1
|
Steinz MM, Beard N, Shorter E, Lanner JT. Stable oxidative posttranslational modifications alter the gating properties of RyR1. J Gen Physiol 2024; 156:e202313515. [PMID: 39499505 PMCID: PMC11540854 DOI: 10.1085/jgp.202313515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging. While reactive oxygen species (ROS) and oxidative stress induce PTMs, the impact of stable oxidative modifications like 3-nitrotyrosine (3-NT) and malondialdehyde adducts (MDA) on RyR1 gating remains unclear. Mass spectrometry and single-channel recordings were used to study how 3-NT and MDA modify RyR1 and affect Po. Both modifications increased Po in a dose-dependent manner, with mass spectrometry identifying 30 modified residues out of 5035 amino acids per RyR1 monomer. Key modifications were found in domains critical for protein interaction and channel activation, including Y808/3NT in SPRY1, Y1081/3NT and H1254/MDA in SPRY2&3, and Q2107/MDA and Y2128/3NT in JSol, near the binding site of FKBP12. Though these modifications did not directly overlap with FKBP12 binding residues, they promoted FKBP12 dissociation from RyR1. These findings provide detailed insights into how stable oxidative PTMs on RyR1 residues alter channel gating, advancing our understanding of RyR1-mediated Ca2+ release in conditions associated with oxidative stress and muscle weakness.
Collapse
Affiliation(s)
- Maarten M. Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Beard
- Faculty or Science and Technology, University of Canberra, Canberra, Australia
| | - Emily Shorter
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Powers SK. Ventilator-induced diaphragm dysfunction: phenomenology and mechanism(s) of pathogenesis. J Physiol 2024; 602:4729-4752. [PMID: 39216087 DOI: 10.1113/jp283860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Sun QA, Grimmett ZW, Hess DT, Perez LG, Qian Z, Chaube R, Venetos NM, Plummer BN, Laurita KR, Premont RT, Stamler JS. Physiological role for S-nitrosylation of RyR1 in skeletal muscle function and development. Biochem Biophys Res Commun 2024; 723:150163. [PMID: 38820626 DOI: 10.1016/j.bbrc.2024.150163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Excitation-contraction coupling in skeletal muscle myofibers depends upon Ca2+ release from the sarcoplasmic reticulum through the ryanodine receptor/Ca2+-release channel RyR1. The RyR1 contains ∼100 Cys thiols of which ∼30 comprise an allosteric network subject to posttranslational modification by S-nitrosylation, S-palmitoylation and S-oxidation. However, the role and function of these modifications is not understood. Although aberrant S-nitrosylation of multiple unidentified sites has been associated with dystrophic diseases, malignant hyperthermia and other myopathic syndromes, S-nitrosylation in physiological situations is reportedly specific to a single (1 of ∼100) Cys in RyR1, Cys3636 in a manner gated by pO2. Using mice expressing a form of RyR1 with a Cys3636→Ala point mutation to prevent S-nitrosylation at this site, we showed that Cys3636 was the principal target of endogenous S-nitrosylation during normal muscle function. The absence of Cys3636 S-nitrosylation suppressed stimulus-evoked Ca2+ release at physiological pO2 (at least in part by altering the regulation of RyR1 by Ca2+/calmodulin), eliminated pO2 coupling, and diminished skeletal myocyte contractility in vitro and measures of muscle strength in vivo. Furthermore, we found that abrogation of Cys3636 S-nitrosylation resulted in a developmental defect reflected in diminished myofiber diameter, altered fiber subtypes, and altered expression of genes implicated in muscle development and atrophy. Thus, our findings establish a physiological role for pO2-coupled S-nitrosylation of RyR1 in skeletal muscle contractility and development and provide foundation for future studies of RyR1 modifications in physiology and disease.
Collapse
Affiliation(s)
- Qi-An Sun
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Zachary W Grimmett
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Lautaro G Perez
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ruchi Chaube
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Nicholas M Venetos
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Bradley N Plummer
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Richard T Premont
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Wu K, Shieh JS, Qin L, Guo JJ. Mitochondrial mechanisms in the pathogenesis of chronic inflammatory musculoskeletal disorders. Cell Biosci 2024; 14:76. [PMID: 38849951 PMCID: PMC11162051 DOI: 10.1186/s13578-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in enduring pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, configuration, and performance have been well-documented. Various disturbances, encompassing alterations in mitochondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibility to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochondria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been implicated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, metabolic irregularities, and heightened cytokine release, impeding the body's ability to repair tissues. This review provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculoskeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restoration of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
Collapse
Affiliation(s)
- Kailun Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University/Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People's Republic of China
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ling Qin
- Musculoskeletal Research Laboratory of the Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhang M, Yu Y, Qiu C, Xia X, Sun Y, Wang L, Ma G, Gao X. Effect of Individualized PEEP Guided by Driving Pressure on Diaphragm Function in Patients Undergoing Laparoscopic Radical Resection of Colorectal Cancer: A Randomized Controlled Trial. Med Sci Monit 2024; 30:e944022. [PMID: 38768093 PMCID: PMC11119925 DOI: 10.12659/msm.944022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The concept of driving pressure (ΔP) has been established to optimize mechanical ventilation-induced lung injury. However, little is known about the specific effects of setting individualized positive end-expiratory pressure (PEEP) with driving pressure guidance on patient diaphragm function. MATERIAL AND METHODS Ninety patients were randomized into 3 groups, with PEEP set to 0 in group C; 5 cmH₂O in group F; and individualized PEEP in group I, based on esophageal manometry. Diaphragm ultrasound was performed in the supine position at 6 consecutive time points from T0-T5: diaphragm excursion, end-expiratory diaphragm thickness (Tdi-ee), and diaphragm thickening fraction (DTF) were measured. Primary indicators included diaphragm excursion, Tdi-ee, and DTF at T0-T5, and the correlation between postoperative DTF and ΔP. Secondary indicators included respiratory mechanics, hemodynamic changes at intraoperative d0-d4 time points, and postoperative clinical pulmonary infection scores. RESULTS (1) Diaphragm function parameters reached the lowest point at T1 in all groups (P<0.001). (2) Compared with group C, diaphragm excursion decreased, Tdi-ee increased, and DTF was lower in groups I and F at T1-T5, with significant differences (P<0.05), but the differences between groups I and F were not significant (P>0.05). (3) DTF was significantly and positively correlated with mean intraoperative ΔP in each group at T3, and the correlation was stronger at higher levels of ΔP. CONCLUSIONS Individualized PEEP, achieved by esophageal manometry, minimizes diaphragmatic injury caused by mechanical ventilation based on lung protection, but its protection of the diaphragm during laparoscopic surgery is not superior to that of conventional ventilation strategies.
Collapse
|
6
|
Xing R, Yu H, Yu J, Zeng R, Xiang Z, Ma H, Li G, Zhao Y. Identification of key genes affecting ventilator-induced diaphragmatic dysfunction in diabetic mice. Front Genet 2024; 15:1387688. [PMID: 38784031 PMCID: PMC11112022 DOI: 10.3389/fgene.2024.1387688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Mechanical ventilation (MV) is often required in critically ill patients. However, prolonged mechanical ventilation can lead to Ventilator-induced diaphragmatic dysfunction (VIDD), resulting in difficulty in extubation after tracheal intubation, prolonged ICU stay, and increased mortality. At present, the incidence of diabetes is high in the world, and the prognosis of diabetic patients with mechanical ventilation is generally poor. Therefore, the role of diabetes in the development of VIDD needs to be discovered. Methods MV modeling was performed on C57 mice and DB mice, and the control group was set up in each group. After 12 h of mechanical ventilation, the muscle strength of the diaphragm was measured, and the muscle fiber immunofluorescence staining was used to verify the successful establishment of the MV model. RNA sequencing (RNA-seq) method was used to detect mRNA expression levels of the diaphragms of each group, and then differential expressed gene analysis, Heatmap analysis, WGCNA analysis, Venn analysis, GO and KEGG enrichment analysis were performed. qRT-PCR was used to verify the expression of the selected mRNAs. Results Our results showed that, compared with C57 control mice, the muscle strength and muscle fiber cross-sectional area of mice after mechanical ventilation decreased, and DB mice showed more obvious in this respect. RNA-seq showed that these differential expressed (DE) mRNAs were mainly related to genes such as extracellular matrix, collagen, elastic fiber and Fbxo32. GO and KEGG enrichment analysis showed that the signaling pathways associated with diabetes were mainly as follows: extracellular matrix (ECM), protein digestion and absorption, PI3K-Akt signaling pathway, calcium signaling pathway, MAPK signaling pathway and AGE-RAGE signaling pathway in diabetic complications, etc. ECM has the closest relationship with VIDD in diabetic mice. The key genes determined by WGCNA and Venn analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-seq. Conclusion VIDD can be aggravated in diabetic environment. This study provides new evidence for mRNA changes after mechanical ventilation in diabetic mice, suggesting that ECM and collagen may play an important role in the pathophysiological mechanism and progression of VIDD in diabetic mice, and provides some clues for the research, diagnosis, and treatment of VIDD in diabetic context.
Collapse
Affiliation(s)
- Rongchun Xing
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- The First College of Clinical Medical Science, Three Gorges University, Yichang, China
| | - Haibo Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijun Xiang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Gang Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
8
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
9
|
Dridi H, Yehya M, Barsotti R, Liu Y, Reiken S, Azria L, Yuan Q, Bahlouli L, Soni RK, Marks AR, Lacampagne A, Matecki S. Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation. PNAS NEXUS 2023; 2:pgad336. [PMID: 37954156 PMCID: PMC10635656 DOI: 10.1093/pnasnexus/pgad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Marc Yehya
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Lan Azria
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NewYork, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Alain Lacampagne
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Stefan Matecki
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| |
Collapse
|
10
|
Pearce L, Meizoso-Huesca A, Seng C, Lamboley CR, Singh DP, Launikonis BS. Ryanodine receptor activity and store-operated Ca 2+ entry: Critical regulators of Ca 2+ content and function in skeletal muscle. J Physiol 2023; 601:4183-4202. [PMID: 35218018 DOI: 10.1113/jp279512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation-contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+ ] of the junctional SR terminal cisternae ([Ca2+ ]jSR ) depletes. [Ca2+ ]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+ ]jSR with RyR1 activity probably depends on the SR Ca2+ -buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in-phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in-phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.
Collapse
Affiliation(s)
- Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cedric R Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Christensen M, Liang M. Critical care: A concept analysis. Int J Nurs Sci 2023; 10:403-413. [PMID: 37545780 PMCID: PMC10401358 DOI: 10.1016/j.ijnss.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Objective The terms critical care and the Intensive Care Unit (ICU) are often used interchangeably to describe a place of care. Defining critical care becomes challenging because of the colloquial use of the term. Using concept analysis allows for the development of definition and meaning. The aim of this concept analysis is to distinguish the use of the term critical care to develop an operational definition which describes what constitutes critical care. Method Walker and Avant's eight-step approach to concept analysis guided this study. Five databases (CINAHL, Scopus, PubMed, ProQuest Dissertation Abstracts and Medline in EBSCO) were searched for studies related to critical care. The search included both qualitative and quantitative studies written in English and published between 1990 and 2022. Results Of the 439 papers retrieved, 47 met the inclusion criteria. The defining attributes of critical care included 1) a maladaptive response to illness/injury, 2) admission modelling criteria, 3) advanced medical technologies, and 4) specialised health professionals. Antecedents were associated with illness/injury that progressed to a level of criticality with a significant decline in both physical and psychological functioning. Consequences were identified as either death or survival with/without experiencing post-ICU syndrome. Conclusion Describing critical care is often challenging because of the highly technical nature of the environment. This conceptual understanding and operational definition will inform future research as to the scope of critical care and allow for the design of robust evaluative instruments to better understand the nature of care in the intensive care environment.
Collapse
Affiliation(s)
- Martin Christensen
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
- The Interdisciplinary Centre for Qualitative Research, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mining Liang
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
- The Interdisciplinary Centre for Qualitative Research, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Mnuskina S, Bauer J, Wirth-Hücking A, Schneidereit D, Nübler S, Ritter P, Cacciani N, Li M, Larsson L, Friedrich O. Single fibre cytoarchitecture in ventilator-induced diaphragm dysfunction (VIDD) assessed by quantitative morphometry second harmonic generation imaging: Positive effects of BGP-15 chaperone co-inducer and VBP-15 dissociative corticosteroid treatment. Front Physiol 2023; 14:1207802. [PMID: 37440999 PMCID: PMC10333583 DOI: 10.3389/fphys.2023.1207802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.
Collapse
Affiliation(s)
- Sofia Mnuskina
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Bauer
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anette Wirth-Hücking
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA, United States
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
13
|
Abstract
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer's disease, posttraumatic stress disorder, and Huntington's disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Collapse
|
14
|
Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022; 600:4979-5004. [PMID: 36251564 PMCID: PMC10091733 DOI: 10.1113/jp283569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer cachexia is defined as a multi-factorial syndrome characterised by an ongoing loss of skeletal muscle mass and progressive functional impairment, estimated to affect 50-80% of patients and responsible for 20% of cancer deaths. Elevations in the morbidity and mortality rates of cachectic cancer patients has been linked to respiratory failure due to atrophy and dysfunction of the ventilatory muscles. Despite this, there is a distinct scarcity of research investigating the structural and functional condition of the respiratory musculature in cancer, with the majority of studies exclusively focusing on limb muscle. Treatment strategies are largely ineffective in mitigating the cachectic state. It is now widely accepted that an efficacious intervention will likely combine elements of pharmacology, nutrition and exercise. However, of these approaches, exercise has received comparatively little attention. Therefore, it is unlikely to be implemented optimally, whether in isolation or combination. In consideration of these limitations, the current review describes the mechanistic basis of cancer cachexia and subsequently explores the available respiratory- and exercise-focused literature within this context. The molecular basis of cachexia is thoroughly reviewed. The pivotal role of inflammatory mediators is described. Unravelling the mechanisms of exercise-induced support of muscle via antioxidant and anti-inflammatory effects in addition to promoting efficient energy metabolism via increased mitochondrial biogenesis, mitochondrial function and muscle glucose uptake provide avenues for interventional studies. Currently available pre-clinical mouse models including novel transgenic animals provide a platform for the development of multi-modal therapeutic strategies to protect respiratory muscles in people with cancer.
Collapse
Affiliation(s)
- Ben T. Murphy
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - John J. Mackrill
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
15
|
Melnikov IY, Tyganov SA, Sharlo KA, Ulanova AD, Vikhlyantsev IM, Mirzoev TM, Shenkman BS. Calpain-dependent degradation of cytoskeletal proteins as a key mechanism for a reduction in intrinsic passive stiffness of unloaded rat postural muscle. Pflugers Arch 2022; 474:1171-1183. [PMID: 35931829 DOI: 10.1007/s00424-022-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.
Collapse
Affiliation(s)
- I Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation.
| | - K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - A D Ulanova
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I M Vikhlyantsev
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - T M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| |
Collapse
|
16
|
Melville Z, Dridi H, Yuan Q, Reiken S, Wronska A, Liu Y, Clarke OB, Marks AR. A drug and ATP binding site in type 1 ryanodine receptor. Structure 2022; 30:1025-1034.e4. [PMID: 35580609 DOI: 10.1016/j.str.2022.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca2+ leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders. Using cryogenic-electron microscopy, we present a model of RyR1 with a 2.45-Å resolution before local refinement, revealing a binding site in the RY1&2 domain (3.10 Å local resolution), where the Rycal ARM210 binds cooperatively with ATP and stabilizes the closed state of RyR1.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Clyde & Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|
18
|
Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022; 54:102374. [PMID: 35738088 PMCID: PMC9233275 DOI: 10.1016/j.redox.2022.102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are malleable and undergo rapid remodeling in response to increased contractile activity (i.e., exercise) or prolonged periods of muscle inactivity (e.g., prolonged bedrest). Exploration of the cell signaling pathways regulating these skeletal muscle adaptations reveal that redox signaling pathways play a key role in the control of muscle remodeling during both exercise and prolonged muscle inactivity. In this regard, muscular exercise results in an acute increase in the production of reactive oxygen species (ROS) in the contracting fibers; however, this contraction-induced rise in ROS production rapidly declines when contractions cease. In contrast, prolonged muscle disuse results in a chronic elevation in ROS production within the inactive fibers. This difference in the temporal pattern of ROS production in muscle during exercise and muscle inactivity stimulates divergent cell-signaling pathways that activate both genomic and nongenomic mechanisms to promote muscle remodeling. This review examines the role that redox signaling plays in skeletal muscle adaptation in response to both prolonged muscle inactivity and endurance exercise training. We begin with a summary of the sites of ROS production in muscle fibers followed by a review of the cellular antioxidants that are responsible for regulation of ROS levels in the cell. We then discuss the specific redox-sensitive signaling pathways that promote skeletal muscle adaptation in response to both prolonged muscle inactivity and exercise. To stimulate future research, we close with a discussion of unanswered questions in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA.
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA
| |
Collapse
|
19
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
20
|
Sharlo KA, Lvova ID, Shenkman BS. Interaction of Oxidative Metabolism and Epigenetic Regulation of Gene Expression under Muscle Functional Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Slavin MB, Memme JM, Oliveira AN, Moradi N, Hood DA. Regulatory networks controlling mitochondrial quality control in skeletal muscle. Am J Physiol Cell Physiol 2022; 322:C913-C926. [PMID: 35353634 DOI: 10.1152/ajpcell.00065.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive plasticity of mitochondria within skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e. exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to PGC-1α and other regulators ultimately produces an abundance of high quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the UPRmt. The UPRmt monitors intra-organelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross-talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.
Collapse
Affiliation(s)
- Mikhaela B Slavin
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Jonathan M Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Neushaw Moradi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Napoli NJ, Rodrigues VR, Davenport PW. Characterizing and Modeling Breathing Dynamics: Flow Rate, Rhythm, Period, and Frequency. Front Physiol 2022; 12:772295. [PMID: 35264974 PMCID: PMC8899297 DOI: 10.3389/fphys.2021.772295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The characterization of breathing dynamics provides researchers and clinicians the ability to differentiate respiratory compensation, impairment, disease progression, ventilator assistance, and the onset of respiratory failure. However, within many sub-fields of respiratory physiology, we still have challenges identifying changes within the breathing dynamics and critical respiratory states. We discuss one fundamental modeling of breathing and how modeling imprecise assumptions decades ago regarding breathing are still propagating into our quantitative analysis today, limiting our characterization and modeling of breathing. The assumption that breathing is a continuous sinusoidal wave that can consist of a single frequency which is composed of a stationary time-invariant process has limited our expanded discussion of breathing dynamics, modeling, functional testings, and metrics. Therefore, we address major misnomers regarding breathing dynamics, specifically rate, rhythm, frequency, and period. We demonstrate how these misnomers impact the characterization and modeling through the force equations that are linked to the Work of Breathing (WoB) and our interpretation of breathing dynamics through the fundamental models and create possible erroneous evaluations of work of breathing. This discussion and simplified non-periodic WoB models ultimately sets the foundation for improved quantitative approaches needed to further our understanding of breathing dynamics, compensation, and adaptation.
Collapse
Affiliation(s)
- Nicholas J Napoli
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Human Informatics and Predictive Performance Optimization (HIPPO) Lab, University of Florida, Gainesville, FL, United States.,Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| | - Victoria R Rodrigues
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Human Informatics and Predictive Performance Optimization (HIPPO) Lab, University of Florida, Gainesville, FL, United States.,Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| | - Paul W Davenport
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States.,Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Reiken S, Sittenfeld L, Dridi H, Liu Y, Liu X, Marks AR. Alzheimer's-like signaling in brains of COVID-19 patients. Alzheimers Dement 2022; 18:955-965. [PMID: 35112786 PMCID: PMC9011576 DOI: 10.1002/alz.12558] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 01/18/2023]
Abstract
Introduction The mechanisms that lead to cognitive impairment associated with COVID‐19 are not well understood. Methods Brain lysates from control and COVID‐19 patients were analyzed for oxidative stress and inflammatory signaling pathway markers, and measurements of Alzheimer’s disease (AD)‐linked signaling biochemistry. Post‐translational modifications of the ryanodine receptor/calcium (Ca2+) release channels (RyR) on the endoplasmic reticuli (ER), known to be linked to AD, were also measured by co‐immunoprecipitation/immunoblotting of the brain lysates. Results We provide evidence linking SARS‐CoV‐2 infection to activation of TGF‐β signaling and oxidative overload. The neuropathological pathways causing tau hyperphosphorylation typically associated with AD were also shown to be activated in COVID‐19 patients. RyR2 in COVID‐19 brains demonstrated a “leaky” phenotype, which can promote cognitive and behavioral defects. Discussion COVID‐19 neuropathology includes AD‐like features and leaky RyR2 channels could be a therapeutic target for amelioration of some cognitive defects associated with SARS‐CoV‐2 infection and long COVID.
Collapse
Affiliation(s)
- Steve Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
24
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
25
|
Acute RyR1 Ca 2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 2021; 12:7219. [PMID: 34893614 PMCID: PMC8664928 DOI: 10.1038/s41467-021-27422-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Collapse
|
26
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
27
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
28
|
Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021; 10:antiox10040588. [PMID: 33920468 PMCID: PMC8070615 DOI: 10.3390/antiox10040588] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the body and is required for numerous vital functions, including breathing and locomotion. Notably, deterioration of skeletal muscle mass is also highly correlated to mortality in patients suffering from chronic diseases (e.g., cancer). Numerous conditions can promote skeletal muscle wasting, including several chronic diseases, cancer chemotherapy, aging, and prolonged inactivity. Although the mechanisms responsible for this loss of muscle mass is multifactorial, mitochondrial dysfunction is predicted to be a major contributor to muscle wasting in various conditions. This systematic review will highlight the biochemical pathways that have been shown to link mitochondrial dysfunction to skeletal muscle wasting. Importantly, we will discuss the experimental evidence that connects mitochondrial dysfunction to muscle wasting in specific diseases (i.e., cancer and sepsis), aging, cancer chemotherapy, and prolonged muscle inactivity (e.g., limb immobilization). Finally, in hopes of stimulating future research, we conclude with a discussion of important future directions for research in the field of muscle wasting.
Collapse
|
29
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
31
|
Mangner N, Garbade J, Heyne E, van den Berg M, Winzer EB, Hommel J, Sandri M, Jozwiak-Nozdrzykowska J, Meyer AL, Lehmann S, Schmitz C, Malfatti E, Schwarzer M, Ottenheijm CAC, Bowen TS, Linke A, Adams V. Molecular Mechanisms of Diaphragm Myopathy in Humans With Severe Heart Failure. Circ Res 2021; 128:706-719. [PMID: 33535772 DOI: 10.1161/circresaha.120.318060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jens Garbade
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Ephraim B Winzer
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jennifer Hommel
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Marcus Sandri
- Department of Cardiology (M.S., J.J.-N.), Heart Center Leipzig - University Hospital, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Anna L Meyer
- Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Germany (A.L.M.)
| | - Sven Lehmann
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Clara Schmitz
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Edoardo Malfatti
- Neurology, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, Garches, France (E.M.). U1179 UVSQ-INSERM, Université Versailles-Saint-Quentin-en-Yvelines, France
| | | | - Coen A C Ottenheijm
- Physiology, Amsterdam UMC (location VUmc), the Netherlands (M.v.d.B., C.A.C.O.)
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom (T.S.B.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| |
Collapse
|
32
|
Dridi H, Wu W, Reiken SR, Ofer RM, Liu Y, Yuan Q, Sittenfeld L, Kushner J, Muchir A, Worman HJ, Marks AR. Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum Mol Genet 2021; 29:3919-3934. [PMID: 33388782 PMCID: PMC7906753 DOI: 10.1093/hmg/ddaa278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Rachel M Ofer
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Jared Kushner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, 75013 Paris, France
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| |
Collapse
|
33
|
Reiken S, Dridi H, Sittenfeld L, Liu X, Marks AR. Alzheimer's-like remodeling of neuronal ryanodine receptor in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33619477 DOI: 10.1101/2021.02.18.431811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COVID-19, caused by SARS-CoV-2 involves multiple organs including cardiovascular, pulmonary and central nervous system. Understanding how SARS-CoV-2 infection afflicts diverse organ systems remains challenging 1,2 . Particularly vexing has been the problem posed by persistent organ dysfunction known as "long COVID," which includes cognitive impairment 3 . Here we provide evidence linking SARS-CoV-2 infection to activation of TGF-ß signaling and oxidative overload. One consequence is oxidation of the ryanodine receptor/calcium (Ca 2+ ) release channels (RyR) on the endo/sarcoplasmic (ER/SR) reticuli in heart, lung and brains of patients who succumbed to COVID-19. This depletes the channels of the stabilizing subunit calstabin2 causing them to leak Ca 2+ which can promote heart failure 4,5 , pulmonary insufficiency 6 and cognitive and behavioral defects 7-9 . Ex-vivo treatment of heart, lung, and brain tissues from COVID-19 patients using a Rycal drug (ARM210) 10 prevented calstabin2 loss and fixed the channel leak. Of particular interest is that neuropathological pathways activated downstream of leaky RyR2 channels in Alzheimer's Disease (AD) patients were activated in COVID-19 patients. Thus, leaky RyR2 Ca 2+ channels may play a role in COVID-19 pathophysiology and could be a therapeutic target for amelioration of some comorbidities associated with SARS-CoV-2 infection.
Collapse
|
34
|
Alomar FA, Tian C, Dash PK, McMillan JM, Gendelman HE, Gorantla S, Bidasee KR. Efavirenz, atazanavir, and ritonavir disrupt sarcoplasmic reticulum Ca 2+ homeostasis in skeletal muscles. Antiviral Res 2021; 187:104975. [PMID: 33450312 DOI: 10.1016/j.antiviral.2020.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
While muscle fatigue, pain and weakness are common co-morbidities in HIV-1 infected people, their underlying cause remain poorly defined. To this end, we evaluated whether the common antiretroviral drugs efavirenz (EFV), atazanavir (ATV) and ritonavir (RTV) could be a contributing factor by pertubating sarcoplasmic reticulum (SR) Ca2+ cycling. In live-cell imaging, EFV (6.0 μM), ATV (6.0 μM), and RTV (3.0 μM) elicited Ca2+ transients and blebbing of the plasma membranes of C2C12 skeletal muscle myotubes. Pretreating C2C12 skeletal muscle myotubes with the SR Ca2+ release channel blocker ryanodine (50 μM), slowed the rate and amplitude of Ca2+ release from and reuptake of Ca2+ into the SR. EFV, ATV and RTV (1 nM - 20 μM) potentiated and then displaced [3H] ryanodine binding to rabbit skeletal muscle ryanodine receptor Ca2+ release channel (RyR1). These drugs at concentrations 0.25-31.2 μM also increased and or decreased the open probability of RyR1 by altering its gating and conductance. ATV (≤5 μM) potentiated and >5μM inhibited the ability of sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA1) to hydrolyze ATP and transport Ca2+. RTV (2.5-31.5 μM) dose-dependently inhibited SERCA1-mediated, ATP-dependent Ca2+ transport. EFV (0.25-31.5 μM) had no measurable effect on SERCA1's ability to hydrolyze ATP and transport Ca2+. These data support the notion that EFV, ATV and RTV could be contributing to skeletal muscle co-morbidities in PLWH by modulating SR Ca2+ homeostasis.
Collapse
Affiliation(s)
- Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - JoEllyn M McMillan
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Nebraska Redox Biology Center, Lincoln, NE, USA.
| |
Collapse
|
35
|
Sklar MC, Madotto F, Jonkman A, Rauseo M, Soliman I, Damiani LF, Telias I, Dubo S, Chen L, Rittayamai N, Chen GQ, Goligher EC, Dres M, Coudroy R, Pham T, Artigas RM, Friedrich JO, Sinderby C, Heunks L, Brochard L. Duration of diaphragmatic inactivity after endotracheal intubation of critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:26. [PMID: 33430930 PMCID: PMC7798017 DOI: 10.1186/s13054-020-03435-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients intubated for mechanical ventilation, prolonged diaphragm inactivity could lead to weakness and poor outcome. Time to resume a minimal diaphragm activity may be related to sedation practice and patient severity. METHODS Prospective observational study in critically ill patients. Diaphragm electrical activity (EAdi) was continuously recorded after intubation looking for resumption of a minimal level of diaphragm activity (beginning of the first 24 h period with median EAdi > 7 µV, a threshold based on literature and correlations with diaphragm thickening fraction). Recordings were collected until full spontaneous breathing, extubation, death or 120 h. A 1 h waveform recording was collected daily to identify reverse triggering. RESULTS Seventy-five patients were enrolled and 69 analyzed (mean age ± standard deviation 63 ± 16 years). Reasons for ventilation were respiratory (55%), hemodynamic (19%) and neurologic (20%). Eight catheter disconnections occurred. The median time for resumption of EAdi was 22 h (interquartile range 0-50 h); 35/69 (51%) of patients resumed activity within 24 h while 4 had no recovery after 5 days. Late recovery was associated with use of sedative agents, cumulative doses of propofol and fentanyl, controlled ventilation and age (older patients receiving less sedation). Severity of illness, oxygenation, renal and hepatic function, reason for intubation were not associated with EAdi resumption. At least 20% of patients initiated EAdi with reverse triggering. CONCLUSION Low levels of diaphragm electrical activity are common in the early course of mechanical ventilation: 50% of patients do not recover diaphragmatic activity within one day. Sedatives are the main factors accounting for this delay independently from lung or general severity. Trial Registration ClinicalTrials.gov (NCT02434016). Registered on April 27, 2015. First patients enrolled June 2015.
Collapse
Affiliation(s)
- Michael Chaim Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Fabiana Madotto
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Value Based Health-Care Unit, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Annemijn Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Michela Rauseo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Ibrahim Soliman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - L Felipe Damiani
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Departamento de Ciencias de La Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irene Telias
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Sebastian Dubo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Departamento de Kinesiologiá, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.,Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
| | - Lu Chen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Nuttapol Rittayamai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Division of Respiratory Diseases and Tuberculosis, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 65106, Thailand
| | - Guang-Qiang Chen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Ewan C Goligher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Toronto General Hospital Research Institute, Toronto, ON, Canada.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada
| | - Martin Dres
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Pneumology and Critical Care Department, Public Assistance - Paris Hospital, Pitie-Salpetriere Hospital, Paris, France
| | - Remi Coudroy
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Médecine Intensive Réanimation, CHU de Poitiers, INSERM CIC1402 Alive Group, Université de Poitiers, Poitiers, France
| | - Tai Pham
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Paris, France
| | - Ricard M Artigas
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| | - Jan O Friedrich
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Christer Sinderby
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, Canada
| | - Leo Heunks
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 4th Floor, Room 411, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
36
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
37
|
Hyatt HW, Powers SK. Disturbances in Calcium Homeostasis Promotes Skeletal Muscle Atrophy: Lessons From Ventilator-Induced Diaphragm Wasting. Front Physiol 2020; 11:615351. [PMID: 33391032 PMCID: PMC7773636 DOI: 10.3389/fphys.2020.615351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Mechanical ventilation (MV) is often a life-saving intervention for patients in respiratory failure. Unfortunately, a common and undesired consequence of prolonged MV is the development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is commonly labeled “ventilator-induced diaphragm dysfunction” (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a major risk factor for the failure to wean patients from MV; this inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. Although several processes contribute to the development of VIDD, it is clear that oxidative stress leading to the rapid activation of proteases is a primary contributor. While all major proteolytic systems likely contribute to VIDD, emerging evidence reveals that activation of the calcium-activated protease calpain plays a required role. This review highlights the signaling pathways leading to VIDD with a focus on the cellular events that promote increased cytosolic calcium levels and the subsequent activation of calpain within diaphragm muscle fibers. In particular, we discuss the emerging evidence that increased mitochondrial production of reactive oxygen species promotes oxidation of the ryanodine receptor/calcium release channel, resulting in calcium release from the sarcoplasmic reticulum, accelerated proteolysis, and VIDD. We conclude with a discussion of important and unanswered questions associated with disturbances in calcium homeostasis in diaphragm muscle fibers during prolonged MV.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Dridi H, Liu X, Yuan Q, Reiken S, Yehia M, Sittenfeld L, Apostolou P, Buron J, Sicard P, Matecki S, Thireau J, Menuet C, Lacampagne A, Marks AR. Role of defective calcium regulation in cardiorespiratory dysfunction in Huntington's disease. JCI Insight 2020; 5:140614. [PMID: 32897880 PMCID: PMC7566717 DOI: 10.1172/jci.insight.140614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a progressive, autosomal dominant neurodegenerative disorder affecting striatal neurons beginning in young adults with loss of muscle coordination and cognitive decline. Less appreciated is the fact that patients with HD also exhibit cardiac and respiratory dysfunction, including pulmonary insufficiency and cardiac arrhythmias. The underlying mechanism for these symptoms is poorly understood. In the present study we provide insight into the cause of cardiorespiratory dysfunction in HD and identify a potentially novel therapeutic target. We now show that intracellular calcium (Ca2+) leak via posttranslationally modified ryanodine receptor/intracellular calcium release (RyR) channels plays an important role in HD pathology. RyR channels were oxidized, PKA phosphorylated, and leaky in brain, heart, and diaphragm both in patients with HD and in a murine model of HD (Q175). HD mice (Q175) with endoplasmic reticulum Ca2+ leak exhibited cognitive dysfunction, decreased parasympathetic tone associated with cardiac arrhythmias, and reduced diaphragmatic contractile function resulting in impaired respiratory function. Defects in cognitive, motor, and respiratory functions were ameliorated by treatment with a novel Rycal small-molecule drug (S107) that fixes leaky RyR. Thus, leaky RyRs likely play a role in neuronal, cardiac, and diaphragmatic pathophysiology in HD, and RyRs are a potential novel therapeutic target. This study explores the role of ryanodine receptor calcium channels in the brain, the heart, and the diaphragm and central versus peripheral pathophysiological mechanisms in Huntington’s disease.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steve Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Mohamad Yehia
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Panagiota Apostolou
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Julie Buron
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Pierre Sicard
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Jérome Thireau
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France.,LIA MusCaRyR, CNRS, Montpellier, France
| | - Clement Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Alain Lacampagne
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France.,LIA MusCaRyR, CNRS, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
39
|
Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, Kaufman DA. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler Thromb Vasc Biol 2020; 40:2586-2597. [PMID: 32960072 PMCID: PMC7571846 DOI: 10.1161/atvbaha.120.314515] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 emerged as a serious human pathogen in late 2019, causing the disease coronavirus disease 2019 (COVID-19). The most common clinical presentation of severe COVID-19 is acute respiratory failure consistent with the acute respiratory distress syndrome. Airway, lung parenchymal, pulmonary vascular, and respiratory neuromuscular disorders all feature in COVID-19. This article reviews what is known about the effects of severe acute respiratory syndrome coronavirus-2 infection on different parts of the respiratory system, clues to understanding the underlying biology of respiratory disease, and highlights current and future translation and clinical research questions.
Collapse
Affiliation(s)
- Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - Annemijn H Jonkman
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Toronto, Canada (A.H.J.).,Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (A.H.J.)
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - David A Kaufman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| |
Collapse
|
40
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
41
|
Kushnir A, Todd JJ, Witherspoon JW, Yuan Q, Reiken S, Lin H, Munce RH, Wajsberg B, Melville Z, Clarke OB, Wedderburn-Pugh K, Wronska A, Razaqyar MS, Chrismer IC, Shelton MO, Mankodi A, Grunseich C, Tarnopolsky MA, Tanji K, Hirano M, Riazi S, Kraeva N, Voermans NC, Gruber A, Allen C, Meilleur KG, Marks AR. Intracellular calcium leak as a therapeutic target for RYR1-related myopathies. Acta Neuropathol 2020; 139:1089-1104. [PMID: 32236737 DOI: 10.1007/s00401-020-02150-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 01/14/2023]
Abstract
RYR1 encodes the type 1 ryanodine receptor, an intracellular calcium release channel (RyR1) on the skeletal muscle sarcoplasmic reticulum (SR). Pathogenic RYR1 variations can destabilize RyR1 leading to calcium leak causing oxidative overload and myopathy. However, the effect of RyR1 leak has not been established in individuals with RYR1-related myopathies (RYR1-RM), a broad spectrum of rare neuromuscular disorders. We sought to determine whether RYR1-RM affected individuals exhibit pathologic, leaky RyR1 and whether variant location in the channel structure can predict pathogenicity. Skeletal muscle biopsies were obtained from 17 individuals with RYR1-RM. Mutant RyR1 from these individuals exhibited pathologic SR calcium leak and increased activity of calcium-activated proteases. The increased calcium leak and protease activity were normalized by ex-vivo treatment with S107, a RyR stabilizing Rycal molecule. Using the cryo-EM structure of RyR1 and a new dataset of > 2200 suspected RYR1-RM affected individuals we developed a method for assigning pathogenicity probabilities to RYR1 variants based on 3D co-localization of known pathogenic variants. This study provides the rationale for a clinical trial testing Rycals in RYR1-RM affected individuals and introduces a predictive tool for investigating the pathogenicity of RYR1 variants of uncertain significance.
Collapse
Affiliation(s)
- Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Harvey Lin
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ross H Munce
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Wajsberg
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaylee Wedderburn-Pugh
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Monique O Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheila Riazi
- Department of Anesthesia, University of Toronto and Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Natalia Kraeva
- Department of Anesthesia, University of Toronto and Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Is Mitochondrial Oxidative Stress the Key Contributor to Diaphragm Atrophy and Dysfunction in Critically Ill Patients? Crit Care Res Pract 2020; 2020:8672939. [PMID: 32377432 PMCID: PMC7191397 DOI: 10.1155/2020/8672939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Diaphragm dysfunction is prevalent in the progress of respiratory dysfunction in various critical illnesses. Respiratory muscle weakness may result in insufficient ventilation, coughing reflection suppression, pulmonary infection, and difficulty in weaning off respirators. All of these further induce respiratory dysfunction and even threaten the patients' survival. The potential mechanisms of diaphragm atrophy and dysfunction include impairment of myofiber protein anabolism, enhancement of myofiber protein degradation, release of inflammatory mediators, imbalance of metabolic hormones, myonuclear apoptosis, autophagy, and oxidative stress. Among these contributors, mitochondrial oxidative stress is strongly implicated to play a key role in the process as it modulates diaphragm protein synthesis and degradation, induces protein oxidation and functional alteration, enhances apoptosis and autophagy, reduces mitochondrial energy supply, and is regulated by inflammatory cytokines via related signaling molecules. This review aims to provide a concise overview of pathological mechanisms of diaphragmatic dysfunction in critically ill patients, with special emphasis on the role and modulating mechanisms of mitochondrial oxidative stress.
Collapse
|
43
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
44
|
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol 2020; 35:101480. [PMID: 32179050 PMCID: PMC7284919 DOI: 10.1016/j.redox.2020.101480] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we allude to potential interventions that can mitigate OTS in skeletal muscle.
Collapse
Affiliation(s)
- Arthur J Cheng
- York University, Faculty of Health/ School of Kinesiology and Health Sciences, Muscle Health Research Centre/ Muscle Calcium Dynamics Lab, 351 Farquharson Life Sciences Building, Toronto, M3J 1P3, Canada
| | - Baptiste Jude
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden.
| |
Collapse
|
45
|
Flatres A, Aarab Y, Nougaret S, Garnier F, Larcher R, Amalric M, Klouche K, Etienne P, Subra G, Jaber S, Molinari N, Matecki S, Jung B. Real-time shear wave ultrasound elastography: a new tool for the evaluation of diaphragm and limb muscle stiffness in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:34. [PMID: 32014005 PMCID: PMC6998330 DOI: 10.1186/s13054-020-2745-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle weakness following critical illness is the consequence of loss of muscle mass and alteration of muscle quality. It is associated with long-term disability. Ultrasonography is a reliable tool to quantify muscle mass, but studies that evaluate muscle quality at the critically ill bedside are lacking. Shear wave ultrasound elastography (SWE) provides spatial representation of soft tissue stiffness and measures of muscle quality. The reliability and reproducibility of SWE in critically ill patients has never been evaluated. METHODS Two operators tested in healthy controls and in critically ill patients the intra- and inter-operator reliability of the SWE using transversal and longitudinal views of the diaphragm and limb muscles. Reliability was calculated using the intra-class correlation coefficient and a bootstrap sampling method assessed their consistency. RESULTS We collected 560 images. Longitudinal views of the diaphragm (ICC 0.83 [0.50-0.94]), the biceps brachii (ICC 0.88 [0.67-0.96]) and the rectus femoris (ICC 0.76 [0.34-0.91]) were the most reliable views in a training set of healthy controls. Intra-class correlation coefficient for inter-operator reproducibility and intra-operator reliability was above 0.9 for all muscles in a validation set of healthy controls. In critically ill patients, inter-operator reproducibility and intra-operator 1 and 2 reliability ICCs were respectively 0.92 [0.71-0.98], 0.93 [0.82-0.98] and 0.92 [0.81-0.98] for the diaphragm; 0.96 [0.86-0.99], 0.98 [0.94-0.99] and 0.99 [0.96-1] for the biceps brachii and 0.91 [0.51-0.98], 0.97 [0.93-0.99] and 0.99 [0.97-1] for the rectus femoris. The probability to reach intra-class correlation coefficient greater than 0.8 in a 10,000 bootstrap sampling for inter-operator reproducibility was respectively 81%, 84% and 78% for the diaphragm, the biceps brachii and the rectus femoris respectively. CONCLUSIONS SWE is a reliable technique to evaluate limb muscles and the diaphragm in both healthy controls and in critically ill patients. TRIAL REGISTRATION The study was registered (ClinicalTrial NCT03550222).
Collapse
Affiliation(s)
- Aurelien Flatres
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Yassir Aarab
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Stephanie Nougaret
- IRCM, INSERM U1194, and Department of Radiology, Montpellier Cancer Research Institute, 208 Ave des Apothicaires, 34295, Montpellier, France
| | - Fanny Garnier
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Romaric Larcher
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Mathieu Amalric
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France
| | - Kada Klouche
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Pascal Etienne
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 34000, Montpellier, France
| | - Samir Jaber
- INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France.,Saint Eloi Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier Teaching Hospital, Montpellier, France
| | - Nicolas Molinari
- Biostatistics Department, Montpellier University and Montpellier Teaching Hospital, Montpellier, France
| | - Stefan Matecki
- INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Boris Jung
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France. .,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France.
| |
Collapse
|
46
|
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Diaphragm dysfunction and atrophy develop during controlled mechanical ventilation. Although oxidative stress injures muscle during controlled mechanical ventilation, it is unclear whether it causes autophagy or fiber atrophy. WHAT THIS ARTICLE TELLS US THAT IS NEW Pretreatment of rats undergoing 24 h of mechanical ventilation with N-acetylcysteine prevents decreases in diaphragm contractility, inhibits the autophagy and proteasome pathways, but has no influence on the development of diaphragm fiber atrophy. BACKGROUND Diaphragm dysfunction and atrophy develop during prolonged controlled mechanical ventilation. Fiber atrophy has been attributed to activation of the proteasome and autophagy proteolytic pathways. Oxidative stress activates the proteasome during controlled mechanical ventilation, but it is unclear whether it also activates autophagy. This study investigated whether pretreatment with the antioxidant N-acetylcysteine affects controlled mechanical ventilation-induced diaphragm contractile dysfunction, fiber atrophy, and proteasomal and autophagic pathway activation. The study also explored whether proteolytic pathway activity during controlled mechanical ventilation is mediated by microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes. METHODS Three groups of adult male rats were studied (n = 10 per group). The animals in the first group were anesthetized and allowed to spontaneously breathe. Animals in the second group were pretreated with saline before undergoing controlled mechanical ventilation for 24 h. The animals in the third group were pretreated with N-acetylcysteine (150 mg/kg) before undergoing controlled mechanical ventilation for 24 h. Diaphragm contractility and activation of the proteasome and autophagy pathways were measured. Expressions of microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes were measured with quantitative polymerase chain reaction. RESULTS Controlled mechanical ventilation decreased diaphragm twitch force from 428 ± 104 g/cm (mean ± SD) to 313 ± 50 g/cm and tetanic force from 2,491 ± 411 g/cm to 1,618 ± 177 g/cm. Controlled mechanical ventilation also decreased diaphragm fiber size, increased expression of several autophagy genes, and augmented Atrogin-1, MuRF1, and Nedd4 expressions by 36-, 41-, and 8-fold, respectively. Controlled mechanical ventilation decreased the expressions of six microRNAs (miR-20a, miR-106b, miR-376, miR-101a, miR-204, and miR-93) that regulate autophagy genes. Pretreatment with N-acetylcysteine prevented diaphragm contractile dysfunction, attenuated protein ubiquitination, and downregulated E3 ligase and autophagy gene expression. It also reversed controlled mechanical ventilation-induced microRNA expression decreases. N-Acetylcysteine pretreatment had no affect on fiber atrophy. CONCLUSIONS Prolonged controlled mechanical ventilation activates the proteasome and autophagy pathways in the diaphragm through oxidative stress. Pathway activation is accomplished, in part, through inhibition of microRNAs that negatively regulate autophagy-related genes.
Collapse
|
47
|
Dridi H, Yehya M, Barsotti R, Reiken S, Angebault C, Jung B, Jaber S, Marks AR, Lacampagne A, Matecki S. Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation. Free Radic Biol Med 2020; 146:383-391. [PMID: 31756525 DOI: 10.1016/j.freeradbiomed.2019.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE Ventilator-induced diaphragm dysfunction (VIDD) increases morbidity and mortality in critical care patients. Although VIDD has been associated with mitochondrial oxidative stress and calcium homeostasis impairment, the underling mechanisms are still unknown. We hypothesized that diaphragmatic mitochondrial oxidative stress causes remodeling of the ryanodine receptor (RyR1)/calcium release channel, contributing to sarcoplasmic reticulum (SR) Ca2+ leak, proteolysis and VIDD. METHOD In mice diaphragms mechanically ventilated for short (6 h) and long (12 h) period, we assessed mitochondrial ROS production, mitochondrial aconitase activity as a marker of mitochondrial oxidative stress, RyR1 remodeling and function, Ca2+ dependent proteolysis, TGFβ1 and STAT3 pathway, muscle fibers cross-sectional area, and diaphragm specific force production, with or without the mitochondrial targeted anti-oxidant peptide d-Arg-2', 6'-dimethyltyrosine-Lys-Phe-NH2 (SS31). MEASUREMENTS AND MAIN RESULTS 6 h of mechanical ventilation (MV) resulted in increased mitochondrial ROS production, reduction of mitochondrial aconitase activity, increased oxidation, S-nitrosylation, S-glutathionylation and Ser-2844 phosphorylation of RyR1, depletion of stabilizing subunit calstabin1 from RyR1, increased SR Ca2+ leak. Preventing mROS production by SS31 treatment does not affect the TGFβ1 and STAT3 activation, which suggests that mitochondrial oxidative stress is a downstream pathway to TGFβ1 and STAT3, early involved in VIDD. This is further supported by the fact that SS-31 rescue all the other described cellular events and diaphragm contractile dysfunction induced by MV, while SS20, an analog of SS31 lacking antioxidant properties, failed to prevent these cellular events and the contractile dysfunction. Similar results were found in ventilated for 12 h. Moreover, SS31 treatment prevented calpain1 activity and diaphragm atrophy observed after 12 h of MV. This study emphasizes that mitochondrial oxidative stress during 6 h-MV contributes to SR Ca2+ leak via RyR1 remodeling, and diaphragm weakness, while longer periods of MV (12 h) were also associated with increased Ca2+-dependent proteolysis and diaphragm atrophy.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Mohamad Yehya
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Claire Angebault
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France
| | - Boris Jung
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France
| | - Samir Jaber
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; St Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology Columbia University College of Physicians and Surgeons, New York, USA
| | - Alain Lacampagne
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France.
| | - Stephan Matecki
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295, Montpellier, France; Arnaud de Villeneuve Physiological Department, Montpellier University and Montpellier University Health Care Center, 34295, Montpellier, France.
| |
Collapse
|
48
|
Kusić D, Connolly J, Kainulainen H, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Ahmetov II, Britton SL, Koch LG, Burniston JG. Striated muscle-specific serine/threonine-protein kinase beta segregates with high versus low responsiveness to endurance exercise training. Physiol Genomics 2019; 52:35-46. [PMID: 31790338 DOI: 10.1152/physiolgenomics.00103.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bidirectional selection for either high or low responsiveness to endurance running has created divergent rat phenotypes of high-response trainers (HRT) and low-response trainers (LRT). We conducted proteome profiling of HRT and LRT gastrocnemius of 10 female rats (body weight 279 ± 35 g; n = 5 LRT and n = 5 HRT) from generation 8 of selection. Differential analysis of soluble proteins from gastrocnemius was conducted by label-free quantitation. Genetic association studies were conducted in 384 Russian international-level athletes (age 23.8 ± 3.4 yr; 202 men and 182 women) stratified to endurance or power disciplines. Proteomic analysis encompassed 1,024 proteins, 76 of which exhibited statistically significant (P < 0.05, false discovery rate <1%) differences between HRT and LRT muscle. There was significant enrichment of enzymes involved in glycolysis/gluconeogenesis in LRT muscle but no enrichment of gene ontology phrases in HRT muscle. Striated muscle-specific serine/threonine-protein kinase-beta (SPEG-β) exhibited the greatest difference in abundance and was 2.64-fold greater (P = 0.0014) in HRT muscle. Coimmunoprecipitation identified 24 potential binding partners of SPEG-β in HRT muscle. The frequency of the G variant of the rs7564856 polymorphism that increases SPEG gene expression was significantly greater (32.9 vs. 23.8%; OR = 1.6, P = 0.009) in international-level endurance athletes (n = 258) compared with power athletes (n = 126) and was significantly associated (β = 8.345, P = 0.0048) with a greater proportion of slow-twitch fibers in vastus lateralis of female endurance athletes. Coimmunoprecipitation of SPEG-β in HRT muscle discovered putative interacting proteins that link with previously reported differences in transforming growth factor-β signaling in exercised muscle.
Collapse
Affiliation(s)
- Denis Kusić
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Steven L Britton
- Department of Anaesthesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, Ohio
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
49
|
Wang LY, Yang PY, Chen YJ, Wu HD, Huang YH, Hsieh CH. Inspiratory muscle training attenuates irradiation-induced diaphragm dysfunction. Am J Transl Res 2019; 11:5599-5610. [PMID: 31632532 PMCID: PMC6789230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Because radiotherapy (RT) can induce diaphragm dysfunction, this study investigated the protective effect of inspiratory muscle training (IMT) on RT-induced diaphragm damage in patients with esophageal cancer during concurrent chemoradiotherapy (CCRT) in a preclinical setting, and an animal model was designed to confirm and explore the underlying mechanism. Six subjects who underwent CCRT were randomly enrolled in the control or concurrent-IMT group (n=3 per group). The training intensity was set to 30% maximal effort. The diaphragmatic function and functional exercise capacity were assessed weekly during the course of CCRT. Furthermore, Sprague-Dawley (SD) rats were randomly assigned to receive IMT using the tracheal banding method over a 1-week period (n=6) or the sham group (n=6). After training was completed, 5-Gy RT was applied to the diaphragm. All the rats were sacrificed 24 h following RT, and their diaphragms were removed and examined for contractile function, antioxidant capacity, and oxidative injury. In patients receiving IMT, the diaphragm activation efficiency and fatigability and the functional exercise capacity were improved during the CCRT course. The animals belonging to the training group demonstrated significantly higher peak twitch (P<0.01) and tetanus tension (P<0.001), less fatigue (P=0.04), lower protein carbonyl levels (P<0.01) and higher Cu/Zn-SOD and Mn-SOD mRNA expression levels (both P<0.05) compared with those belonging to the control group. Preclinical human and animal models show that the IMT-conditioned diaphragm exhibits better resistance to off-target irradiation damage, but studies with a larger patient sample size are warranted to confirm the applicability of this concept in clinical practice.
Collapse
Affiliation(s)
- Li-Ying Wang
- Physical Therapy Center, National Taiwan University HospitalTaipei, Taiwan, Republic of China
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan UniversityTaipei, Taiwan, Republic of China
| | - Pei-Yu Yang
- Physical Therapy Center, National Taiwan University HospitalTaipei, Taiwan, Republic of China
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan, Republic of China
- Department of Radiation Oncology, Mackay Memorial HospitalTaipei, Taiwan, Republic of China
- Department of Medical Research, Mackay Memorial HospitalTaipei, Taiwan, Republic of China
| | - Huey-Dong Wu
- Department of Integrated Diagnostic and Therapeutics, National Taiwan University HospitalTaipei, Taiwan, Republic of China
| | - Yi-Hsuan Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan UniversityTaipei, Taiwan, Republic of China
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan, Republic of China
- Faculty of Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan, Republic of China
- Department of Radiation Oncology, Far Eastern Memorial HospitalTaipei, Taiwan, Republic of China
| |
Collapse
|
50
|
Dexmedetomidine Impairs Diaphragm Function and Increases Oxidative Stress but Does Not Aggravate Diaphragmatic Atrophy in Mechanically Ventilated Rats. Anesthesiology 2019; 128:784-795. [PMID: 29346133 DOI: 10.1097/aln.0000000000002081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Anesthetics in ventilated patients are critical as any cofactor hampering diaphragmatic function may have a negative impact on the weaning progress and therefore on patients' mortality. Dexmedetomidine may display antioxidant and antiproteolytic properties, but it also reduced glucose uptake by the muscle, which may impair diaphragm force production. This study tested the hypothesis that dexmedetomidine could inhibit ventilator-induced diaphragmatic dysfunction. METHODS Twenty-four rats were separated into three groups (n = 8/group). Two groups were mechanically ventilated during either dexmedetomidine or pentobarbital exposure for 24 h, referred to as interventional groups. A third group of directly euthanized rats served as control. Force generation, fiber dimensions, proteolysis markers, protein oxidation and lipid peroxidation, calcium homeostasis markers, and glucose transporter-4 (Glut-4) translocation were measured in the diaphragm. RESULTS Diaphragm force, corrected for cross-sectional area, was significantly decreased in both interventional groups compared to controls and was significantly lower with dexmedetomidine compared to pentobarbital (e.g., 100 Hz: -18%, P < 0.0001). In contrast to pentobarbital, dexmedetomidine did not lead to diaphragmatic atrophy, but it induced more protein oxidation (200% vs. 73% in pentobarbital, P = 0.0015), induced less upregulation of muscle atrophy F-box (149% vs. 374% in pentobarbital, P < 0.001) and impaired Glut-4 translocation (-73%, P < 0.0005). It activated autophagy, the calcium-dependent proteases, and caused lipid peroxidation similarly to pentobarbital. CONCLUSIONS Twenty-four hours of mechanical ventilation during dexmedetomidine sedation led to a worsening of ventilation-induced diaphragm dysfunction, possibly through impaired Glut-4 translocation. Although dexmedetomidine prevented diaphragmatic fiber atrophy, it did not inhibit oxidative stress and activation of the proteolytic pathways.
Collapse
|