1
|
Ore A, Angelastro JM, Giulivi C. Integrating Mitochondrial Biology into Innovative Cell Therapies for Neurodegenerative Diseases. Brain Sci 2024; 14:899. [PMID: 39335395 PMCID: PMC11429837 DOI: 10.3390/brainsci14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The role of mitochondria in neurodegenerative diseases is crucial, and recent developments have highlighted its significance in cell therapy. Mitochondrial dysfunction has been implicated in various neurodegenerative disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's diseases. Understanding the impact of mitochondrial biology on these conditions can provide valuable insights for developing targeted cell therapies. This mini-review refocuses on mitochondria and emphasizes the potential of therapies leveraging mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, stem cell-derived secretions, and extracellular vesicles. Mesenchymal stem cell-mediated mitochondria transfer is highlighted for restoring mitochondrial health in cells with dysfunctional mitochondria. Additionally, attention is paid to gene-editing techniques such as mito-CRISPR, mitoTALENs, mito-ZNFs, and DdCBEs to ensure the safety and efficacy of stem cell treatments. Challenges and future directions are also discussed, including the possible tumorigenic effects of stem cells, off-target effects, disease targeting, immune rejection, and ethical issues.
Collapse
Affiliation(s)
- Adaleiz Ore
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- Department of Chemical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- University of California Medical Investigations of Neurodevelopmental Disorders Institute (MIND Institute), University of California Health, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
4
|
Huang Y, Wang Y, Deng J, Gao S, Qiu J, He J, Yang T, Tan N, Cheng S, Song Z. Research on the anti-oxidant and anti-aging effects of Polygonatum kingianum saponins in Caenorhabditis elegans. Heliyon 2024; 10:e35556. [PMID: 39170193 PMCID: PMC11336756 DOI: 10.1016/j.heliyon.2024.e35556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and its impact on aging are critical areas of research. Natural anti-oxidants, such as saponins found in Polygonatum sibiricum, hold promise as potential clinical interventions against aging. In this study, we utilized the nematode model organism, Caenorhabditis elegans, to investigate the pharmacological effects of Polygonatum sibiricum saponins (PKS) on antioxidation and anti-aging. The results demonstrated a significant anti-aging biological activity associated with PKS. Through experiments involving lifespan and stress, lipofuscin, q-PCR, and ROS measurement, we found that PKS effectively mitigated aging-related processes. Furthermore, the mechanism underlying these anti-aging effects was linked to the SKN-1 signaling pathway. PKS increased the nuclear localization of the SKN-1 transcription factor, leading to the up-regulation of downstream anti-oxidant genes, such as gst-4 and sod-3, and a substantial reduction in intracellular ROS levels within the nematode. In conclusion, our study sheds light on the anti-oxidant and anti-aging properties of PKS in C. elegans. This research not only contributes to understanding the biological mechanisms involved but also highlights the potential therapeutic applications of these natural compounds in combating aging-related processes.
Collapse
Affiliation(s)
- Yaqi Huang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yetong Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sijie Gao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiakang Qiu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Tong Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Nianhua Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
5
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04394-z. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
6
|
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1437939. [PMID: 39119604 PMCID: PMC11306042 DOI: 10.3389/fphar.2024.1437939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.
Collapse
Affiliation(s)
| | - Lluís Riera-Ponsati
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | | |
Collapse
|
7
|
Kumar Saini S, Singh D. Mitochondrial mechanisms in Cerebral Ischemia-Reperfusion Injury: Unravelling the intricacies. Mitochondrion 2024; 77:101883. [PMID: 38631511 DOI: 10.1016/j.mito.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Cerebral ischemic stroke is a major contributor to physical impairments and premature death worldwide. The available reperfusion therapies for stroke in the form of mechanical thrombectomy and intravenous thrombolysis increase the risk of cerebral ischemia-reperfusion (I-R) injury due to sudden restoration of blood supply to the ischemic region. The injury is manifested by hemorrhagic transformation, worsening of neurological impairments, cerebral edema, and progression to infarction in surviving patients. A complex network of multiple pathological processes has been known to be involved in the pathogenesis of I-R injury. Primarily, 3 major contributors namely oxidative stress, neuroinflammation, and mitochondrial failure have been well studied in I-R injury. A transcription factor, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial defensive role in resisting the deleterious effects of I-R injury and potentiating the cellular protective mechanisms. In this review, we delve into the critical function of mitochondria and Nrf2 in the context of cerebral I-R injury. We summarized how oxidative stress, neuroinflammation, and mitochondrial anomaly contribute to the pathophysiology of I-R injury and further elaborated the role of Nrf2 as a pivotal guardian of cellular integrity. The review further highlighted Nrf2 as a putative therapeutic target for mitochondrial dysfunction in cerebral I-R injury management.
Collapse
Affiliation(s)
- Shiv Kumar Saini
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Carrow KP, Hamilton HL, Hopps MP, Li Y, Qiao B, Payne NC, Thompson MP, Zhang X, Magassa A, Fattah M, Agarwal S, Vincent MP, Buyanova M, Bertin PA, Mazitschek R, Olvera de la Cruz M, Johnson DA, Johnson JA, Gianneschi NC. Inhibiting the Keap1/Nrf2 Protein-Protein Interaction with Protein-Like Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311467. [PMID: 38241649 PMCID: PMC11257647 DOI: 10.1002/adma.202311467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer-based proteomimetics. The protein-like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1-binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell-penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2-inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.
Collapse
Affiliation(s)
- Kendal P Carrow
- Department of Biomedical Engineering, McCormick School of Engineering, Medical Scientist Training Program, Feinberg School of Medicine, International Institute for Nanotechnology, Northwestern University, Evanston, 60208, IL, USA
| | - Haylee L Hamilton
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Madeline P Hopps
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York, New York, 10010, NY, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Matthew P Thompson
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Xiaoyu Zhang
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Assa Magassa
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Mara Fattah
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Shivangi Agarwal
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Michael P Vincent
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Marina Buyanova
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Paul A Bertin
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, 60208, IL, USA
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, International Institute for Nanotechnology, Northwestern University, Evanston, 60208, IL, USA
| |
Collapse
|
10
|
Liu X, Wang F, Fan X, Chen M, Xu X, Xu Q, Zhu H, Xu A, Pouladi MA, Xu X. CHCHD2 up-regulation in Huntington disease mediates a compensatory protective response against oxidative stress. Cell Death Dis 2024; 15:126. [PMID: 38341417 PMCID: PMC10858906 DOI: 10.1038/s41419-024-06523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by the abnormal expansion of a polyglutamine tract resulting from a mutation in the HTT gene. Oxidative stress has been identified as a significant contributing factor to the development of HD and other neurodegenerative diseases, and targeting anti-oxidative stress has emerged as a potential therapeutic approach. CHCHD2 is a mitochondria-related protein involved in regulating cell migration, anti-oxidative stress, and anti-apoptosis. Although CHCHD2 is highly expressed in HD cells, its specific role in the pathogenesis of HD remains uncertain. We postulate that the up-regulation of CHCHD2 in HD models represents a compensatory protective response against mitochondrial dysfunction and oxidative stress associated with HD. To investigate this hypothesis, we employed HD mouse striatal cells and human induced pluripotent stem cells (hiPSCs) as models to examine the effects of CHCHD2 overexpression (CHCHD2-OE) or knockdown (CHCHD2-KD) on the HD phenotype. Our findings demonstrate that CHCHD2 is crucial for maintaining cell survival in both HD mouse striatal cells and hiPSCs-derived neurons. Our study demonstrates that CHCHD2 up-regulation in HD serves as a compensatory protective response against oxidative stress, suggesting a potential anti-oxidative strategy for the treatment of HD.
Collapse
Affiliation(s)
- Xuanzhuo Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Department of Neurology, Taihe Hospital of Shiyan, Affiliated Hospital of Hubei Medical University, Shiyan, 442000, China
| | - Fang Wang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xinman Fan
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Mingyi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xiaoxin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Qiuhong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China.
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
11
|
Wang J, Cao Y, Lu Y, Zhu H, Zhang J, Che J, Zhuang R, Shao J. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases. Eur J Med Chem 2024; 264:115998. [PMID: 38043492 DOI: 10.1016/j.ejmech.2023.115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiaan Shao
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
12
|
Ikpeama EU, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Nwaogazie IL, Orisakwe OE. Selenium and zinc protect against heavy metal mixture-induced, olfactory bulb and hippocampal damage by augmenting antioxidant capacity and activation of Nrf2-Hmox-1 signaling in male rats. Int J Neurosci 2023:1-15. [PMID: 38108304 DOI: 10.1080/00207454.2023.2295227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE/AIM OF THE STUDY Heavy metals and metalloids have been implicated in neurodenerative diseases. Present study has evaluated the potential protective effects of Se and Zn on heavy metals and metalloids mixture-induced (Cd, Pb, Hg and As) toxicity in the hippocampus and olfactory bulb in male rats. MATERIALS AND METHODS Five groups of Wistar rats were randomly divided in to: controls, toxic metals mixture (TMM) exposed rats (PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1 and NaAsO3, 10 mg·kg-1)), TMM + Zn, TMM + Se and TMM-+Zn + Se groups and were orally treated for 60 days. RESULTS We found that in hippocampus and olfactory bulb, TMM generated increased lipid peroxidation and diminished antioxidant capacity. These adverse effects induced by TMM were alleviated by Zn and Se co-treatment; moreover, essential trace elements (Zn and Se) decreased activity of acetylcholinesterase, reduced Cd, Pb, Hg and As bioaccumulation in hippocampus and olfactory bulb and decreased levels of TNF-α in the hippocampus. TMM treated rats had lower levels of Hmox-1 (hippocampus), higher levels of Nrf2 (olfactory bulb and hippocampus) and NF-kB (olfactory bulb). TMM treated rats showed significantly highest time in locating the escape hole. Histopathological examination revealed hypertrophied granule cells in OB of TMM exposed rats. CONCLUSION Zn and Se supplementation can reverse quaternary mixture-induced (Cd, Pb, Hg and As) toxicity in hippocampus and OB in male albino rats.
Collapse
Affiliation(s)
- Evelyn U Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| |
Collapse
|
13
|
Chen WT, Dodson M. The untapped potential of targeting NRF2 in neurodegenerative disease. FRONTIERS IN AGING 2023; 4:1270838. [PMID: 37840813 PMCID: PMC10569223 DOI: 10.3389/fragi.2023.1270838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Since its initial discovery almost three decades ago, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has been shown to regulate a host of downstream transcriptional responses and play a critical role in preventing or promoting disease progression depending on the context. Critically, while the importance of proper nuclear factor erythroid 2-related factor 2 function has been demonstrated across a variety of pathological settings, the ability to progress NRF2-targeted therapeutics to clinic has remained frustratingly elusive. This is particularly true in the case of age-related pathologies, where nuclear factor erythroid 2-related factor 2 is a well-established mitigator of many of the observed pathogenic effects, yet options to target this pathway remain limited. Along these lines, loss of nuclear factor erythroid 2-related factor 2 function has clearly been shown to enhance neuropathological outcomes, with enhancing nuclear factor erythroid 2-related factor 2 pathway activation to prevent neurodegenerative/neurological disease progression continuing to be an active area of interest. One critical obstacle in generating successful therapeutics for brain-related pathologies is the ability of the compound to cross the blood brain barrier (BBB), which has also hampered the implementation of several promising nuclear factor erythroid 2-related factor 2 inducers. Another limitation is that many nuclear factor erythroid 2-related factor 2 activators have undesirable off-target effects due to their electrophilic nature. Despite these constraints, the field has continued to evolve, and several viable means of targeting nuclear factor erythroid 2-related factor 2 in a neuropathological context have emerged. In this perspective, we will briefly discuss the key findings and promising therapeutic options that have been discovered to date, as well as highlight emerging areas of NRF2-neurodegeneration research that provide hope for successfully targeting this pathway in the future.
Collapse
Affiliation(s)
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
15
|
Sethi P, Mehan S, Khan Z, Chhabra S. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations. Neurotoxicology 2023; 98:61-85. [PMID: 37549874 DOI: 10.1016/j.neuro.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
16
|
Petsouki E, Ender S, Sosa Cabrera SN, Heiss EH. AMPK-Mediated Phosphorylation of Nrf2 at S374/S408/S433 Favors Its βTrCP2-Mediated Degradation in KEAP1-Deficient Cells. Antioxidants (Basel) 2023; 12:1586. [PMID: 37627580 PMCID: PMC10451539 DOI: 10.3390/antiox12081586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Nrf2 is a transcription factor facilitating cells' resilience against redox and various other forms of stress. In the absence of stressors, KEAP1 and/or βTrCP mediate the ubiquitination of Nrf2 and prevent Nrf2-dependent gene expression and detoxification. AMPK regulates cellular energy homeostasis and redox balance. Previous studies indicated a potential Nrf2-AMPK cooperativity. In line with this, our lab had previously identified three AMPK-dependent phosphorylation sites (S374/408/433) in Nrf2. Given their localization in or near the Neh6 domain, known to regulate βTrCP-mediated degradation, we examined whether they may influence the βTrCP-driven degradation of Nrf2. By employing expression plasmids for WT and triple mutant (TM)-Nrf2 (Nrf2S374/408/433→A), (co)immunoprecipitation, proximity ligation, protein half-life, knockdown, ubiquitination experiments, and qPCR in Keap1-null mouse embryonic fibroblasts, we show that TM-Nrf2S→A374/408/433 had enhanced stability due to impeded interaction with βTrCP2 and reduced ubiquitination in comparison to WT-Nrf2. In addition, TM-Nrf2 elicited higher expression of the Nrf2 target gene Gclc, potentiated in the presence of a pharmacological AMPK activator. Overall, we propose that AMPK-dependent phospho-sites of Nrf2 can favor its βTrCP2-mediated degradation and dampen the extent of Nrf2 target gene expression. Therefore, targeting AMPK might be able to diminish Nrf2-mediated responses in cells with overactive Nrf2 due to KEAP1 deficiency.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| | - Sylvia Ender
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (S.E.); (S.N.S.C.); (E.H.H.)
| |
Collapse
|
17
|
Eide S, Misztal M, Feng ZP. Interleukin-6 as a marker of Huntington's disease progression: Systematic review and meta-analysis. Brain Behav Immun Health 2023; 30:100635. [PMID: 37215308 PMCID: PMC10196779 DOI: 10.1016/j.bbih.2023.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Huntington's disease (HD) is a rare, inherited disorder with a broad spectrum of manifestations that vary with disease severity and progression. Although genetic testing can readily confirm the initial diagnosis of HD, markers sensitive to HD progression are needed to aid the development of individual treatment plans. The current analysis aims to identify plasma Interleukin-6 (IL-6) as a marker of disease progression in HD patients. A systematic search of PubMed and Medline from conception through October 2021 was conducted. Studies reporting plasma IL-6 levels of mutation-positive HD patients and healthy controls that met inclusion criteria were selected. The search strategy collected 303 studies, 9 of which met analysis inclusion criteria. From included studies, plasma IL-6 levels of 469 individuals with the HD mutation and 206 healthy controls were collected. Plasma IL-6 levels were meta-analytically compared between healthy controls and individuals with the confirmed HD mutation at all stages of disease and correlated to performance on standardized measures of total cognitive and motor function. Plasma IL-6 was significantly increased in HD groups compared to controls (g = 0.73, 95% CI = 0.31,1.16, P < 0.01) and increased significantly throughout most stages of disease progression, notably between pre-manifest and manifest (g = 0.31, 95% CI = 0.04,0.59, P < 0.05) and early and moderate HD stages (g = 0.52, 95% CI = 0.18,0.86, P < 0.01). Significant correlations between plasma IL-6 levels and HD symptomatic progression were identified, with increased cytokine levels associated with more severe motor impairments (r = 0.179, 95% CI = 0.0479,0.304, P = 0.008) and more extreme disabilities in activities of daily living and/or work tasks (r = -0.229, 95% CI = -0.334, -0.119, P < 0.001). Conclusively, plasma IL-6 levels correlate with disease and motor symptom progression and may act as a viable marker for clinical use. Analysis is limited by small study numbers and highlights the need for future work to identify definitive ranges or rates of change of plasma IL-6 levels that correlate to progressive HD disease states.
Collapse
Affiliation(s)
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
18
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
19
|
Petrozziello T, Huntress SS, Castillo-Torres AL, Quinn JP, Connors TR, Auger CA, Mills AN, Kim SE, Liu S, Mahmood F, Boudi A, Wu M, Sapp E, Kivisäkk P, Sunderesh SR, Pouladi MA, Arnold SE, Hyman BT, Rosas HD, DiFiglia M, Pinto RM, Kegel-Gleason K, Sadri-Vakili G. Age-dependent increase in tau phosphorylation at serine 396 in Huntington's disease pre-frontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.03.23290851. [PMID: 37333415 PMCID: PMC10274990 DOI: 10.1101/2023.06.03.23290851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.
Collapse
|
20
|
Amoroso R, Maccallini C, Bellezza I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12030778. [PMID: 36979026 PMCID: PMC10045503 DOI: 10.3390/antiox12030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.
Collapse
Affiliation(s)
- Rosa Amoroso
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
21
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci 2023; 44:137-149. [PMID: 36628798 DOI: 10.1016/j.tips.2022.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Activation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is emerging as an attractive therapeutic approach to counteract oxidative stress, inflammation, and metabolic imbalances. These processes underpin many chronic pathologies with unmet therapeutic needs, including neurodegenerative disorders and metabolic diseases. As the NRF2 field transitions into the clinical phase of its evolution, the need for an understanding of the factors influencing NRF2 pharmacology has never been greater. In this opinion article we describe the rationale for targeting NRF2, summarise the recent advances in drug development of NRF2 modulators, and reflect on the remaining challenges in realising the full clinical potential of NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
23
|
Guan K, Li H, Liu D, Liu M, He C. Identification and antioxidative mechanism of novel mitochondria-targeted MFG-E8 polypeptides in virtual screening and in vitro study. J Dairy Sci 2023; 106:1562-1575. [PMID: 36710194 DOI: 10.3168/jds.2022-22745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 01/30/2023]
Abstract
Milk fat globule-EGF factor VIII (MFG-E8) has been identified as an important source of bioactive peptides, which may exert a pivotal role in regulating biologic redox equilibrium. However, the composition of MFG-E8 polypeptides and their mechanisms on mitigating sarcopenia remain unknown. The aim of this study was to identify the composition of MFG-E8 polypeptides and its effects against oxidative stress in dexamethasone-induced L6 cell injury. Simulated digestion in vitro and liquid chromatography-tandem mass spectrometry were used in this investigation. A total of 95 peptides were identified during complete simulated digestion; among them, the contents of 21 peptides were analyzed, having been determined to exceed 1%. Molecular docking assay found that IDLG, KDPG, YYR, and YYK exhibited high binding affinity with keap1. MTT, dichlorodihydrofluorescein diacetate, mito- and lyso-tracker, and transmission electron microscope assay demonstrated that IDLG and KDPG can alleviate oxidative stress-injured L6 cell vitality, mitochondria activity, vacuolation, and function decrease, and increased autophagy, thereby improving mitochondrial homeostasis. From a molecular perspective, IDLG and KDPG can decrease the expression of keap1 and increase the expression of Nrf2, HO-1, and PGC-1α. Therefore, MFG-E8-derived IDLG and KDPG could be potential polypeptides countering oxidative stress in the treatment of sarcopenia, via the keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kaifang Guan
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - He Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - DanDan Liu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China
| | - Canxia He
- Department of Preventative Medicine, Medicine School, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
24
|
Li Y, Zhu X, Wang K, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts (GBE) protect human RPE cells from t-BHP-induced oxidative stress and necrosis by activating the Nrf2-mediated antioxidant defence. J Pharm Pharmacol 2023; 75:105-116. [PMID: 36190376 DOI: 10.1093/jpp/rgac069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Age-related macular degeneration (AMD) is a prevalent ocular disease. Dry AMD accounts for most cases of blindness associated with AMD but there are no treatments. Oxidative stress-induced damage to retinal pigment epithelial (RPE) cells is a major contributor to the pathogenesis of dry AMD. This study investigated the protective actions of Ginkgo biloba extracts (GBE) in human RPE cells subjected to tert-butyl hydroperoxide (t-BHP)-mediated oxidative stress. METHODS The human ARPE-19 cells were pre-treated with or without GBE before the exposure to t-BHP. Cell viability, cell death profile and lipid peroxidation were assessed. The findings were verified using human primary RPE cultures. KEY FINDINGS GBE pre-treatment prevented the increase in lipid peroxidation and necrosis/ferroptosis, and the concurrent viability decrease in RPE cells exposed to t-BHP. It enabled the pronounced activation of Nrf2 and its downstream genes. We found that ERK1/2 phosphorylation was increased to a similar extent by t-BHP and GBE. CONCLUSION This study revealed that GBE pre-treatment attenuates pro-oxidant stress and protects human RPE cells from oxidative injury by modulating ERK1/2-Nrf2 axis. These findings suggest that GBE has the potential to be developed as a agent that may be valuable in decreasing AMD progression.
Collapse
Affiliation(s)
- Yue Li
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
27
|
Petrozziello T, Huntress SS, Castillo-Torres AL, Quinn JP, Connors TR, Auger CA, Mills AN, Kim SE, Liu S, Mahmood F, Boudi A, Wu M, Sapp E, Kivisäkk P, Sunderesh SR, Pouladi MA, Arnold SE, Hyman BT, Rosas HD, DiFiglia M, Mouro Pinto R, Kegel-Gleason K, Sadri-Vakili G. Age-Dependent Increase in Tau Phosphorylation at Serine 396 in Huntington's Disease Prefrontal Cortex. J Huntingtons Dis 2023; 12:267-281. [PMID: 37694372 DOI: 10.3233/jhd-230588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Sommer S Huntress
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | | | - James P Quinn
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | | | - Corinne A Auger
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| | - Sophia Liu
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Farah Mahmood
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Adel Boudi
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Muzhou Wu
- Center for Genomic Medicine, MassGeneral Brigham, Boston, MA, USA
| | - Ellen Sapp
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Pia Kivisäkk
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | | | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Steven E Arnold
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Marian DiFiglia
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
| | - Ricardo Mouro Pinto
- Department of Neurology, MassGeneral Brigham, Boston, MA, USA
- Center for Genomic Medicine, MassGeneral Brigham, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, MassGeneral Brigham, Boston, MA, USA
| |
Collapse
|
28
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
29
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
30
|
Wu J, Möhle L, Brüning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke J. A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. Int J Mol Sci 2022; 23:ijms232314763. [PMID: 36499090 PMCID: PMC9740291 DOI: 10.3390/ijms232314763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.
Collapse
Affiliation(s)
- Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Iván Eiriz
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| |
Collapse
|
31
|
Conroy F, Miller R, Alterman JF, Hassler MR, Echeverria D, Godinho BMDC, Knox EG, Sapp E, Sousa J, Yamada K, Mahmood F, Boudi A, Kegel-Gleason K, DiFiglia M, Aronin N, Khvorova A, Pfister EL. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington's disease models. Nat Commun 2022; 13:5802. [PMID: 36192390 PMCID: PMC9530163 DOI: 10.1038/s41467-022-33061-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington’s disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential. Chemically modified siRNAs distinguish between mutant and normal huntingtin based on a single nucleotide difference and lower mutant huntingtin specifically in patient derived cells and in a mouse model of Huntington’s disease.
Collapse
Affiliation(s)
- Faith Conroy
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Rachael Miller
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Emily G Knox
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaquelyn Sousa
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Farah Mahmood
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Aronin
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.,RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Edith L Pfister
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
32
|
Jimoh YA, Lawal AO, Kade IJ, Olatunde DM, Oluwayomi O. Diphenyl diselenide modulate antioxidant status, inflammatory and redox-sensitive genes in diesel exhaust particle-induced neurotoxicity. Chem Biol Interact 2022; 367:110196. [PMID: 36174737 DOI: 10.1016/j.cbi.2022.110196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
This study seeks to determine the influence of diphenyl diselenide (DPDSe) on redox status, inflammatory and redox-sensitive genes in diesel exhaust particle (DEP)-induced neurotoxicity in male albino rats. Male Wistar albino rats were administered nasally with DEP (30 and 60 μg/kg) and treated with intraperitoneal administration of 10 mg/kg DPDSe. Non-enzymatic (lipid peroxidation and conjugated diene concentrations) and enzymatic (catalase, superoxide dismutase, glutathione peroxidase) antioxidant indices and activity of acetylcholinesterase enzyme were evaluated in brain tissues of the rats. Furthermore, the expression of genes linked to oxidative stress (HO-1, Nrf2), pro-inflammatory (NF-KB, IL-8, TNF-α) anti-inflammatory (IL-10) and brain-specific (GFAP, ENO-2) genes were also determined. The results indicated that DPDSe caused a notable reduction in the high levels of thiobarbituric acid reactive substances and conjugated diene observed in the brain of DEP-administered rats. DPDSe also reversed the observed reduction in catalase, superoxide dismutase and glutathione peroxidase enzyme activities in the brain of DEP-administered rats. Lastly, the downregulation of genes associated with redox homeostasis, anti-inflammatory and brain-specific genes and upregulation of pro-inflammatory genes observed in the DEP-treated groups were ameliorated by DPDSe. The immediate restoration of altered biochemical conditions and molecular expression in the brain of DEP-treated rats by DPDSe further validates its use as a promising therapeutic candidate for restoring neurotoxicity linked with DEP-induced oxidative stress.
Collapse
Affiliation(s)
- Yomade Ayodeji Jimoh
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | - Akeem Olalekan Lawal
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria.
| | - Ige Joseph Kade
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | | | - Oluwafunso Oluwayomi
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| |
Collapse
|
33
|
Afzal M, Alzarea SI, Alharbi KS, Alzarea AI, Alenezi SK, Alshammari MS, Alquraini AH, Kazmi I. Rosiridin Attenuates Scopolamine-Induced Cognitive Impairments in Rats via Inhibition of Oxidative and Nitrative Stress Leaded Caspase-3/9 and TNF-α Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185888. [PMID: 36144623 PMCID: PMC9502378 DOI: 10.3390/molecules27185888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023]
Abstract
AIM A monoterpene and bioactive component of the plant Rhodiola rosea (R. rosea), rosiridin has beneficial effects on the human central nervous system and enhances brain function. The goal of this scientific study was to determine if rosiridin might shield rats from neurocognitive problems induced by scopolamine. METHODS To track the potential toxicities in rats, the acute toxicity in rats was clarified. Rosiridin at a dose of 10 mg/kg was tested in rats for 14 days. At the conclusion of the investigation, behavioral parameters that were used to identify the rats' cognitive and motor abilities were evaluated. Several biochemical parameters were estimated using the prepared homogenate, including acetylcholine esterase (AChE), choline acetyltransferase (ChAT), radical scavengers produced by the body (Catalase-CAT, superoxide dismutase-SOD, and reduced glutathione-GSH), indicators of oxidative and nitrative burnout, pro-inflammatory (Interleukins- IL-1β, IL-6, interferon gamma IFN-ꝩ, and tumor necrosis factor-TNF-α), and cell apoptosis caspases 3 and 9. RESULTS AND CONCLUSION A significant behavioral parameter restoration was seen in the rosiridin-treated group, including reduction in latency time during acquisition and retention trial in the Morris water maze test, and percentage of spontaneous alterations in the y-maze test, when compared to the disease control group that received scopolamine; rosiridin also altered the oxidative stress and neuroinflammatory markers, as well as restoring Ach and ChAT activities and normalizing GSH, SOD, MDA, TNF-α, nitrate, IL-1β, IL-6, IFN-ꝩ, caspases 3 and 9 levels. The results imply that rosiridin limits the effect of scopolamine on rat cognitive function.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Correspondence: (M.A.); (S.I.A.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
- Correspondence: (M.A.); (S.I.A.)
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Qassim, Saudi Arabia
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Qassim, Saudi Arabia
| | - Ali H. Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Al Baha, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Makkah, Saudi Arabia
| |
Collapse
|
34
|
Lao Y, Huang P, Chen J, Wang Y, Su R, Shao W, Hu W, Zhang J. Discovery of 1,2,4-triazole derivatives as novel neuroprotectants against cerebral ischemic injury by activating antioxidant response element. Bioorg Chem 2022; 128:106096. [PMID: 35985158 DOI: 10.1016/j.bioorg.2022.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5‑diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.
Collapse
Affiliation(s)
- Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Weiyan Shao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wenhao Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
35
|
Ma Y, Li S, Tang S, Ye S, Liang N, Liang Y, Xiao F. Clusterin protects against Cr(VI)-induced oxidative stress-associated hepatotoxicity by mediating the Akt-Keap1-Nrf2 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52289-52301. [PMID: 35257348 DOI: 10.1007/s11356-022-19118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a serious environmental pollutant that threatens human life. Cr(VI) is widely used in industrial processes such as metallurgy, leather processing, and electroplating, which can enter the human body through the respiratory or digestive tracts, thus causing a number of human disease, including inflammation and cancer. Although it has been confirmed that oxidative stress is one of the primary mechanism of liver injury caused by Cr(VI) exposure, the related toxic target and effective intervention measures have not been found. Clusterin (CLU) is an acute phase response protein with cytoprotective and apoptosis-delaying effects, and its expression has been confirmed to increase significantly after exposure to Cr(VI). In this study, our data clearly indicates that Cr(VI) is capable of causing hepatocytes damage through the production of large amounts of reactive oxygen species (ROS), causing an increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In contrast, over expression of CLU was able to inhibit ROS production and alleviate Cr(VI)-induced liver injury. The specific mechanisms are that CLU acts on the protein kinase B (PKB/Akt)-Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) signaling pathway to release Nrf2 into the nucleus. This is to initiate the expression of a downstream protein, heme oxygenase 1 (HO-1), thereby attenuating the ubiquitination ability of Keap1 with Nrf2. We also demonstrated that CLU could affect oxidative stress through the Akt/Nrf2 pathway, which reduced the production of ROS induced by Cr(VI) and protected against Cr(VI)-induced oxidative stress-associated hepatotoxicity. This study demonstrates a mechanism of Cr(VI)-induced hepatotoxicity and indicates that CLU as an intervention target of oxidative stress can provide valuable experimental basis for the prevention and treatment of occupational diseases in Cr(VI)-exposed population. Under the state of Cr(VI)-induced oxidative stress, CLU though phosphorylation Akt, leading to Nrf2 dissociation from Keap1. Activated Nrf2 entered the nucleus and formed the next step, thus binding to the structure of the antioxidant response element ARE, which activated HO-1, resulting in the decrease in intracellular ROS.
Collapse
Affiliation(s)
- Yu Ma
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Siwen Li
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Sixuan Tang
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Ningjuan Liang
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Yuehui Liang
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Kaifu District, NO.238 Shangmayuanling Road, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
36
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J. Mechanisms of Ferroptosis and Emerging Links to the Pathology of Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:904152. [PMID: 35837484 PMCID: PMC9273851 DOI: 10.3389/fnagi.2022.904152] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a diverse class of diseases attributed to chronic progressive neuronal degeneration and synaptic loss in the brain and/or spinal cord, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. The pathogenesis of neurodegenerative diseases is complex and diverse, often involving mitochondrial dysfunction, neuroinflammation, and epigenetic changes. However, the pathogenesis of neurodegenerative diseases has not been fully elucidated. Recently, accumulating evidence revealed that ferroptosis, a newly discovered iron-dependent and lipid peroxidation-driven type of programmed cell death, provides another explanation for the occurrence and progression of neurodegenerative diseases. Here, we provide an overview of the process and regulation mechanisms of ferroptosis, and summarize current research progresses that support the contribution of ferroptosis to the pathogenesis of neurodegenerative diseases. A comprehensive understanding of the emerging roles of ferroptosis in neurodegenerative diseases will shed light on the development of novel therapeutic technologies and strategies for slowing down the progression of these diseases.
Collapse
Affiliation(s)
- Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Diksha Basnet
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Jian Huang,
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Jianhui Liu,
| |
Collapse
|
37
|
Fu W, Chen S, Zhang Z, Chen Y, You X, Li Q. Quercetin in Tonglong Qibi decoction ameliorates testosterone-induced benign prostatic hyperplasia in rats by regulating Nrf2 signalling pathways and oxidative stress. Andrologia 2022; 54:e14502. [PMID: 35725022 DOI: 10.1111/and.14502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urological disease in older males. Existing pharmacotherapy shows several side effects, and the exploration of new therapeutic strategies is of high significance. Tonglong Qibi (TQ) decoction was proved to ameliorate BPH, while the underlying mechanisms are still unclear. In the current study, we explored the anti-BPH effects of TQ in vivo and identified its main therapeutic component and the underlying mechanisms in vitro. We demonstrated that TQ mitigated BPH in rats and showed no toxicity to the liver and reproductive system. Network pharmacology identified quercetin as the main component in TQ treating BPH. Quercetin reduced proliferation, oxidative stress, and increased Nrf2 expression in hyperplastic prostate epithelial cells. These findings indicate that quercetin in TQ alleviates BPH via inhibiting oxidative stress and activating the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Wei Fu
- Xiamen Hospital (The Eighth Clinical Medical College), Beijing University of Chinese Medicine, Xiamen, China.,Department of Andrology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China.,Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuchao Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zezheng Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingwen Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
38
|
Lao Y, Wang Y, Chen J, Huang P, Su R, Shi J, Jiang C, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential Nrf2 activators for the treatment of cerebral ischemic injury. Eur J Med Chem 2022; 236:114315. [PMID: 35390713 DOI: 10.1016/j.ejmech.2022.114315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Acute ischemic stroke is a leading cause of disability and death. The development of neuroprotectants is an emerging strategy for the treatment of ischemic stroke. In this work, we designed and synthesized a series of 1,3,5-triaryl substituent triazole derivatives by introducing a phenolic group and phenyl ring to 3,5-diaryl substituents oxadiazole. Structure-activity relationship (SAR) analysis showed that compounds with alkyl groups or with substituents at the 3-position possessed better protective effects. Among the derivatives, 3,5-dimethyl substituted compound 24 exhibited the best neuroprotective effect with weak cytotoxicity. Compound 24 possessed a high plasma protein binding rate, moderate hERG inhibition, low acute toxicity, and suitable pharmacokinetic properties. In vivo experiments demonstrated that compound 24 exerted a protective effect by reducing cerebral infarction size, improving neurological behavior, and restoring redox balance in middle cerebral artery occlusion rats. Further investigation indicated that compound 24 exerted a protective effect against sodium nitroprusside (SNP) induced cell damage by scavenging intracellular reactive oxygen species and restoring mitochondrial membrane potential. Moreover, compound 24 induced the nuclear translocation of Nuclear factor erythroid 2-related factor (Nrf2) and promoted the generation of antioxidative proteins, including Heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase (NQO1), and glutamate-cysteine ligase catalytic (GCLC). Surface plasmon resonance (SPR) experiments indicated that compound 24 might activate the Nrf2 signaling pathway by interacting with the Keap1 Kelch domain. Taken together, these facts indicate that compound 24 might have potential in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
39
|
Neuroprotective Effects and Therapeutic Potential of the Citrus Flavonoid Hesperetin in Neurodegenerative Diseases. Nutrients 2022; 14:nu14112228. [PMID: 35684025 PMCID: PMC9183194 DOI: 10.3390/nu14112228] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders affect more than fifty million Americans each year and represent serious health threats as the population ages. Neuroinflammation and oxidative stress are critical in the onset, progression, and pathogenesis of neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), and amyotrophic lateral sclerosis (ALS). A wide range of natural compounds has been investigated because of their antioxidant, anti-inflammatory, and neuroprotective properties. The citrus flavonoid hesperetin (HPT), an aglycone of hesperidin found in oranges, mandarins, and lemons, has been extensively reported to exert neuroprotective effects in experimental models of neurogenerative diseases. This review has compiled multiple studies on HPT in both in vivo and in vitro models to study neurodegeneration. We focused on the modulatory effects of hesperetin on the release of cellular anti-inflammatory and antioxidative stress mediators. Additionally, this review discusses the hesperetin effect in maintaining the levels of microRNA (miRNA) and modulating autophagy as it relates to hesperetin’s protective mechanisms against neurodegeneration. Moreover, this review is focused on providing experimental data for hesperetin’s potential as a neuroprotective compound and discusses reported evidence that HPT crosses the blood–brain barrier. In summary, this review shows the evidence available in the literature to indicate the efficacy of hesperetin in delaying the onset of neurodegenerative diseases.
Collapse
|
40
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
41
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
42
|
Brumley DA, Gunasekera SP, Sauvage T, dos Santos LAH, Chen QY, Paul VJ, Luesch H. Discovery, Synthesis, and Biological Evaluation of Anaenamides C and D from a New Marine Cyanobacterium, Hormoscilla sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:581-589. [PMID: 35167289 PMCID: PMC9128392 DOI: 10.1021/acs.jnatprod.1c01073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our ongoing efforts to explore the chemical space associated with marine cyanobacteria from coral reefs of Guam have yielded two new members of the anaenamide family of natural products, anaenamides C (3) and D (4). These compounds were isolated from a novel Hormoscilla sp. (VPG16-58). Our phylogenetic profiling (16S rDNA) of this cyanobacterium indicated that VPG16-58 is taxonomically distinct from the previously reported producer of the anaephenes, VPG16-59 (Hormoscilla sp.), and other previously documented species of the genus Hormoscilla. The planar structures of 3 and 4 were determined via spectroscopic methods, and absolute configurations of the α-hydroxy acids were assigned by enantioselective HPLC analysis. To address the requirement for sufficient material for testing, we first adapted our published linear synthetic approach for 1 and 2 to generate anaenoic acid (7), which served as a point for diversification, providing the primary amides 3 and 4 from synthetic intermediates 5 and 6, respectively. The compounds were then tested for effects on HCT116 colon cancer cell viability and in an ARE-luciferase reporter gene assay for Nrf2 modulation using HEK293 human embryonic kidney cells. Our findings indicate that, in contrast to cytotoxic methyl esters 1 and 2, the primary amides 3 and 4 activate the Nrf2 pathway at noncytotoxic concentrations. Overall, our data suggest that the anaenamide scaffold is tunable to produce differential biological outcomes.
Collapse
Affiliation(s)
- David A. Brumley
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sarath P. Gunasekera
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Thomas Sauvage
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90650-001 Brazil
| | | | - Qi-Yin Chen
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
43
|
Sun J, Zhang Y, Yan L, Liu S, Wang W, Zhu Y, Wang W, Li S, He B, Wu L, Zhang L. Action of the Nrf2/ARE signaling pathway on oxidative stress in choroid plexus epithelial cells following lanthanum chloride treatment. J Inorg Biochem 2022; 231:111792. [DOI: 10.1016/j.jinorgbio.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
|
44
|
Biswas K, Alexander K, Francis MM. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NEUROSCI 2022; 3:130-145. [PMID: 39484669 PMCID: PMC11523706 DOI: 10.3390/neurosci3010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2024] Open
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
45
|
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 2022; 15:1555-1574. [PMID: 35264867 PMCID: PMC8901225 DOI: 10.2147/jir.s351799] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development, maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for novel ideas for basic and clinical research of neurological diseases.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tian Rao
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin, Email
| |
Collapse
|
46
|
Cai W, Srivastava P, Feng D, Lin Y, Vanderburg CR, Xu Y, Mclean P, Frosch MP, Fisher DE, Schwarzschild MA, Chen X. Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Mol Neurodegener 2022; 17:16. [PMID: 35197079 PMCID: PMC8867846 DOI: 10.1186/s13024-022-00520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Epidemiological studies suggest a link between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and risk of Parkinson’s disease (PD). We previously showed that MC1R signaling can facilitate nigrostriatal dopaminergic neuron survival. The present study investigates the neuroprotective potential of MC1R against neurotoxicity induced by alpha-synuclein (αSyn), a key player in PD genetics and pathogenesis. Methods Nigral dopaminergic neuron toxicity induced by local overexpression of aSyn was assessed in mice that have an inactivating mutation of MC1R, overexpress its wild-type transgene, or were treated with MC1R agonists. The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in MC1R-mediated protection against αSyn was characterized in vitro. Furthermore, MC1R expression was determined in human postmortem midbrain from patients with PD and unaffected subjects. Results Targeted expression of αSyn in the nigrostriatal pathway induced exacerbated synuclein pathologies in MC1R mutant mice, which were accompanied by neuroinflammation and altered Nrf2 responses, and reversed by the human MC1R transgene. Two MC1R agonists were neuroprotective against αSyn-induced dopaminergic neurotoxicity. In vitro experiments showed that Nrf2 was a necessary mediator of MC1R effects. Lastly, MC1R was present in dopaminergic neurons in the human substantia nigra and appeared to be reduced at the tissue level in PD patients. Conclusion Our study supports an interaction between MC1R and αSyn that can be mediated by neuronal MC1R possibly through Nrf2. It provides evidence for MC1R as a therapeutic target and a rationale for development of MC1R-activating strategies for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00520-4.
Collapse
Affiliation(s)
- Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Integrative Medicine, HuaShan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Danielle Feng
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yue Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Charles R Vanderburg
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Neuropathology Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA.
| |
Collapse
|
47
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
49
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
50
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|