiotic streptomycin. Conclusions We characterized the molecular mechanism of toxicity by high-level of hok induction and demonstrated that low-level expression of hok primes the stress responses of E. amylovora against further membrane and antibiotic stressors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07376-w.
Collapse
|
15
|
Lundquist K, Billings E, Bi M, Wellnitz J, Noinaj N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol Microbiol 2020; 115:425-435. [PMID: 33314350 DOI: 10.1111/mmi.14666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of β-barrel outer-membrane proteins (βOMPs). These βOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the β-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent βOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding βOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.
Collapse
Affiliation(s)
- Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Evan Billings
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Maxine Bi
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - James Wellnitz
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA, Leblanc MJ, Lessen HJ, Amann BT, Fleming PJ, Krueger S, Fried SD, Fleming KG. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Proc Natl Acad Sci U S A 2020; 117:28026-28035. [PMID: 33093201 PMCID: PMC7668074 DOI: 10.1073/pnas.2008175117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the β-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.
Collapse
Affiliation(s)
- Dagan C Marx
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | | | - Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Michaela A Roskopf
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Mathis J Leblanc
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Henry J Lessen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Barbara T Amann
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218;
| |
Collapse
|
17
|
Marx DC, Leblanc MJ, Plummer AM, Krueger S, Fleming KG. Domain interactions determine the conformational ensemble of the periplasmic chaperone SurA. Protein Sci 2020; 29:2043-2053. [PMID: 32748422 PMCID: PMC7513704 DOI: 10.1002/pro.3924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
SurA is thought to be the most important periplasmic chaperone for outer membrane protein (OMP) biogenesis. Its structure is composed of a core region and two peptidylprolyl isomerase domains, termed P1 and P2, connected by flexible linkers. As such these three independent folding units are able to adopt a number of distinct spatial positions with respect to each other. The conformational dynamics of these domains are thought to be functionally important yet are largely unresolved. Here we address this question of the conformational ensemble using sedimentation equilibrium, small-angle neutron scattering, and folding titrations. This combination of orthogonal methods converges on a SurA population that is monomeric at physiological concentrations. The conformation that dominates this population has the P1 and core domains docked to one another, for example, "P1-closed" and the P2 domain extended in solution. We discovered that the distribution of domain orientations is defined by modest and favorable interactions between the core domain and either the P1 or the P2 domains. These two peptidylprolyl domains compete with each other for core-binding but are thermodynamically uncoupled. This arrangement implies two novel insights. Firstly, an open conformation must exist to facilitate P1 and P2 exchange on the core, indicating that the open client-binding conformation is populated at low levels even in the absence of client unfolded OMPs. Secondly, competition between P1 and P2 binding paradoxically occludes the client binding site on the core, which may serve to preserve the reservoir of binding-competent apo-SurA in the periplasm.
Collapse
Affiliation(s)
- Dagan C. Marx
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mathis J. Leblanc
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ashlee M. Plummer
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Susan Krueger
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Karen G. Fleming
- Thomas C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
18
|
Affinity of Skp to OmpC revealed by single-molecule detection. Sci Rep 2020; 10:14871. [PMID: 32913243 PMCID: PMC7483523 DOI: 10.1038/s41598-020-71608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.
Collapse
|
19
|
Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions. Biochem J 2019; 476:3549-3564. [DOI: 10.1042/bcj20190446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
DegP, a periplasmic dual-functional protease and chaperone in Gram-negative bacteria, is critical for bacterial stress resistance, but the precise underlying mechanisms are not fully understood. Here, we show that the protease function of DegP is critical for Escherichia coli cells to maintain membrane integrity, particularly under heat shock conditions (42°C). Site-directed photo-cross-linking, mass spectrometry and immunoblotting analyses reveal that both periplasmic proteins (e.g. OppA and MalE) and β-barrel outer membrane proteins (OMPs) are DegP-interacting proteins and that OppA is degraded by DegP in vitro and in vivo at 42°C. In addition, OmpA and BamA, chimeric β-barrel OMPs containing a soluble periplasmic domain, are bound to DegP in both unfolded and folded forms, whereas only the unfolded forms are degradable by DegP. The presence of folded OmpA as a substrate of DegP is attributed to its periplasmic domain, which is resistant to DegP degradation and even generally protects pure β-barrel OMPs from degradation in an intra-molecular way. Furthermore, a pair of residues (R262 and V328) in the PDZ domain-1 of DegP play important roles for binding unfolded and folded β-barrel OMPs, with R262 being critical. Our study, together with earlier reports, indicates that DegP plays a critical role in protein quality control in the bacterial periplasm by degrading both periplasmic proteins and β-barrel OMPs under stress conditions and likely also by participating in the folding of chimeric β-barrel OMPs. A working model is proposed to illustrate the finely tuned functions of DegP with respect to different substrate proteins.
Collapse
|
20
|
Shan SO. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J Biol Chem 2019; 294:16577-16586. [PMID: 31575659 PMCID: PMC6851334 DOI: 10.1074/jbc.rev119.006197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized integral membrane proteins must traverse the aqueous cytosolic environment before arrival at their membrane destination and are prone to aggregation, misfolding, and mislocalization during this process. The biogenesis of integral membrane proteins therefore poses acute challenges to protein homeostasis within a cell and requires the action of effective molecular chaperones. Chaperones that mediate membrane protein targeting not only need to protect the nascent transmembrane domains from improper exposure in the cytosol, but also need to accurately select client proteins and actively guide their clients to the appropriate target membrane. The mechanisms by which cellular chaperones work together to coordinate this complex process are only beginning to be delineated. Here, we summarize recent advances in studies of the tail-anchored membrane protein targeting pathway, which revealed a network of chaperones, cochaperones, and targeting factors that together drive and regulate this essential process. This pathway is emerging as an excellent model system to decipher the mechanism by which molecular chaperones overcome the multiple challenges during post-translational membrane protein biogenesis and to gain insights into the functional organization of multicomponent chaperone networks.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
21
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
22
|
Chum AP, Shoemaker SR, Fleming PJ, Fleming KG. Plasticity and transient binding are key ingredients of the periplasmic chaperone network. Protein Sci 2019; 28:1340-1349. [PMID: 31074917 DOI: 10.1002/pro.3641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/29/2023]
Abstract
SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. Both Skp and FkpA are holdases that prevent the self-aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone-client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone-protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.
Collapse
Affiliation(s)
- Aaron P Chum
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sophie R Shoemaker
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Patrick J Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Karen G Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
24
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
|
25
|
Humes JR, Schiffrin B, Calabrese AN, Higgins AJ, Westhead DR, Brockwell DJ, Radford SE. The Role of SurA PPIase Domains in Preventing Aggregation of the Outer-Membrane Proteins tOmpA and OmpT. J Mol Biol 2019; 431:1267-1283. [PMID: 30716334 DOI: 10.1016/j.jmb.2019.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
SurA is a conserved ATP-independent periplasmic chaperone involved in the biogenesis of outer-membrane proteins (OMPs). Escherichia coli SurA has a core domain and two peptidylprolyl isomerase (PPIase) domains, the role(s) of which remain unresolved. Here we show that while SurA homologues in early proteobacteria typically contain one or no PPIase domains, the presence of two PPIase domains is common in SurA in later proteobacteria, implying an evolutionary advantage for this domain architecture. Bioinformatics analysis of >350,000 OMP sequences showed that their length, hydrophobicity and aggregation propensity are similar across the proteobacterial classes, ruling out a simple correlation between SurA domain architecture and these properties of OMP sequences. To investigate the role of the PPIase domains in SurA activity, we deleted one or both PPIase domains from E.coli SurA and investigated the ability of the resulting proteins to bind and prevent the aggregation of tOmpA (19 kDa) and OmpT (33 kDa). The results show that wild-type SurA inhibits the aggregation of both OMPs, as do the cytoplasmic OMP chaperones trigger factor and SecB. However, while the ability of SurA to bind and prevent tOmpA aggregation does not depend on its PPIase domains, deletion of even a single PPIase domain ablates the ability of SurA to prevent OmpT aggregation. The results demonstrate that the core domain of SurA endows its generic chaperone ability, while the presence of PPIase domains enhances its chaperone activity for specific OMPs, suggesting one reason for the conservation of multiple PPIase domains in SurA in proteobacteria.
Collapse
Affiliation(s)
- Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David R Westhead
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
26
|
Abstract
In Gram-negative bacteria, the outer membrane contains primarily β-barrel transmembrane proteins and lipoproteins. The insertion and assembly of β-barrel outer-membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex, the core component of which is the 16-stranded transmembrane β-barrel BamA. Recent studies have indicated a possible role played by the seam between the first and last β-barrel strands of BamA in the OMP insertion process through lateral gating and a destabilized membrane region. In this study, we have determined the stability and dynamics of the lateral gate through over 12.5 μs of equilibrium simulations and 4 μs of free-energy calculations. From the equilibrium simulations, we have identified a persistent kink in the C-terminal strand and observed spontaneous lateral-gate separation in a mimic of the native bacterial outer membrane. Free-energy calculations of lateral gate opening revealed a significantly lower barrier to opening in the C-terminal kinked conformation; mutagenesis experiments confirm the relevance of C-terminal kinking to BamA structure and function.
Collapse
|
27
|
Mas G, Hiller S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol Lett 2018; 365:4998852. [DOI: 10.1093/femsle/fny121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. Single-Molecule Detection Reveals Different Roles of Skp and SurA as Chaperones. ACS Chem Biol 2018. [PMID: 29543429 DOI: 10.1021/acschembio.8b00097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skp and SurA are both periplasmic chaperones involved in the biogenesis of Escherichia coli β-barrel outer membrane proteins (OMPs). It is commonly assumed that SurA plays a major role whereas Skp is a minor factor. However, there is no molecular evidence for whether their roles are redundant. Here, by using different dilution methods, we obtained monodisperse and aggregated forms of OmpC and studied their interactions with Skp and SurA by single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We found that Skp can dissolve aggregated OmpC while SurA cannot convert aggregated OmpC into the monodisperse form and the conformations of OmpC recognized by the two chaperones as well as their stoichiometries of binding are different. Our study demonstrates the functional distinctions between Skp and SurA. In particular, the role of Skp is not redundant and is probably more significant under stress conditions.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chenhui He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixuan Bu
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Ronghua Sun
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Botos I, Noinaj N, Buchanan SK. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630161 DOI: 10.1098/rstb.2016.0224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The bacterial outer membrane contains phospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. Both proteins and LPS must be frequently inserted into the outer membrane to preserve its integrity. The protein complex that inserts LPS into the outer membrane is called LptDE, and consists of an integral membrane protein, LptD, with a separate globular lipoprotein, LptE, inserted in the barrel lumen. The protein complex that inserts newly synthesized outer-membrane proteins (OMPs) into the outer membrane is called the BAM complex, and consists of an integral membrane protein, BamA, plus four lipoproteins, BamB, C, D and E. Recent structural and functional analyses illustrate how these two complexes insert their substrates into the outer membrane by distorting the membrane component (BamA or LptD) to directly access the lipid bilayer.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana 47907, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci U S A 2018; 115:2359-2364. [PMID: 29463713 DOI: 10.1073/pnas.1711727115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The β-barrel assembly machine (Bam) complex folds and inserts integral membrane proteins into the outer membrane of Gram-negative bacteria. The two essential components of the complex, BamA and BamD, both interact with substrates, but how the two coordinate with each other during assembly is not clear. To elucidate aspects of this process we slowed the assembly of an essential β-barrel substrate of the Bam complex, LptD, by changing a conserved residue near the C terminus. This defective substrate is recruited to the Bam complex via BamD but is unable to integrate into the membrane efficiently. Changes in the extracellular loops of BamA partially restore assembly kinetics, implying that BamA fails to engage this defective substrate. We conclude that substrate binding to BamD activates BamA by regulating extracellular loop interactions for folding and membrane integration.
Collapse
|
31
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
32
|
Fürst M, Zhou Y, Merfort J, Müller M. Involvement of PpiD in Sec-dependent protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:273-280. [PMID: 29097228 DOI: 10.1016/j.bbamcr.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
The periplasmic space in between the inner and outer membrane of Gram-negative bacteria contains numerous chaperones that are involved in the biogenesis and rescue of extra-cytosolic proteins. In contrast to most of those periplasmic chaperones, PpiD is anchored by an N-terminal transmembrane domain within the inner membrane of Escherichia coli. There it is located in close proximity to the SecY subunit of the SecYEG translocon, which is the primary transporter for secretory and membrane proteins. By site-specific cross-linking we now found the periplasmic domain of PpiD also in close vicinity to the SecG subunit of the Sec translocon and we provide the first direct evidence for a functional cooperation between PpiD and the Sec translocon. Thus we demonstrate that PpiD stimulates in a concentration-dependent manner the translocation of two different secretory proteins into proteoliposomes that had been reconstituted with sub-saturating amounts of SecYEG. In addition we found ribosome-associated nascent chains of a secretory protein stalled at SecY also being in close contact to PpiD. Collectively these results suggest that PpiD plays a role in clearing the Sec translocon of newly translocated secretory proteins thereby improving the overall translocation efficiency. Consistent with this conclusion we demonstrate that PpiD contributes to the efficient detachment of newly secreted OmpA from the inner membrane and in doing so, seems to cooperate in a hierarchical manner with other periplasmic chaperones such as SurA, DegP, and Skp.
Collapse
Affiliation(s)
- Michaela Fürst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Yufan Zhou
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Jana Merfort
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany.
| |
Collapse
|
33
|
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 2017; 106:777-792. [PMID: 28941249 DOI: 10.1111/mmi.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Almost all bacterial outer membrane proteins (OMPs) contain a β barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the β barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly. J Bacteriol 2017; 199:JB.00418-17. [PMID: 28784813 DOI: 10.1128/jb.00418-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022] Open
Abstract
Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.
Collapse
|
35
|
Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, Brockwell DJ, Radford SE. Effects of Periplasmic Chaperones and Membrane Thickness on BamA-Catalyzed Outer-Membrane Protein Folding. J Mol Biol 2017; 429:3776-3792. [PMID: 28919234 PMCID: PMC5692476 DOI: 10.1016/j.jmb.2017.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022]
Abstract
The biogenesis of outer-membrane proteins (OMPs) in gram-negative bacteria involves delivery by periplasmic chaperones to the β-barrel assembly machinery (BAM), which catalyzes OMP insertion into the outer membrane. Here, we examine the effects of membrane thickness, the Escherichia coli periplasmic chaperones Skp and SurA, and BamA, the central subunit of the BAM complex, on the folding kinetics of a model OMP (tOmpA) using fluorescence spectroscopy, native mass spectrometry, and molecular dynamics simulations. We show that prefolded BamA promotes the release of tOmpA from Skp despite the nM affinity of the Skp:tOmpA complex. This activity is located in the BamA β-barrel domain, but is greater when full-length BamA is present, indicating that both the β-barrel and polypeptide transport-associated (POTRA) domains are required for maximal activity. By contrast, SurA is unable to release tOmpA from Skp, providing direct evidence against a sequential chaperone model. By varying lipid acyl chain length in synthetic liposomes we show that BamA has a greater catalytic effect on tOmpA folding in thicker bilayers, suggesting that BAM catalysis involves lowering of the kinetic barrier imposed by the hydrophobic thickness of the membrane. Consistent with this, molecular dynamics simulations reveal that increases in membrane thinning/disorder by the transmembrane domain of BamA is greatest in thicker bilayers. Finally, we demonstrate that cross-linking of the BamA barrel does not affect tOmpA folding kinetics in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, suggesting that lateral gating of the BamA barrel and/or hybrid barrel formation is not required, at least for the assembly of a small 8-stranded OMP in vitro. Mechanisms of OMP periplasmic transport and folding by BAM are poorly understood. BamA catalyzes folding by reducing the kinetic barrier imposed by membrane thickness. BamA proteoliposomes promote folding of Skp-bound tOmpA. Lateral gating is not required for BamA-catalyzed folding of tOmpA in DMPC bilayers.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, Wellcome Trust Brenner Building, Leeds LS9 7TF, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
36
|
Krainer G, Gracia P, Frotscher E, Hartmann A, Gröger P, Keller S, Schlierf M. Slow Interconversion in a Heterogeneous Unfolded-State Ensemble of Outer-Membrane Phospholipase A. Biophys J 2017. [PMID: 28629619 DOI: 10.1016/j.bpj.2017.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Structural and dynamic investigations of unfolded proteins are important for understanding protein-folding mechanisms as well as the interactions of unfolded polypeptide chains with other cell components. In the case of outer-membrane proteins (OMPs), unfolded-state properties are of particular physiological relevance, because these proteins remain unfolded for extended periods of time during their biogenesis and rely on interactions with binding partners to support proper folding. Using a combination of ensemble and single-molecule spectroscopy, we have scrutinized the unfolded state of outer-membrane phospholipase A (OmpLA) to provide a detailed view of its structural dynamics on timescales from nanoseconds to milliseconds. We find that even under strongly denaturing conditions and in the absence of residual secondary structure, OmpLA populates an ensemble of slowly (>100 ms) interconverting and conformationally heterogeneous unfolded states that lack the fast chain-reconfiguration motions expected for an unstructured, fully unfolded chain. The drastically slowed sampling of potentially folding-competent states, as compared with a random-coil polypeptide, may contribute to the slow in vitro folding kinetics observed for many OMPs. In vivo, however, slow intramolecular long-range dynamics might be advantageous for entropically favored binding of unfolded OMPs to chaperones and, by facilitating conformational selection after release from chaperones, for preserving binding-competent conformations before insertion into the outer membrane.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany; Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Gracia
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Erik Frotscher
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Philip Gröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
37
|
Ionescu SA, Lee S, Housden NG, Kaminska R, Kleanthous C, Bayley H. Orientation of the OmpF Porin in Planar Lipid Bilayers. Chembiochem 2017; 18:554-562. [PMID: 28094462 DOI: 10.1002/cbic.201600644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/27/2022]
Abstract
The outer-membrane protein OmpF is an abundant trimeric general diffusion porin that plays a central role in the transport of antibiotics and colicins across the outer membrane of E. coli. Individual OmpF trimers in planar lipid bilayers (PLBs) show one of two current-voltage asymmetries, thus implying that insertion occurs with either the periplasmic or the extracellular end first. A method for establishing the orientation of OmpF in PLB was developed, based on targeted covalent modification with membrane-impermeant reagents of peripheral cysteine residues introduced near the periplasmic or the extracellular entrance. By correlating the results of the modification experiments with measurements of current asymmetry or the sidedness of binding of the antibiotic enrofloxacin, OmpF orientation could be quickly determined in subsequent experiments under a variety of conditions. Our work will allow the precise interpretation of past and future studies of antibiotic permeation and protein translocation through OmpF and related porins.
Collapse
Affiliation(s)
- Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
38
|
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex. During the past decade, structural and functional studies have collectively contributed to advancing our understanding of the structure and function of the BAM complex; however, the exact mechanism that is involved remains elusive. In this Progress article, we discuss recent structural studies that have revealed that the accessory proteins may regulate essential unprecedented conformational changes in the core component BamA during function. We also detail the mechanistic insights that have been gained from structural data, mutagenesis studies and molecular dynamics simulations, and explore two emerging models for the BAM-mediated biogenesis of OMPs in bacteria.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Radwan M, Wood RJ, Sui X, Hatters DM. When proteostasis goes bad: Protein aggregation in the cell. IUBMB Life 2017; 69:49-54. [PMID: 28066979 DOI: 10.1002/iub.1597] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a hallmark of the major neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and motor neuron and is a symptom of a breakdown in the management of proteome foldedness. Indeed, it is remarkable that under normal conditions cells can keep their proteome in a highly crowded and confined space without uncontrollable aggregation. Proteins pose a particular challenge relative to other classes of biomolecules because upon synthesis they must typically follow a complex folding pathway to reach their functional conformation (native state). Non-native conformations, including the unfolded nascent chain, are highly prone to aberrant interactions, leading to aggregation. Here we review recent advances in knowledge of proteostasis, approaches to monitor proteostasis and the impact that protein aggregation has on biology. We also include discussion of the outstanding challenges. © 2017 IUBMB Life, 69(2):49-54, 2017.
Collapse
Affiliation(s)
- Mona Radwan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Rebecca J Wood
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Andersen KK, Vad B, Omer S, Otzen DE. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry 2016; 55:7123-7140. [PMID: 27973779 DOI: 10.1021/acs.biochem.6b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein A (OmpA) is the most abundant protein in the outer membrane of Escherichia coli. The N-terminal domain forms an eight-stranded membrane-embedded β-barrel that is widely used as a model protein for in vitro folding into the membrane and into surfactant micelles. Under conditions that include a low surfactant concentration, OmpA can form stable higher-order structures by intermolecular association. Other β-barrel membrane proteins also associate to form noncovalently linked trimers in vivo. This inspired us to test how topological constraints imposed by intramolecular links between individual OmpA molecules affect this process. Here we report on the properties of concatemers consisting of two and three copies of the transmembrane part of OmpA. Both concatemers could be folded to a native state in surfactant micelles according to spectroscopy and electrophoretic band shifts. This native state had the same thermodynamic stability against chemical denaturation as the original OmpA. Above 1.5 M GdmCl, concatemerization increased both refolding and unfolding rates, which we attribute to entropic effects. However, below 1.5 M GdmCl, folding kinetics were 2-3 orders of magnitude slower and more complex, involving a greater degree of parallel folding steps and species that could be classified as off-pathway. Only OmpA2 could quantitatively be folded into vesicles (though to an extent lower than that of OmpA), while OmpA3 formed three species with different levels of folding. Thus, close spatial and sequential proximity of OmpA domains on the same polypeptide chain have a strong tendency to trap the protein in different misfolded states.
Collapse
Affiliation(s)
- Kell K Andersen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Brian Vad
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Sahar Omer
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Danoff EJ, Fleming KG. Novel Kinetic Intermediates Populated along the Folding Pathway of the Transmembrane β-Barrel OmpA. Biochemistry 2016; 56:47-60. [PMID: 28001375 DOI: 10.1021/acs.biochem.6b00809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the folding of the β-barrel membrane protein OmpA from Escherichia coli. Although previous studies identified several intermediate states followed by a concerted translocation mechanism across the bilayer, some aspects of the pathway were still unclear, including the extent of secondary structure formation in the intermediate states and how the mechanism gave rise to multiple exponential phases in the folding kinetics. We addressed these questions by investigating the folding kinetics of the OmpA transmembrane β-barrel domain over a range of bilayer thicknesses, allowing us to observe different regions of the folding pathway. The fastest folding into the thinnest bilayers provided information about the later stages of the process, and the slowest folding into thicker bilayers revealed early kinetic steps. Folding was monitored using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and circular dichroism spectroscopy, which provide complementary information about tertiary and secondary structure formation. We globally fit the folding data to kinetic schemes and found that the same core pathway was followed under all lipid conditions. We propose a multistep folding mechanism for OmpA that includes unstructured surface-adsorbed states converting through a partially inserted state with substantial β-sheet structure to the final natively inserted barrel. Kinetic models show that all steps of the main folding pathway are accelerated by membrane defects that occur as a result of thinning the bilayer or incubation of lipids at the phase transition temperature. In addition to suppressing off-pathway states, β-barrel assembly machinery-catalyzed folding in vivo could accelerate any or all of these main folding steps to ensure efficient outer membrane protein biogenesis in vivo.
Collapse
Affiliation(s)
- Emily J Danoff
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|