1
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. FUNCTION 2024; 5:zqae027. [PMID: 38984978 PMCID: PMC11388097 DOI: 10.1093/function/zqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .
Collapse
Affiliation(s)
- Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Sarah Colijn
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber N Stratman
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of human iPSC-derived vascular smooth muscle cells and cell autonomous consequences of Cantu Syndrome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547088. [PMID: 37425756 PMCID: PMC10327170 DOI: 10.1101/2023.06.29.547088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.
Collapse
|
3
|
Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K ATP channel gain-of-function. FUNCTION 2023; 4:zqad017. [PMID: 37214333 PMCID: PMC10194823 DOI: 10.1093/function/zqad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Maria Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
5
|
Singh GK, McClenaghan C, Aggarwal M, Gu H, Remedi MS, Grange DK, Nichols CG. A Unique High-Output Cardiac Hypertrophy Phenotype Arising From Low Systemic Vascular Resistance in Cantu Syndrome. J Am Heart Assoc 2022; 11:e027363. [PMID: 36515236 PMCID: PMC9798820 DOI: 10.1161/jaha.122.027363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
Abstract
Background Cardiomegaly caused by left ventricular hypertrophy is a risk factor for development of congestive heart failure, classically associated with decreased systolic and/or diastolic ventricular function. Less attention has been given to the phenotype of left ventricular hypertrophy with enhanced ventricular function and increased cardiac output, which is potentially associated with high-output heart failure. Lack of recognition may pose diagnostic ambiguity and management complexities. Methods and Results We sought to systematically characterize high-output cardiac hypertrophy in subjects with Cantu syndrome (CS), caused by gain-of-function variants in ABCC9, which encodes cardiovascular KATP (ATP-sensitive potassium) channel subunits. We studied the cardiovascular phenotype longitudinally in 31 subjects with CS with confirmed ABCC9 variants (median [interquartile range] age 8 years [3-32 years], body mass index 19.9 [16.5-22.9], 16 male subjects). Subjects with CS presented with significant left ventricular hypertrophy (left ventricular mass index 86.7 [57.7-103.0] g/m2 in CS, n=30; 26.6 [24.1-32.8] g/m2 in controls, n=17; P<0.0001) and low blood pressure (systolic 94.5 [90-103] mm Hg in CS, n=17; 109 [98-115] mm Hg in controls, n=17; P=0.0301; diastolic 60 [56-66] mm Hg in CS, n=17; 69 [65-72] mm Hg in control, n=17; P=0.0063). Most (21/31) subjects with CS exhibited eccentric hypertrophy with normal left ventricular wall thickness. Congestive heart failure symptoms were evident in 4 of the 5 subjects with CS aged >40 years on long-term follow-up. Conclusions The data define the natural history of high-output cardiac hypertrophy resulting from decreased systemic vascular resistance in subjects with CS, a defining population for long-term consequences of high-output hypertrophy caused by low systemic vascular resistance, and the potential for progression to high-output heart failure.
Collapse
Affiliation(s)
- Gautam K. Singh
- Division of Cardiology, Department of PediatricsWashington University School of MedicineSt. LouisMO
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMO
| | - Manish Aggarwal
- Division of Cardiology, Department of PediatricsWashington University School of MedicineSt. LouisMO
| | - Hongjie Gu
- Division of StatisticsWashington University School of MedicineSt. LouisMO
| | - Maria S. Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Medicine, Division of EndocrinologyWashington University School of MedicineSt. LouisMO
| | - Dorothy K. Grange
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Pediatrics, Division of GeneticsWashington University School of MedicineSt. LouisMO
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington University School of MedicineSt. LouisMO
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
6
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
8
|
Knutsen RH, Gober LM, Kronquist EK, Kaur M, Donahue DR, Springer D, Yu ZX, Chen MY, Fu YP, Choobdar F, Nguyen ML, Osgood S, Freeman JL, Raja N, Levin MD, Kozel BA. Elastin Insufficiency Confers Proximal and Distal Pulmonary Vasculopathy in Mice, Partially Remedied by the KATP Channel Opener Minoxidil: Considerations and Cautions for the Treatment of People With Williams-Beuren Syndrome. Front Cardiovasc Med 2022; 9:886813. [PMID: 35665242 PMCID: PMC9160528 DOI: 10.3389/fcvm.2022.886813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Williams Beuren syndrome (WBS) is a recurrent microdeletion disorder that removes one copy of elastin (ELN), resulting in large artery vasculopathy. Early stenosis of the pulmonary vascular tree is common, but few data are available on longer-term implications of the condition. Methods Computed tomography (CT) angiogram (n = 11) and echocardiogram (n = 20) were performed in children with WBS aged 3.4–17.8 years. Controls (n = 11, aged 4.4–16.8 years) also underwent echocardiogram. Eln+/− mice were analyzed by invasive catheter, echocardiogram, micro-CT (μCT), histology, and pressure myography. We subsequently tested whether minoxidil resulted in improved pulmonary vascular endpoints. Results WBS participants with a history of main or branch pulmonary artery (PA) stenosis requiring intervention continued to exhibit increased right ventricular systolic pressure (RVSP, echocardiogram) relative to their peers without intervention (p < 0.01), with no clear difference in PA size. Untreated Eln+/− mice also show elevated RVSP by invasive catheterization (p < 0.0001), increased normalized right heart mass (p < 0.01) and reduced caliber branch PAs by pressure myography (p < 0.0001). Eln+/− main PA medias are thickened histologically relative to Eln+/+ (p < 0.0001). Most Eln+/− phenotypes are shared by both sexes, but PA medial thickness is substantially greater in Eln+/− males (p < 0.001). Eln+/− mice showed more acute proximal branching angles (p < 0.0001) and longer vascular segment lengths (p < 0.0001) (μCT), with genotype differences emerging by P7. Diminished PA acceleration time (p < 0.001) and systolic notching (p < 0.0001) were also observed in Eln+/− echocardiography. Vascular casting plus μCT revealed longer generation-specific PA arcade length (p < 0.0001), with increased PA branching detectable by P90 (p < 0.0001). Post-weaning minoxidil decreased RVSP (p < 0.01) and normalized PA caliber (p < 0.0001) but not early-onset proximal branching angle or segment length, nor later-developing peripheral branch number. Conclusions Vascular deficiencies beyond arterial caliber persist in individuals with WBS who have undergone PA stenosis intervention. Evaluation of Eln+/− mice reveals complex vascular changes that affect the proximal and distal vasculatures. Minoxidil, given post-weaning, decreases RVSP and improves lumen diameter, but does not alter other earlier-onset vascular patterns. Our data suggest additional therapies including minoxidil could be a useful adjunct to surgical therapy, and future trials should be considered.
Collapse
Affiliation(s)
- Russell H. Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Leah M. Gober
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elise K. Kronquist
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maninder Kaur
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle R. Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Danielle Springer
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zu Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marcus Y. Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Feri Choobdar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - My-Le Nguyen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sharon Osgood
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joy L. Freeman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Neelam Raja
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mark D. Levin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Beth A. Kozel
| |
Collapse
|
9
|
Zaytseva A, Tulintseva T, Fomicheva Y, Mikhailova V, Treshkur T, Kostareva A. Case Report: Loss-of-Function ABCC9 Genetic Variant Associated With Ventricular Fibrillation. Front Genet 2022; 13:718853. [PMID: 35495129 PMCID: PMC9044080 DOI: 10.3389/fgene.2022.718853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the ABCC9 gene, encoding the SUR2 auxiliary subunit from KATP channels, were previously linked with various inherited diseases. This wide range of congenital disorders includes multisystem and cardiovascular pathologies. The gain-of-function mutations result in Cantu syndrome, acromegaloid facial appearance, hypertrichosis, and acromegaloid facial features. The loss-of-function mutations in the ABCC9 gene were associated with the Brugada syndrome, early repolarization syndrome, and dilated cardiomyopathy. Here, we reported a patient with a loss-of-function variant in the ABCC9 gene, identified by target high-throughput sequencing. The female proband presented with several episodes of ventricular fibrillation and hypokalemia upon emotional stress. This case sheds light on the consequences of KATP channel dysfunction in the cardiovascular system and underlines the complexity of the clinical presentation of ABCC9-related diseases.
Collapse
Affiliation(s)
- Anastasia Zaytseva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
- *Correspondence: Anastasia Zaytseva,
| | | | - Yulya Fomicheva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | | | - Anna Kostareva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.
Collapse
|
11
|
Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021; 6:145934. [PMID: 33529173 PMCID: PMC8021106 DOI: 10.1172/jci.insight.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.
Collapse
Affiliation(s)
- Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tobias Scherf de Almeida
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Christopher Emfinger
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Theresa Harter
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | - Paige E Cooper
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Arakel
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Aziz Q, Tinker A. The Pathophysiology of Cardiac Abnormalities in Cantu Syndrome: Perspective on "The Mechanism of High-Output Cardiac Hypertrophy Arising From Potassium Channel Gain-of-Function in Cantú Syndrome". FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa005. [PMID: 32864620 PMCID: PMC7446246 DOI: 10.1093/function/zqaa005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ. UK
| | | |
Collapse
|
13
|
Davis MJ, Kim HJ, Zawieja SD, Castorena-Gonzalez JA, Gui P, Li M, Saunders BT, Zinselmeyer BH, Randolph GJ, Remedi MS, Nichols CG. Kir6.1-dependent K ATP channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gain-of-function. J Physiol 2020; 598:3107-3127. [PMID: 32372450 DOI: 10.1113/jp279612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Spontaneous contractions are essential for normal lymph transport and these contractions are exquisitely sensitive to the KATP channel activator pinacidil. KATP channel Kir6.1 and SUR2B subunits are expressed in mouse lymphatic smooth muscle (LSM) and form functional KATP channels as verified by electrophysiological techniques. Global deletion of Kir6.1 or SUR2 subunits results in severely impaired lymphatic contractile responses to pinacidil. Smooth muscle-specific expression of Kir6.1 gain-of-function mutant (GoF) subunits results in profound lymphatic contractile dysfunction and LSM hyperpolarization that is partially rescued by the KATP inhibitor glibenclamide. In contrast, lymphatic endothelial-specific expression of Kir6.1 GoF has essentially no effect on lymphatic contractile function. The high sensitivity of LSM to KATP channel GoF offers an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1 or SUR2, and suggests that glibenclamide may be an appropriate therapeutic agent. ABSTRACT This study aimed to understand the functional expression of KATP channel subunits in distinct lymphatic cell types, and assess the consequences of altered KATP channel activity on lymphatic pump function. KATP channel subunits Kir6.1 and SUR2B were expressed in mouse lymphatic muscle by PCR, but only Kir6.1 was expressed in lymphatic endothelium. Spontaneous contractions of popliteal lymphatics from wild-type (WT) (C57BL/6J) mice, assessed by pressure myography, were very sensitive to inhibition by the SUR2-specific KATP channel activator pinacidil, which hyperpolarized both mouse and human lymphatic smooth muscle (LSM). In vessels from mice with deletion of Kir6.1 (Kir6.1-/- ) or SUR2 (SUR2[STOP]) subunits, contractile parameters were not significantly different from those of WT vessels, suggesting that basal KATP channel activity in LSM is not an essential component of the lymphatic pacemaker, and does not exert a strong influence over contractile strength. However, these vessels were >100-fold less sensitive than WT vessels to pinacidil. Smooth muscle-specific expression of a Kir6.1 gain-of-function (GoF) subunit resulted in severely impaired lymphatic contractions and hyperpolarized LSM. Membrane potential and contractile activity was partially restored by the KATP channel inhibitor glibenclamide. In contrast, lymphatic endothelium-specific expression of Kir6.1 GoF subunits had negligible effects on lymphatic contraction frequency or amplitude. Our results demonstrate a high sensitivity of lymphatic contractility to KATP channel activators through activation of Kir6.1/SUR2-dependent channels in LSM. In addition, they offer an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1/SUR2.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Peichun Gui
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maria S Remedi
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
14
|
Grange DK, Roessler HI, McClenaghan C, Duran K, Shields K, Remedi MS, Knoers NVAM, Lee JM, Kirk EP, Scurr I, Smithson SF, Singh GK, van Haelst MM, Nichols CG, van Haaften G. Cantú syndrome: Findings from 74 patients in the International Cantú Syndrome Registry. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 181:658-681. [PMID: 31828977 DOI: 10.1002/ajmg.c.31753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022]
Abstract
Cantú syndrome (CS), first described in 1982, is caused by pathogenic variants in ABCC9 and KCNJ8, which encode the regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. Multiple case reports of affected individuals have described the various clinical features of CS, but systematic studies are lacking. To define the effects of genetic variants on CS phenotypes and clinical outcomes, we have developed a standardized REDCap-based registry for CS. We report phenotypic features and associated genotypes on 74 CS subjects, with confirmed ABCC9 variants in 72 of the individuals. Hypertrichosis and a characteristic facial appearance are present in all individuals. Polyhydramnios during fetal life, hyperflexibility, edema, patent ductus arteriosus (PDA), cardiomegaly, dilated aortic root, vascular tortuosity of cerebral arteries, and migraine headaches are common features, although even with this large group of subjects, there is incomplete penetrance of CS-associated features, without clear correlation to genotype.
Collapse
Affiliation(s)
- Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Karen Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kathleen Shields
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, Missouri
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Jin-Moo Lee
- Department of Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Gautam K Singh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Mieke M van Haelst
- Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Parrott A, Lombardo R, Brown N, Tretter JT, Riley L, Weaver KN. Cantu syndrome: A longitudinal review of vascular findings in three individuals. Am J Med Genet A 2020; 182:1243-1248. [PMID: 32065455 DOI: 10.1002/ajmg.a.61521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Cantu syndrome is a rare autosomal dominant disorder caused by missense variants in ABCC9 and KCNJ8. It is characterized by hypertrichosis, neonatal macrosomia, coarse facial features, and skeletal anomalies. Reported cardiovascular anomalies include cardiomegaly, structural defects, collateral vessels, and rare report of arteriovenous malformation (AVM). Arterial dilation is reported in a few individuals including one with surgical intervention for a thoracic aortic aneurysm. The natural history of this aortopathy including the rate of progression or risk for dissection is unknown and longitudinal patient data is unavailable. We present data from vascular imaging in three individuals with genetically confirmed Cantu syndrome over 3 to 14 years of follow-up. All patients had generally stable aortic dilation, which did not reach the surgical threshold, including one individual followed closely through pregnancy. In adulthood, one individual had a maximum ascending aortic measurement of 4.2 cm. Two pediatric patients had aortic root or ascending z-scores of approximately +3. A large asymptomatic pelvic AVM was identified in one individual on head-pelvis MRI. While the data reported in these individuals is reassuring regarding the risk for progressive disease, further data from additional individuals with Cantu syndrome is needed to best inform screening recommendations, improve understanding of dissection risk, and guide management.
Collapse
Affiliation(s)
- Ashley Parrott
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel Lombardo
- Department of Medical Genetics, UT Southwestern Medical Center, Dallas, Texas
| | - Nicole Brown
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Justin T Tretter
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura Riley
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GÅM, Hjellnes H, Arntzen KA, Müller KI, Dybesland AR, Harter T, Sala-Rabanal M, Emfinger CH, Huang Y, Singareddy SS, Gunn J, Wozniak DF, Kovacs A, Massink M, Tessadori F, Kamel SM, Bakkers J, Remedi MS, Van Ghelue M, Nichols CG, van Haaften G. ABCC9-related Intellectual disability Myopathy Syndrome is a K ATP channelopathy with loss-of-function mutations in ABCC9. Nat Commun 2019; 10:4457. [PMID: 31575858 PMCID: PMC6773855 DOI: 10.1038/s41467-019-12428-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.
Collapse
Affiliation(s)
- Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway.
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sanne Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | | | - Helene Hjellnes
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kjell Arne Arntzen
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kai Ivar Müller
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Andreas Rosenberger Dybesland
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Physiotherapy, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Theresa Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University, St Louis, MO, 63110, USA
| | - Chris H Emfinger
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Yan Huang
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Soma S Singareddy
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Jamie Gunn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarten Massink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO, 63110, USA
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Medical Genetics, the Arctic University of Norway, 9019, Tromsø, Norway
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Ma A, Gurnasinghani S, Kirk EP, McClenaghan C, Singh GK, Grange DK, Pandit C, Zhu Y, Roscioli T, Elakis G, Buckley M, Mehta B, Roberts P, Mervis J, Biggin A, Nichols CG. Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: Initial experience. Am J Med Genet A 2019; 179:1585-1590. [PMID: 31175705 PMCID: PMC6899598 DOI: 10.1002/ajmg.a.61200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Cantú syndrome (CS), characterized by hypertrichosis, distinctive facial features, and complex cardiovascular abnormalities, is caused by pathogenic variants in ABCC9 and KCNJ8 genes. These genes encode gain-of-function mutations in the regulatory (SUR2) and pore-forming (Kir6.1) subunits of KATP channels, respectively, suggesting that channel-blocking sulfonylureas could be a viable therapy. Here we report a neonate with CS, carrying a heterozygous ABCC9 variant (c.3347G>A, p.Arg1116His), born prematurely at 32 weeks gestation. Initial echocardiogram revealed a large patent ductus arteriosus (PDA), and high pulmonary pressures with enlarged right ventricle. He initially received surfactant and continuous positive airway pressure ventilation and was invasively ventilated for 4 weeks, until PDA ligation. After surgery, he still had ongoing bilevel positive airway pressure (BiPAP) requirement, but was subsequently weaned to nocturnal BiPAP. He was treated for pulmonary hypertension with Sildenafil, but failed to make further clinical improvement. A therapeutic glibenclamide trial was commenced in week 11 (initial dose of 0.05 mg-1 kg-1 day-1 in two divided doses). After 1 week of treatment, he began to tolerate time off BiPAP when awake, and edema improved. Glibenclamide was well tolerated, and the dose was slowly increased to 0.15 mg-1 kg-1 day-1 over the next 12 weeks. Mild transient hypoglycemia was observed, but there was no cardiovascular dysfunction. Confirmation of therapeutic benefit will require studies of more CS patients but, based on this limited experience, consideration should be given to glibenclamide as CS therapy, although problems associated with prematurity, and complications of hypoglycemia, might limit outcome in critically ill neonates with CS.
Collapse
Affiliation(s)
- Alan Ma
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Discipline of Genomic MedicineSydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Sunita Gurnasinghani
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Edwin P. Kirk
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
- School of Women's and Children's Health, University of NSWSydneyNew South WalesAustralia
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| | - Gautam K. Singh
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Dorothy K. Grange
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Chetan Pandit
- Department of Respiratory and Sleep MedicineThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Yung Zhu
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Tony Roscioli
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - George Elakis
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Michael Buckley
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Bhavesh Mehta
- Grace Centre for Newborn Intensive CareThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Philip Roberts
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jonathan Mervis
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Andrew Biggin
- Children's Hospital Westmead Clinical School, University of SydneyNew South WalesAustralia
- Institute of Endocrinology and Diabetes, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
18
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
19
|
Ye P, Zhu Y, Gu Y, Zhang D, Chen S. Functional protection against cardiac diseases depends on ATP-sensitive potassium channels. J Cell Mol Med 2018; 22:5801-5806. [PMID: 30596400 PMCID: PMC6237599 DOI: 10.1111/jcmm.13893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022] Open
Abstract
ATP-sensitive potassium channels (KATP) channels are widely distributed in various tissues, including pancreatic beta cells, muscle tissue and brain tissue. KATP channels play an important role in cardioprotection in physiological/pathological situations. KATP channels are inhibited by an increase in the intracellular ATP concentration and are stimulated by an increase in the intracellular MgADP concentration. Activation of KATP channels decreases ischaemia/reperfusion injury, protects cardiomyocytes from heart failure, and reduces the occurrence of arrhythmias. KATP channels are involved in various signalling pathways, and their participation in protective processes is regulated by endogenous signalling molecules, such as nitric oxide and hydrogen sulphide. KATP channels may act as a new drug target to fight against cardiovascular disease in the development of related drugs in the future. This review highlights the potential mechanisms correlated with the protective role of KATP channels and their therapeutic value in cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Yan‐Rong Zhu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Yue Gu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Shao‐Liang Chen
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| |
Collapse
|
20
|
Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 2018; 11:11/10/dmm035469. [PMID: 30355756 PMCID: PMC6215435 DOI: 10.1242/dmm.035469] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The zebrafish (Danio rerio) has become a popular vertebrate model organism to study organ formation and function due to its optical clarity and rapid embryonic development. The use of genetically modified zebrafish has also allowed identification of new putative therapeutic drugs. So far, most studies have relied on broad overexpression of transgenes harboring patient-derived mutations or loss-of-function mutants, which incompletely model the human disease allele in terms of expression levels or cell-type specificity of the endogenous gene of interest. Most human genetically inherited conditions are caused by alleles carrying single nucleotide changes resulting in altered gene function. Introduction of such point mutations in the zebrafish genome would be a prerequisite to recapitulate human disease but remains challenging to this day. We present an effective approach to introduce small nucleotide changes in the zebrafish genome. We generated four different knock-in lines carrying distinct human cardiovascular-disorder-causing missense mutations in their zebrafish orthologous genes by combining CRISPR/Cas9 with a short template oligonucleotide. Three of these lines carry gain-of-function mutations in genes encoding the pore-forming (Kir6.1, KCNJ8) and regulatory (SUR2, ABCC9) subunits of an ATP-sensitive potassium channel (KATP) linked to Cantú syndrome (CS). Our heterozygous zebrafish knock-in lines display significantly enlarged ventricles with enhanced cardiac output and contractile function, and distinct cerebral vasodilation, demonstrating the causality of the introduced mutations for CS. These results demonstrate that introducing patient alleles in their zebrafish orthologs promises a broad application for modeling human genetic diseases, paving the way for new therapeutic strategies using this model organism.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sonja Chocron
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Karen J Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Mieke M van Haelst
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Genetics, Free University Medical Center, 1018 HV Amsterdam, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands .,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
21
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Huang Y, McClenaghan C, Harter TM, Hinman K, Halabi CM, Matkovich SJ, Zhang H, Brown GS, Mecham RP, England SK, Kovacs A, Remedi MS, Nichols CG. Cardiovascular consequences of KATP overactivity in Cantu syndrome. JCI Insight 2018; 3:121153. [PMID: 30089727 DOI: 10.1172/jci.insight.121153] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.
Collapse
Affiliation(s)
- Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | | | | | - Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | - Sarah K England
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Obstetrics and Gynecology, and
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| |
Collapse
|
23
|
Aziz Q, Finlay M, Montaigne D, Ojake L, Li Y, Anderson N, Ludwig A, Tinker A. ATP-sensitive potassium channels in the sinoatrial node contribute to heart rate control and adaptation to hypoxia. J Biol Chem 2018; 293:8912-8921. [PMID: 29666184 DOI: 10.1074/jbc.ra118.002775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in ventricular tissue, but they are also expressed in the atria and conduction tissues. In this study, we focused on the contribution and role of the inwardly rectifying KATP channel subunit, Kir6.1, in the sinoatrial node (SAN). To develop a murine, conduction-specific Kir6.1 KO model, we selectively deleted Kir6.1 in the conduction system in adult mice (cKO). Electrophysiological data in single SAN cells indicated that Kir6.1 underlies a KATP current in a significant proportion of cells and influences early repolarization during pacemaking, resulting in prolonged cycle length. Implanted telemetry probes to measure heart rate and electrocardiographic characteristics revealed that the cKO mice have a slow heart rate, with episodes of sinus arrest in some mice. The PR interval (time between the onset of the P wave to the beginning of QRS complex) was increased, suggesting effects on the atrioventricular node. Ex vivo studies of whole heart or dissected heart regions disclosed impaired adaptive responses of the SAN to hypoxia, and this may have had long-term pathological consequences in the cKO mice. In conclusion, Kir6.1-containing KATP channels in the SAN have a role in excitability, heart rate control, and the electrophysiological adaptation of the SAN to hypoxia.
Collapse
Affiliation(s)
- Qadeer Aziz
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Malcolm Finlay
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - David Montaigne
- the Department of Clinical Physiology & Echocardiography, CHU Lille and the University of Lille, EGID, INSERM UMR1011, F-59000 Lille, France
| | - Leona Ojake
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Yiwen Li
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Naomi Anderson
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Andreas Ludwig
- the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany, and
| | - Andrew Tinker
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom,
| |
Collapse
|
24
|
McClenaghan C, Hanson A, Sala-Rabanal M, Roessler HI, Josifova D, Grange DK, van Haaften G, Nichols CG. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in K ATP channel gain-of-function by differential mechanisms. J Biol Chem 2017; 293:2041-2052. [PMID: 29275331 DOI: 10.1074/jbc.ra117.000351] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9, the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (KATP) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which KATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium (86Rb+) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases KATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in KATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS.
Collapse
Affiliation(s)
| | - Alex Hanson
- From the Departments of Cell Biology and Physiology and
| | | | - Helen I Roessler
- the Department of Medical Genetics, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands, and
| | - Dragana Josifova
- the Guy's and St. Thomas NHS Trust, Clinical Genetics Department, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Dorothy K Grange
- Pediatrics, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Gijs van Haaften
- the Department of Medical Genetics, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands, and
| | | |
Collapse
|
25
|
Cooper PE, McClenaghan C, Chen X, Stary-Weinzinger A, Nichols CG. Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel. J Biol Chem 2017; 292:17387-17398. [PMID: 28842488 DOI: 10.1074/jbc.m117.804971] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022] Open
Abstract
Cantu syndrome (CS) is a condition characterized by a range of anatomical defects, including cardiomegaly, hyperflexibility of the joints, hypertrichosis, and craniofacial dysmorphology. CS is associated with multiple missense mutations in the genes encoding the regulatory sulfonylurea receptor 2 (SUR2) subunits of the ATP-sensitive K+ (KATP) channel as well as two mutations (V65M and C176S) in the Kir6.1 (KCNJ8) subunit. Previous analysis of leucine and alanine substitutions at the Val-65-equivalent site (Val-64) in Kir6.2 indicated no major effects on channel function. In this study, we characterized the effects of both valine-to-methionine and valine-to-leucine substitutions at this position in both Kir6.1 and Kir6.2 using ion flux and patch clamp techniques. We report that methionine substitution, but not leucine substitution, results in increased open state stability and hence significantly reduced ATP sensitivity and a marked increase of channel activity in the intact cell irrespective of the identity of the coassembled SUR subunit. Sulfonylurea inhibitors, such as glibenclamide, are potential therapies for CS. However, as a consequence of the increased open state stability, both Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish high-affinity sensitivity to the KATP blocker glibenclamide in both intact cells and excised patches. This raises the possibility that, at least for some CS mutations, sulfonylurea therapy may not prove to be successful and highlights the need for detailed pharmacogenomic analyses of CS mutations.
Collapse
Affiliation(s)
- Paige E Cooper
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Conor McClenaghan
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
26
|
Gray MA, Graham EM, Atz AM, Bradley SM, Kavarana MN, Chowdhury SM. Preoperative echocardiographic measures of left ventricular mechanics are associated with postoperative vasoactive support in preterm infants undergoing patent ductus arteriosus ligation. J Thorac Cardiovasc Surg 2017; 154:2054-2059.e1. [PMID: 28743382 DOI: 10.1016/j.jtcvs.2017.06.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Preoperative risk factors associated with poor outcomes after patent ductus arteriosus ligation in preterm infants have not been well defined. The aim of this study was to determine the association between preoperative echocardiographic measures of left ventricular mechanics and postoperative clinical outcomes after patent ductus arteriosus ligation. METHODS Preterm infants less than 90 days of age with no other significant congenital anomalies who underwent patent ductus arteriosus ligation between 2007 and 2015 were considered for retrospective analysis. The primary outcome was peak postoperative vasoactive inotropic score. Conventional echocardiographic measures of ventricular size, function, and patent ductus arteriosus size were performed. Echocardiographic single-beat, pressure-volume loop analysis estimates of contractility (end-systolic elastance) and afterload (arterial elastance) were calculated. Ventriculoarterial coupling was assessed using the arterial elastance/end-systolic elastance ratio. Multivariable linear regression was performed using clinical and echocardiographic data. RESULTS Echocardiograms from 101 patients (42.5% male) were analyzed. We found a statistically significant association between vasoactive inotropic score and both end-systolic elastance and arterial elastance. No patient with arterial elastance/end-systolic elastance greater than 0.78 (n = 32) had a vasoactive inotropic score 20 or greater. Analysis of our secondary outcomes found associations between preoperative end-systolic elastance and postoperative urine output less than 1 mL/kg/h at 24 hours, creatinine change greater than 0.5 mg/dL, and time to first extubation. CONCLUSIONS End-systolic elastance and arterial elastance were the only predictors of postoperative vasoactive inotropic score after patent ductus arteriosus ligation in preterm infants. Those neonates with increased contractility and low afterload were at highest risk for elevated inotropic support. These findings suggest a role for echocardiographic end-systolic elastance and arterial elastance in the preoperative assessment of preterm infants undergoing patent ductus arteriosus ligation.
Collapse
Affiliation(s)
- Margaret A Gray
- Division of Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC.
| | - Eric M Graham
- Division of Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Andrew M Atz
- Division of Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Scott M Bradley
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Minoo N Kavarana
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Shahryar M Chowdhury
- Division of Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
27
|
Kirk EP, Scurr I, van Haaften G, van Haelst MM, Nichols CG, Williams M, Smithson SF, Grange DK. Clinical utility gene card for: Cantú syndrome. Eur J Hum Genet 2017; 25:ejhg2016185. [PMID: 28051078 DOI: 10.1038/ejhg.2016.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Edwin P Kirk
- Dept of Medical Genetics, Sydney Children's Hospital, Randwick NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick NSW, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie Williams
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Henn MC, Janjua MB, Zhang H, Kanter EM, Makepeace CM, Schuessler RB, Nichols CG, Lawton JS. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1. J Surg Res 2016; 206:460-465. [PMID: 27884343 DOI: 10.1016/j.jss.2016.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress. MATERIALS AND METHODS Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode's physiologic solution for 20 min, test solution (Tyrode's or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode's for 20 min. Myocyte volume and contractility were measured and compared. RESULTS WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress. CONCLUSIONS Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation.
Collapse
Affiliation(s)
- Matthew C Henn
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - M Burhan Janjua
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Haixia Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Evelyn M Kanter
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Carol M Makepeace
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Richard B Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|