1
|
Wu H, Li A, Zhang H, Li S, Yang C, Lv H, Yao Y. Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating. MICROBIOME 2024; 12:170. [PMID: 39252128 PMCID: PMC11386108 DOI: 10.1186/s40168-024-01908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Clean energy hydrogen (H2) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H2 production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H2 accumulation needs to be investigated. RESULTS Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H2 production (26.01 mL/g VS). H2 production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H2 production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), H2-producing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H2 consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H2 production. CONCLUSIONS The lignin degradation process does not directly determine H2 accumulation, which was actually regulated by bacteria/genes contributing to H2 production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H2 production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H2 production to further expanded the research horizon in this field. Video Abstract.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Suqi Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caiyun Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hongyi Lv
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Ye Y, Liu H, Wang Z, Qi Q, Du J, Tian S. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation. Biotechnol Lett 2024; 46:531-543. [PMID: 38607604 DOI: 10.1007/s10529-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.
Collapse
Affiliation(s)
- Yutong Ye
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Han Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Zhipeng Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Qi Qi
- Beijing Chaoyang Foreign Language School, Beijing, 100012, China
| | - Jiliang Du
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Shen Tian
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Pan C, Zhang M, Chen J, Lu H, Zhao X, Chen X, Wang L, Guo P, Liu S. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134313. [PMID: 38669927 DOI: 10.1016/j.jhazmat.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| | - Mingxiong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuemei Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350001, China
| | - Shuyu Liu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Iglesias Rando MR, Gorojovsky N, Zylberman V, Goldbaum FA, Craig PO. Improvement of Cellulomonas fimi endoglucanase CenA by multienzymatic display on a decameric structural scaffold. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12581-6. [PMID: 37212884 DOI: 10.1007/s00253-023-12581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.
Collapse
Affiliation(s)
- Matías R Iglesias Rando
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Natalia Gorojovsky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Vanesa Zylberman
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (CP 1405), Buenos Aires, Argentina
- Centro de Rediseño e Ingeniería de Proteínas (CRIP), UNSAM Campus Miguelete, 25 de Mayo y Francia (CP 1650), Gral. San Martín, Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Lamote B, da Fonseca MJM, Vanderstraeten J, Meert K, Elias M, Briers Y. Current challenges in designer cellulosome engineering. Appl Microbiol Biotechnol 2023; 107:2755-2770. [PMID: 36941434 DOI: 10.1007/s00253-023-12474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: • Construction of designer cellulosomes is a multi-step process. • Designer cellulosome research deals with multivariate construction challenges. • Boosting designer cellulosome efficiency requires exploring a vast design space.
Collapse
Affiliation(s)
- Babette Lamote
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Julie Vanderstraeten
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Kenan Meert
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Marte Elias
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, Szakacs G, Binod P. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. BIORESOURCE TECHNOLOGY 2023; 370:128555. [PMID: 36586428 DOI: 10.1016/j.biortech.2022.128555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.
Collapse
Affiliation(s)
- Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India.
| | - K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 689 122, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarkhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - George Szakacs
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, 1111 Budapest, Szent Gellert ter 4, Hungary
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
7
|
Manshadi MD, Mansoorifar A, Chiao JC, Beskok A. Impedance-Based Neutralizing Antibody Detection Biosensor with Application in SARS-CoV-2 Infection. Anal Chem 2023; 95:836-845. [PMID: 36592029 PMCID: PMC9843623 DOI: 10.1021/acs.analchem.2c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Although safe and efficacious coronavirus disease-2019 (COVID-19) vaccines are available, real protective immunity is revealed by the serum COVID-19 neutralizing antibody (NAb) concentration. NAbs deactivate the virus by attaching to the viral receptor-binding domain (RBD), which interacts with angiotensin-converting enzyme 2 (ACE2) on the human cell. This paper introduces inexpensive, rapid, sensitive, and quantifiable impedance-based immunosensors to evaluate the NAb. The sensor limit of detection is experimentally determined in different buffer dilutions using bovine IgG-anti-bovine IgG interaction. The dominance of AC electrokinetic transport and molecular diffusion in the sensor is investigated using scaling analysis and numerical simulations. The results demonstrated that the sensor detection mechanism is mainly based on the diffusion of the biomolecules onto the electrode surface. After evaluating the sensor working principles, viral RBD buffers, including different NAb concentrations, are applied to the sensor, immobilized with the human ACE2 (hACE2). Results demonstrate that the sensor is capable of NAb detection in the analytical measuring interval between 45 ng/mL and 185 ng/mL. Since the present sensor provides fast test results with lower costs, it can be used to assess the NAb in people's blood serum before receiving further COVID vaccine doses.
Collapse
Affiliation(s)
- Mohammad
K. D. Manshadi
- Mechanical
Engineering Department, Southern Methodist
University, Dallas, Texas75275, United States
| | - Amin Mansoorifar
- Mechanical
Engineering Department, Southern Methodist
University, Dallas, Texas75275, United States
| | - Jung-Chih Chiao
- Electrical
and Computer Engineering Department, Southern
Methodist University, Dallas, Texas75275, United States
| | - Ali Beskok
- Mechanical
Engineering Department, Southern Methodist
University, Dallas, Texas75275, United States
| |
Collapse
|
8
|
Moraïs S, Stern J, Artzi L, Fontes CMGA, Bayer EA, Mizrahi I. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2023; 2657:53-77. [PMID: 37149522 DOI: 10.1007/978-1-0716-3151-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Sarah Moraïs
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Edward A Bayer
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Tsai SL, Sun Q, Chen W. Advances in consolidated bioprocessing using synthetic cellulosomes. Curr Opin Biotechnol 2022; 78:102840. [PMID: 36356377 DOI: 10.1016/j.copbio.2022.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.
Collapse
Affiliation(s)
- Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
10
|
Singhvi M, Kim BS. Green hydrogen production through consolidated bioprocessing of lignocellulosic biomass using nanobiotechnology approach. BIORESOURCE TECHNOLOGY 2022; 365:128108. [PMID: 36270388 DOI: 10.1016/j.biortech.2022.128108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to develop a sustainable process for hydrogen production by implementing nanotechnology in combination with consolidated bioprocessing (CBP) approach from lignocellulosic biomass (LCB). Peroxidase mimicking CeFe3O4 nanoparticles (NPs, 4.0 g/L) were applied for degradation of lignin from raw corn cob (CC) biomass for generation of cellulose-hemicellulose fractions amenable towards Clostridium cellulovorans during fermentation process. NP-treated biomass exhibited 43.26 % lignin removal from raw CC which was further employed for hydrogen fermentation by C. cellulovorans through CBP method. The strain yielded maximum 78.45 mL of cumulative hydrogen with hydrogen production rate of 1.55 mL/h using NP-treated CC. To the best of our knowledge, this is the first study on enhanced hydrogen production using NP-treated CC biomass in single pot fermentation which can prove to be a simpler, easier, and more economical process.
Collapse
Affiliation(s)
- Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
11
|
Barber-Zucker S, Mateljak I, Goldsmith M, Kupervaser M, Alcalde M, Fleishman SJ. Designed High-Redox Potential Laccases Exhibit High Functional Diversity. ACS Catal 2022; 12:13164-13173. [PMID: 36366766 PMCID: PMC9638991 DOI: 10.1021/acscatal.2c03006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
White-rot fungi secrete an impressive repertoire of high-redox potential laccases (HRPLs) and peroxidases for efficient oxidation and utilization of lignin. Laccases are attractive enzymes for the chemical industry due to their broad substrate range and low environmental impact. Since expression of functional recombinant HRPLs is challenging, however, iterative-directed evolution protocols have been applied to improve their expression, activity, and stability. We implement a rational, stabilize-and-diversify strategy to two HRPLs that we could not functionally express. First, we use the PROSS stability-design algorithm to allow functional expression in yeast. Second, we use the stabilized enzymes as starting points for FuncLib active-site design to improve their activity and substrate diversity. Four of the FuncLib-designed HRPLs and their PROSS progenitor exhibit substantial diversity in reactivity profiles against high-redox potential substrates, including lignin monomers. Combinations of 3-4 subtle mutations that change the polarity, solvation, and sterics of the substrate-oxidation site result in orders of magnitude changes in reactivity profiles. These stable and versatile HRPLs are a step toward generating an effective lignin-degrading consortium of enzymes that can be secreted from yeast. The stabilize-and-diversify strategy can be applied to other challenging enzyme families to study and expand the utility of natural enzymes.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Ivan Mateljak
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
- EvoEnzyme
S.L., Parque Científico de Madrid, C/Faraday, 7, Campus de Cantoblanco, Madrid 28049, Spain
| | - Moshe Goldsmith
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Meital Kupervaser
- Nancy
and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
12
|
Tom LM, Aulitto M, Wu YW, Deng K, Gao Y, Xiao N, Rodriguez BG, Louime C, Northen TR, Eudes A, Mortimer JC, Adams PD, Scheller HV, Simmons BA, Ceja-Navarro JA, Singer SW. Low-abundance populations distinguish microbiome performance in plant cell wall deconstruction. MICROBIOME 2022; 10:183. [PMID: 36280858 PMCID: PMC9594917 DOI: 10.1186/s40168-022-01377-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/19/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant cell walls are interwoven structures recalcitrant to degradation. Native and adapted microbiomes can be particularly effective at plant cell wall deconstruction. Although most understanding of biological cell wall deconstruction has been obtained from isolates, cultivated microbiomes that break down cell walls have emerged as new sources for biotechnologically relevant microbes and enzymes. These microbiomes provide a unique resource to identify key interacting functional microbial groups and to guide the design of specialized synthetic microbial communities. RESULTS To establish a system assessing comparative microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. Moench) from compost inocula. Biomass loss and biochemical assays indicated that these microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from gene expression dynamics identified key groups and potential interactions within the adapted sorghum-degrading communities, including Actinotalea, Filomicrobium, and Gemmatimonadetes populations. Functional analysis demonstrated that the microbiomes proceeded through successive stages that are linked to enzymes that deconstruct plant cell wall polymers. The combination of network and functional analysis highlighted the importance of cellulose-degrading Actinobacteria in differentiating the performance of these microbiomes. CONCLUSIONS The two-tier cultivation of compost-derived microbiomes on sorghum led to the establishment of microbiomes for which community structure and performance could be assessed. The work reinforces the observation that subtle differences in community composition and the genomic content of strains may lead to significant differences in community performance. Video Abstract.
Collapse
Affiliation(s)
- Lauren M Tom
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martina Aulitto
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Naijia Xiao
- Institute of Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Clifford Louime
- College of Natural Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Systems and Genome Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Javier A Ceja-Navarro
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
13
|
Zheng F, Basit A, Zhuang H, Chen J, Zhang J, Chen W. Biochemical characterization of a novel acidophilic β-xylanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of beechwood xylan. Front Microbiol 2022; 13:998160. [PMID: 36199370 PMCID: PMC9527580 DOI: 10.3389/fmicb.2022.998160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Acidophilic β-xylanases have attracted considerable attention due to their excellent activity under extreme acidic environments and potential industrial utilizations. In this study, a novel β-xylanase gene (Xyl11) of glycoside hydrolase family 11, was cloned from Trichoderma asperellum ND-1 and efficiently expressed in Pichia pastoris (a 2.0-fold increase). Xyl11 displayed a maximum activity of 121.99 U/ml at pH 3.0 and 50°C, and exhibited strict substrate specificity toward beechwood xylan (Km = 9.06 mg/ml, Vmax = 608.65 μmol/min/mg). The Xyl11 retained over 80% activity at pH 2.0–5.0 after pretreatment at 4°C for 1 h. Analysis of the hydrolytic pattern revealed that Xyl11 could rapidly convert xylan to xylobiose via hydrolysis activity as well as transglycosylation. Moreover, the results of site-directed mutagenesis suggested that the Xyl11 residues, Glu127, Glu164, and Glu216, are essential catalytic sites, with Asp138 having an auxiliary function. Additionally, a high degree of synergy (15.02) was observed when Xyl11 was used in association with commercial β-xylosidase. This study provided a novel acidophilic β-xylanase that exhibits excellent characteristics and can, therefore, be considered a suitable candidate for extensive applications, especially in food and animal feed industries.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Fengzhen Zheng,
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Weiqing Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
14
|
Conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode. Appl Microbiol Biotechnol 2022; 106:5495-5509. [DOI: 10.1007/s00253-022-12072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
|
15
|
Evaluating Enzymatic Productivity—The Missing Link to Enzyme Utility. Int J Mol Sci 2022; 23:ijms23136908. [PMID: 35805910 PMCID: PMC9266678 DOI: 10.3390/ijms23136908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
Kinetic productivity analysis is critical to the characterization of enzyme catalytic performance and capacity. However, productivity analysis has been largely overlooked in the published literature. Less than 0.01% of studies which report on enzyme characterization present productivity analysis, despite the fact that this is the only measurement method that provides a reliable indicator of potential commercial utility. Here, we argue that reporting productivity data involving native, modified, and immobilized enzymes under different reaction conditions will be of immense value in optimizing enzymatic processes, with a view to accelerating biotechnological applications. With the use of examples from wide-ranging studies, we demonstrate that productivity is a measure of critical importance to the translational and commercial use of enzymes and processes that employ them. We conclude the review by suggesting steps to maximize the productivity of enzyme catalyzed reactions.
Collapse
|
16
|
Vanderstraeten J, da Fonseca MJM, De Groote P, Grimon D, Gerstmans H, Kahn A, Moraïs S, Bayer EA, Briers Y. Combinatorial assembly and optimisation of designer cellulosomes: a galactomannan case study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:60. [PMID: 35637485 PMCID: PMC9153192 DOI: 10.1186/s13068-022-02158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome. RESULTS VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers. CONCLUSION We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.
Collapse
Affiliation(s)
- Julie Vanderstraeten
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Maria João Maurício da Fonseca
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Philippe De Groote
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Dennis Grimon
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Hans Gerstmans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.,Laboratory for Biomolecular Discovery and Engineering, Department of Biology, VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| | - Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Whole-Genome Sequence and Comparative Analysis of Trichoderma asperellum ND-1 Reveal Its Unique Enzymatic System for Efficient Biomass Degradation. Catalysts 2022. [DOI: 10.3390/catal12040437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The lignocellulosic enzymes of Trichoderma asperellum have been intensely investigated toward efficient conversion of biomass into high-value chemicals/industrial products. However, lack of genome data is a remarkable hurdle for hydrolase systems studies. The secretory enzymes of newly isolated T. asperellum ND-1 during lignocellulose degradation are currently poorly known. Herein, a high-quality genomic sequence of ND-1, obtained by both Illumina HiSeq 2000 sequencing platforms and PacBio single-molecule real-time, has an assembly size of 35.75 Mb comprising 10,541 predicted genes. Secretome analysis showed that 895 proteins were detected, with 211 proteins associated with carbohydrate-active enzymes (CAZymes) responsible for biomass hydrolysis. Additionally, T. asperellum ND-1, T. atroviride IMI 206040, and T. virens Gv-298 shared 801 orthologues that were not identified in T. reesei QM6a, indicating that ND-1 may play critical roles in biological-control. In-depth analysis suggested that, compared with QM6a, the genome of ND-1 encoded a unique enzymatic system, especially hemicellulases and chitinases. Moreover, after comparative analysis of lignocellulase activities of ND-1 and other fungi, we found that ND-1 displayed higher hemicellulases (particularly xylanases) and comparable cellulases activities. Our analysis, combined with the whole-genome sequence information, offers a platform for designing advanced T. asperellum ND-1 strains for industrial utilizations, such as bioenergy production.
Collapse
|
18
|
Barber-Zucker S, Mindel V, Garcia-Ruiz E, Weinstein JJ, Alcalde M, Fleishman SJ. Stable and Functionally Diverse Versatile Peroxidases Designed Directly from Sequences. J Am Chem Soc 2022; 144:3564-3571. [PMID: 35179866 PMCID: PMC8895400 DOI: 10.1021/jacs.1c12433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/19/2022]
Abstract
White-rot fungi secrete a repertoire of high-redox potential oxidoreductases to efficiently decompose lignin. Of these enzymes, versatile peroxidases (VPs) are the most promiscuous biocatalysts. VPs are attractive enzymes for research and industrial use but their recombinant production is extremely challenging. To date, only a single VP has been structurally characterized and optimized for recombinant functional expression, stability, and activity. Computational enzyme optimization methods can be applied to many enzymes in parallel but they require accurate structures. Here, we demonstrate that model structures computed by deep-learning-based ab initio structure prediction methods are reliable starting points for one-shot PROSS stability-design calculations. Four designed VPs encoding as many as 43 mutations relative to the wildtype enzymes are functionally expressed in yeast, whereas their wildtype parents are not. Three of these designs exhibit substantial and useful diversity in their reactivity profiles and tolerance to environmental conditions. The reliability of the new generation of structure predictors and design methods increases the scale and scope of computational enzyme optimization, enabling efficient discovery and exploitation of the functional diversity in natural enzyme families directly from genomic databases.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Vladimir Mindel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Eva Garcia-Ruiz
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Jonathan J. Weinstein
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
19
|
Sharma A, Balda S, Capalash N, Sharma P. Engineering multifunctional enzymes for agro-biomass utilization. BIORESOURCE TECHNOLOGY 2022; 347:126706. [PMID: 35033642 DOI: 10.1016/j.biortech.2022.126706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.
Collapse
Affiliation(s)
- Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
20
|
Mao G, Wang K, Wang F, Li H, Zhang H, Xie H, Wang Z, Wang F, Song A. An Engineered Thermostable Laccase with Great Ability to Decolorize and Detoxify Malachite Green. Int J Mol Sci 2021; 22:11755. [PMID: 34769185 PMCID: PMC8583942 DOI: 10.3390/ijms222111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastewater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac) was cloned and expressed in Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152 family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of Mut2 at 50 °C and 60 °C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite green dye in 3 h at 70 °C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.
Collapse
Affiliation(s)
- Guotao Mao
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Fangyuan Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hao Li
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hongsen Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Xie
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhimin Wang
- Department of Applied Chemistry, College of Science, Henan Agricultural University, Zhengzhou 450002, China;
| | - Fengqin Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Andong Song
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
21
|
Clostridium thermocellum as a Promising Source of Genetic Material for Designer Cellulosomes: An Overview. Catalysts 2021. [DOI: 10.3390/catal11080996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant biomass-based biofuels have gradually substituted for conventional energy sources thanks to their obvious advantages, such as renewability, huge quantity, wide availability, economic feasibility, and sustainability. However, to make use of the large amount of carbon sources stored in the plant cell wall, robust cellulolytic microorganisms are highly demanded to efficiently disintegrate the recalcitrant intertwined cellulose fibers to release fermentable sugars for microbial conversion. The Gram-positive, thermophilic, cellulolytic bacterium Clostridium thermocellum possesses a cellulolytic multienzyme complex termed the cellulosome, which has been widely considered to be nature’s finest cellulolytic machinery, fascinating scientists as an auspicious source of saccharolytic enzymes for biomass-based biofuel production. Owing to the supra-modular characteristics of the C. thermocellum cellulosome architecture, the cellulosomal components, including cohesin, dockerin, scaffoldin protein, and the plentiful cellulolytic and hemicellulolytic enzymes have been widely used for constructing artificial cellulosomes for basic studies and industrial applications. In addition, as the well-known microbial workhorses are naïve to biomass deconstruction, several research groups have sought to transform them from non-cellulolytic microbes into consolidated bioprocessing-enabling microbes. This review aims to update and discuss the current progress in these mentioned issues, point out their limitations, and suggest some future directions.
Collapse
|
22
|
Tufail T, Saeed F, Afzaal M, Ain HBU, Gilani SA, Hussain M, Anjum FM. Wheat straw: A natural remedy against different maladies. Food Sci Nutr 2021; 9:2335-2344. [PMID: 33841849 PMCID: PMC8020915 DOI: 10.1002/fsn3.2030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
In millennia, much attention has been paid toward agro-industrial waste which consists of lignin and cellulosic biomass. In this perspective, biomass waste which consists of lignocellulosic mass is an inexpensive, renewable, abundant that provides a unique natural resource for large-scale and cost-effective bioenergy collection. In this current scenario, efforts are directed to briefly review the agro-industrial lignocellulosic biomass as a broad spectrum of numerous functional ingredients, its utilization, and respective health benefits with special to wheat straw. Wheat straw is lignocellulosic mass owing to the presence of cellulose, hemicellulose, and lignin. Its microbial culture is the most important and well adjusted, for a variety of applications in the fermentation substrate, feed, food, medicine, industry, and agriculture in order to increase soil fertility. In industrial fermentation, wheat straw can be used as substrates for the production of a wide range of hydrolytic enzymes, drugs, metabolites, and other biofuels as a low-cost substrate or a natural source. Conclusively, wheat straw is the best source to produce bioethanol, biogas, and biohydrogen in biorefineries because it is a renewable, widely distributed, and easily available with very low cost, and its consumption is protected and environment friendly. Wheat straw is a moiety which has health benefits including anti-inflammatory, antimicrobial, anti-artherogenic, anti-allergenic, antioxidant, antithrombotic, etc.
Collapse
Affiliation(s)
- Tabussam Tufail
- Faculty of allied health sciencesUniversity Institute of Diet and Nutritional sciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huma Bader Ul Ain
- Riphah College of Rehabilitation & Allied Health SciencesRiphah International University FaisalabadFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of allied health sciencesUniversity Institute of Diet and Nutritional sciencesThe University of LahoreLahorePakistan
| | | | | |
Collapse
|
23
|
Usmani Z, Sharma M, Awasthi AK, Sivakumar N, Lukk T, Pecoraro L, Thakur VK, Roberts D, Newbold J, Gupta VK. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. BIORESOURCE TECHNOLOGY 2021; 322:124548. [PMID: 33380376 DOI: 10.1016/j.biortech.2020.124548] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Growing concerns around the generation of biomass waste have triggered conversation around sustainable utilization of these seemingly waste materials as feedstock towards energy generation and production of chemicals and other value-added products. Thus, biotechniques such as utilization of microbes and enzymes derived thereof have become important avenues for green pretreatment and conversion of biomass wastes. Although the products of these bioconversions are greener at an overall level, their consumption and utilization still impact the environment. Hence it is important to understand the overall impact from cradle to grave through lifecycle assessment (LCA) techniques and find avenues of process optimization and better utilization of all the materials and products involved. Another factor to consider is overall cost optimization to make the process economically feasible, profitable and increase industrial adoption. This review brings forward these critical aspects to provide better understanding for the advancement of bioeconomy.
Collapse
Affiliation(s)
- Zeba Usmani
- Laboratory of Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Muscat, Oman
| | - Tiit Lukk
- Laboratory of Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Dave Roberts
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - John Newbold
- Dairy Research Centre, Scotland's Rural College (SRUC), Dumfries, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
24
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
25
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
26
|
Vanderstraeten J, Briers Y. Synthetic protein scaffolds for the colocalisation of co-acting enzymes. Biotechnol Adv 2020; 44:107627. [DOI: 10.1016/j.biotechadv.2020.107627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
27
|
|
28
|
Rueda AM, López de los Santos Y, Vincent AT, Létourneau M, Hernández I, Sánchez CI, Molina V. D, Ospina SA, Veyrier FJ, Doucet N. Genome sequencing and functional characterization of a Dictyopanus pusillus fungal enzymatic extract offers a promising alternative for lignocellulose pretreatment of oil palm residues. PLoS One 2020; 15:e0227529. [PMID: 32730337 PMCID: PMC7392265 DOI: 10.1371/journal.pone.0227529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The pretreatment of biomass remains a critical requirement for bio-renewable fuel production from lignocellulose. Although current processes primarily involve chemical and physical approaches, the biological breakdown of lignin using enzymes and microorganisms is quickly becoming an interesting eco-friendly alternative to classical processes. As a result, bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild species of white rot fungi were collected from Colombian forests based on their natural wood decay ability and high capacity to secrete oxidoreductases with high affinity for phenolic polymers such as lignin. Based on high activity obtained from solid-state fermentation using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS oxidation as an indication of laccase activity. Functional characterization of a crude enzymatic extract identified laccase activity as the main enzymatic contributor to fungal extracts, an observation supported by the identification of 13 putative genes encoding for homologous laccases in the genome. To the best of our knowledge, this represents the first report of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering means to exploit this species and its enzymes for the delignification process of lignocellulosic by-products from oil palm.
Collapse
Affiliation(s)
- Andrés M. Rueda
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Yossef López de los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Antony T. Vincent
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Inés Hernández
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Clara I. Sánchez
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Daniel Molina V.
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Sonia A. Ospina
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Frédéric J. Veyrier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| |
Collapse
|
29
|
Galera-Prat A, Vera AM, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. Impact of scaffoldin mechanostability on cellulosomal activity. Biomater Sci 2020; 8:3601-3610. [PMID: 32232253 DOI: 10.1039/c9bm02052g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignocellulose is the most abundant renewable carbon source in the biosphere. However, the main bottleneck in its conversion to produce second generation biofuels is the saccharification step: the hydrolysis of lignocellulosic material into soluble fermentable sugars. Some anaerobic bacteria have developed an extracellular multi-enzyme complex called the cellulosome that efficiently degrades cellulosic substrates. Cellulosome complexes rely on enzyme-integrating scaffoldins that are large non-catalytic scaffolding proteins comprising several cohesin modules and additional functional modules that mediate the anchoring of the complex to the cell surface and the specific binding to its cellulosic substrate. It was proposed that mechanical forces may affect the cohesins positioned between the cell- and cellulose-anchoring points in the so-called connecting region. Consequently, the mechanical resistance of cohesins within the scaffoldin is of great importance, both to understand cellulosome function and as a parameter of industrial interest, to better mimic natural complexes through the use of the established designer cellulosome technology. Here we study how the mechanical stability of cohesins in a scaffoldin affects the enzymatic activity of a cellulosome. We found that when a cohesin of low mechanical stability is positioned in the connecting region of a scaffoldin, the activity of the resulting cellulosome is reduced as opposed to a cohesin of higher mechanical stability. This observation directly relates mechanical stability of the scaffoldin-borne cohesins to cellulosome activity and provides a rationale for the design of artificial cellulosomes for industrial applications, by incorporating mechanical stability as a new industrial parameter in the biotechnology toolbox.
Collapse
Affiliation(s)
- Albert Galera-Prat
- Instituto Cajal, Department of Molecular, Cellular and Developmental Neurobiology. IC-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Dadwal A, Sharma S, Satyanarayana T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front Microbiol 2020; 11:1387. [PMID: 32670240 PMCID: PMC7327088 DOI: 10.3389/fmicb.2020.01387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is a renewable and sustainable energy source. Cellulases are the enzymes that cleave β-1, 4-glycosidic linkages in cellulose to liberate sugars that can be fermented to ethanol, butanol, and other products. Low enzyme activity and yield, and thermostability are, however, some of the limitations posing hurdles in saccharification of lignocellulosic residues. Recent advancements in synthetic and systems biology have generated immense interest in metabolic and genetic engineering that has led to the development of sustainable technology for saccharification of lignocellulosics in the last couple of decades. There have been several attempts in applying genetic engineering in the production of a repertoire of cellulases at a low cost with a high biomass saccharification. A diverse range of cellulases are produced by different microbes, some of which are being engineered to evolve robust cellulases. This review summarizes various successful genetic engineering strategies employed for improving cellulase kinetics and cellulolytic efficiency.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
31
|
An endoxylanase rapidly hydrolyzes xylan into major product xylobiose via transglycosylation of xylose to xylotriose or xylotetraose. Carbohydr Polym 2020; 237:116121. [PMID: 32241400 DOI: 10.1016/j.carbpol.2020.116121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Here, we proposed an effective strategy to enhance a novel endoxylanase (Taxy11) activity and elucidated an efficient catalysis mechanism to produce xylooligosaccharides (XOSs). Codon optimization and recruitment of natural propeptide in Pichia pastoris resulted in achievement of Taxy11 activity to 1405.65 ± 51.24 U/mL. Analysis of action mode reveals that Taxy11 requires at least three xylose (xylotriose) residues for hydrolysis to yield xylobiose. Results of site-directed mutagenesis indicate that residues Glu119, Glu210, and Asp53 of Taxy11 are key catalytic sites, while Asp203 plays an auxiliary role. The novel mechanism whereby Taxy11 catalyzes conversion of xylan or XOSs into major product xylobiose involves transglycosylation of xylose to xylotriose or xylotetraose as substrate, to form xylotetraose or xylopentaose intermediate, respectively. Taxy11 displayed highly hydrolytic activity toward corncob xylan, producing 50.44 % of xylobiose within 0.5 h. This work provides a cost-effective and sustainable way to produce value-added biomolecules XOSs (xylobiose-enriched) from agricultural waste.
Collapse
|
32
|
Shin J, Gray HB, Winkler JR. Stability/activity tradeoffs in Thermusthermophilus HB27 laccase. J Biol Inorg Chem 2020; 25:233-238. [PMID: 31970489 DOI: 10.1007/s00775-020-01754-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
We report the temperature dependence of the formal potential of type 1 copper (CuT1) in Thermusthermophilus HB27 laccase. Employing [Ru(NH3)4(bpy)](PF6)2 (0.505 vs. NHE) as the redox titrant, we found that the CuT12+/+ potential decreased from approximately 480 to 420 mV (vs. NHE) as the temperature was raised from 20 to 65 °C. Of importance is that the ΔSrc° of - 120 J mol-1 K-1 is substantially more negative than those for other blue copper proteins. We suggest that the highly unfavorable reduction entropy is attributable to CuT1 inaccessibility to the aqueous medium. Although the active site residues are buried, which is critical for maintaining thermostability, the flexibility around CuT1 is maintained, allowing enzyme activity at ambient temperature.
Collapse
Affiliation(s)
- Jieun Shin
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
33
|
Stanzione I, Pezzella C, Giardina P, Sannia G, Piscitelli A. Beyond natural laccases: extension of their potential applications by protein engineering. Appl Microbiol Biotechnol 2019; 104:915-924. [DOI: 10.1007/s00253-019-10147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
|
34
|
Martínez-Trujillo MA, Bautista-Rangel K, García-Rivero M, Martínez-Estrada A, Cruz-Díaz MR. Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess Biosyst Eng 2019; 43:413-427. [PMID: 31677001 DOI: 10.1007/s00449-019-02237-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
An integral bioprocess to produce lactic acid (LA) from banana peel (BP) was studied. Oxidases produced by Trametes versicolor and hydrolases produced by Aspergillus flavipes and Aspergillus niger saccharified BP at optimal conditions: 230 rpm, 66 g/L BP, and 73.5% (v/v) of enzymatic crude extract (using equal quantities of the enzymatic extracts). At bioreactor scale (1 L), the joint action of oxidases and hydrolases released 18 g/L of reducing sugars (RS) after 24 h (60% corresponded to glucose), consuming the BP polysaccharides. Lactobacillus delbrueckii fermented the released RS, producing 10 g/L of LA; while in the sequential fermentation (inoculating L. delbrueckii after saccharification), 28 g/L of LA were produced, observing an apparent decrease in feedback inhibition of hydrolases below 1.5 g/L of RS. This process is susceptible for upscaling to produce high LA concentrations and represents a platform to utilize agroindustrial wastes to obtain value-added products.
Collapse
Affiliation(s)
- María Aurora Martínez-Trujillo
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico.
| | - Karina Bautista-Rangel
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico
| | - Mayola García-Rivero
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico
| | - Abigail Martínez-Estrada
- Departamento de Ingeniería Y Tecnología, Facultad de Estudios Superiores Cuautitlán, UNAM, Campus 1, Av. 1 de Mayo, C.P. 54740, Cuautitlán Izcalli, Estado de México, Mexico
| | - Martín R Cruz-Díaz
- División de Ingeniería Química Y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Tecnológico Nacional de México, Av. Tecnológico s/n, C.P. 55210, Ecatepec de Morelos, Edo. de México, Mexico.
- Departamento de Ingeniería Y Tecnología, Facultad de Estudios Superiores Cuautitlán, UNAM, Campus 1, Av. 1 de Mayo, C.P. 54740, Cuautitlán Izcalli, Estado de México, Mexico.
| |
Collapse
|
35
|
Zhang C, Too HP. Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts. Curr Med Chem 2019; 26:2475-2484. [PMID: 28901274 DOI: 10.2174/0929867324666170912095755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 01/27/2023]
Abstract
Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or 'industrial workhorse' organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.
Collapse
Affiliation(s)
- Congqiang Zhang
- Biotransformation Innovation Platform (BioTrans), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heng-Phon Too
- Biotransformation Innovation Platform (BioTrans), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
36
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
37
|
Hu B, Zhu M. Reconstitution of cellulosome: Research progress and its application in biorefinery. Biotechnol Appl Biochem 2019; 66:720-730. [DOI: 10.1002/bab.1804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/03/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Bin‐Bin Hu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- Yunnan Academy of Tobacco Agricultural Sciences Kunming People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
| | - Ming‐Jun Zhu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
- College of Life and Geographic Sciences Kashi University Kashi People's Republic of China
- The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region Kashi University Kashi People's Republic of China
| |
Collapse
|
38
|
Sadeghian-Abadi S, Rezaei S, Yousefi-Mokri M, Faramarzi MA. Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:235-246. [PMID: 31125874 DOI: 10.1016/j.jenvman.2019.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Laccase mediated bio-delignification has shown promising results for the removal of lignin from bio-wastes and for providing a sustainable future for using of lignocellulosic materials in different industries. This study reports an extracellular laccase from Lentinus tigrinus with delignification capability. The production of laccase was enhanced through a solid-state fermentation on the pistachio shell bio-waste to 172.0 U mg-1 (8.2-fold) by one-factor-at-a-time optimizing of fermentation conditions. Laccase was purified using a new synthetic affinity resin yielding a specific activity of 543.6 U mg-1 and a 23.9-fold purification. The purified laccase was then immobilized covalently on the large pore magnetic SBA-15. Compared to free enzyme, immobilized enzyme maintained more stable at pH 2.0-11.0 and 25-55 °C, and against organic solvents, surfactants, metal ions, and inhibitors. The activity of both forms of the enzyme was increased with Cu2+, Ca+2, cetyltrimethylammonium bromide, and ethyl acetate. A 0.72 V redox potential caused enzyme specificity to various substrates. 80% of lignin content of the bio-waste was removed by 50 U mL-1 of immobilized enzyme after 8 h fermentation and delignification efficiency was greatly increased by applying higher enzyme dosages, surfactants, and organic solvents. In addition, residual activity was more than 50% after 20 cycles of delignification. The results of delignification were confirmed by GC-MS, SEM, and composition analysis of pistachio shells. This study illustrated the notable promise of the enzyme for biotechnological and environmental applications.
Collapse
Affiliation(s)
- Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Shahla Rezaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Mahsa Yousefi-Mokri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.
| |
Collapse
|
39
|
Ribeiro LF, Amarelle V, Alves LDF, Viana de Siqueira GM, Lovate GL, Borelli TC, Guazzaroni ME. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019; 24:molecules24162879. [PMID: 31398877 PMCID: PMC6719137 DOI: 10.3390/molecules24162879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.
Collapse
Affiliation(s)
- Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| | - Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, Montevideo, PC 11600, Uruguay
| | - Luana de Fátima Alves
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Gabriel Lencioni Lovate
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
40
|
Wang Y, Leng L, Islam MK, Liu F, Lin CSK, Leu SY. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization. Int J Mol Sci 2019; 20:ijms20133354. [PMID: 31288425 PMCID: PMC6651384 DOI: 10.3390/ijms20133354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ling Leng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Md Khairul Islam
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fanghua Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
41
|
Karnaouri A, Antonopoulou I, Zerva A, Dimarogona M, Topakas E, Rova U, Christakopoulos P. Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. BIORESOURCE TECHNOLOGY 2019; 279:362-372. [PMID: 30685134 DOI: 10.1016/j.biortech.2019.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Thermophilic enzyme systems are of major importance nowadays in all industrial processes due to their great performance at elevated temperatures. In the present review, an overview of the current knowledge on the properties of thermophilic and thermotolerant carbohydrate esterases and oxidative enzymes with great thermostability is provided, with respect to their potential use in biotechnological applications. A special focus is given to the lytic polysaccharide monooxygenases that are able to oxidatively cleave lignocellulose through the use of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. Structural characteristics of the enzymes, including active site conformation and surface properties are discussed and correlated with their substrate specificity and thermostability properties.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Io Antonopoulou
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anastasia Zerva
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Section of Process and Environmental Engineering, Department of Chemical Engineering, University of Patras, 26504 Rio, Patras, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
42
|
Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides. Sci Rep 2019; 9:5763. [PMID: 30962508 PMCID: PMC6453946 DOI: 10.1038/s41598-019-42206-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system. Here, we focus on the effect of spatial proximity when identical enzymes are immobilized onto a surface. By using an innovative grafting procedure based on the use of two engineered protein fragments, Jo and In, we produce model systems in which enzymes are immobilized at surface densities that can be controlled precisely. The enzyme used is a xylanase that participates to the hydrolysis of plant cell wall polymers. By using a small chromogenic substrate, we first show that the intrinsic activity of the enzymes is fully preserved upon immobilization and does not depend on surface density. However, when using beechwood xylan, a naturally occurring polysaccharide, as substrate, we find that the enzymatic efficiency decreases by 10–60% with the density of grafting. This unexpected result is probably explained through steric hindrance effects at the nanoscale that hinder proper interaction between the enzymes and the polymer. A second effect of enzyme immobilization at high densities is the clear tendency for the system to release preferentially shorter oligosaccharides from beechwood xylan as compared to enzymes in solution.
Collapse
|
43
|
Kahn A, Moraïs S, Galanopoulou AP, Chung D, Sarai NS, Hengge N, Hatzinikolaou DG, Himmel ME, Bomble YJ, Bayer EA. Creation of a functional hyperthermostable designer cellulosome. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:44. [PMID: 30858881 PMCID: PMC6394049 DOI: 10.1186/s13068-019-1386-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/20/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria. RESULTS Here, we report the design and function of a novel hyperthermostable "designer cellulosome" system, which is stable and active at 75 °C. Enzymes from Caldicellulosiruptor bescii, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from Clostridium thermocellum. CONCLUSION The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures.
Collapse
Affiliation(s)
- Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000 Beer-Sheva, Israel
| | - Anastasia P. Galanopoulou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Neal Hengge
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Dimitris G. Hatzinikolaou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
44
|
Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 2018; 114:106-113. [DOI: 10.1016/j.ijbiomac.2018.03.086] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 11/19/2022]
|
45
|
Tufail T, Saeed F, Imran M, Arshad MU, Anjum FM, Afzaal M, Bader Ul Ain H, Shahbaz M, Gondal TA, Hussain S. Biochemical characterization of wheat straw cell wall with special reference to bioactive profile. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1484759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tabussam Tufail
- Department of Food Science, Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umair Arshad
- Department of Food Science, Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Faqir Muhammad Anjum
- College of Food and Agricultural Sciences, King Saud, University, Riyadh, Saudi Arabia
| | - Muhammad Afzaal
- Department of Food Science, Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Huma Bader Ul Ain
- Department of Food Science, Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science & Technology, MNSUA, Multan, Pakistan
| | | | - Shahzad Hussain
- College of Food and Agricultural Sciences, King Saud, University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Yadav SK. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 245:1727-1739. [PMID: 28552567 DOI: 10.1016/j.biortech.2017.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, India.
| |
Collapse
|
47
|
Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci Rep 2017; 7:16429. [PMID: 29180686 PMCID: PMC5703875 DOI: 10.1038/s41598-017-16771-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022] Open
Abstract
Laccases are polyphenol oxidases with widespread applications in various industries. In the present study, the laccase from Cerrena sp. HYB07 was immobilized with four methods, namely entrapment in alginate, covalently binding to chitosan as well as formation of cross-linked enzyme aggregates (CLEAs) and magnetic CLEAs (M-CLEAs). The activity recovery rates of the immobilized laccases ranged from 29% to 68%. Immobilization elevated the reaction temperature optimum and reduced substrate specificity, but not necessarily the turnover rate. pH stability of immobilized laccases was improved compared with that of the free laccase, especially at acidic pH values. Thermal inactivation of all laccases followed a simple first-order exponential decay model, and immobilized laccases displayed higher thermostability, as manifested by lower thermal inactivation rate constants and longer enzyme half-life time. Operational stability of the immobilized laccase was demonstrated by decolorization of the triphenylmethane dye malachite green (MG) at 60 °C. MG decolorization with free laccase was accompanied by a shift of the absorption peak and accumulation of a stable, colored intermediate tetradesmethyl MG, probably due to lower thermostability of the free laccase and premature termination of the degradation pathway. In contrast, complete decolorization of MG was achieved with laccase CLEAs at 60 °C.
Collapse
|
48
|
Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme. Microorganisms 2017; 5:microorganisms5040074. [PMID: 29156585 PMCID: PMC5748583 DOI: 10.3390/microorganisms5040074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.
Collapse
|
49
|
De La Torre M, Martín-Sampedro R, Fillat Ú, Eugenio ME, Blánquez A, Hernández M, Arias ME, Ibarra D. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. ACTA ACUST UNITED AC 2017; 44:1561-1573. [DOI: 10.1007/s10295-017-1977-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
Abstract
Abstract
This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.
Collapse
Affiliation(s)
- María De La Torre
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | | | - Úrsula Fillat
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - María E Eugenio
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - Alba Blánquez
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - Manuel Hernández
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - María E Arias
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - David Ibarra
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| |
Collapse
|
50
|
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 2017; 7:323. [PMID: 28955620 PMCID: PMC5602783 DOI: 10.1007/s13205-017-0955-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- School of Biological Sciences, G. B. Pant, University of Agricultural and Technology, Pantnagar, Uttarakhand 263145 India
| | - Bindi Goradia
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research – Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 021 India
| | - Arunika Saxena
- Department of Chemistry, Samrat Prithviraj Chauhan Government College, Beawar Road, Ajmer, Rajasthan 305001 India
| |
Collapse
|