1
|
Rodrigues MJ, Tejero O, Mühle J, Pamula F, Das I, Tsai CJ, Terakita A, Sheves M, Schertler GFX. Activating an invertebrate bistable opsin with the all-trans 6.11 retinal analog. Proc Natl Acad Sci U S A 2024; 121:e2406814121. [PMID: 39042699 PMCID: PMC11295067 DOI: 10.1073/pnas.2406814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Oliver Tejero
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - Jonas Mühle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Filip Pamula
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100Rehovot, Israel
| | - Ching-Ju Tsai
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka558-8585, Japan
- The Osaka Metropolitan University Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka558-8585, Japan
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100Rehovot, Israel
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| |
Collapse
|
2
|
Hamedian A, Vakili M, Brandán SA, Akbari M, Kanaani A, Darugar V. Theoretical study on the structure, spectroscopic, and current-voltage behavior of 11-Cis and Trans retinal isomers in rhodopsin. Sci Rep 2024; 14:12452. [PMID: 38816529 PMCID: PMC11140004 DOI: 10.1038/s41598-024-63249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
In this study, the electronic transport properties of 11-Cis and Trans retinal, components of rhodopsin, were investigated as optical molecular switches using the nonequilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT). These isomers, which can be reversibly converted into each other, were examined in detail. The structural and spectroscopic properties, including infrared (IR), Raman, nuclear magnetic resonance (NMR), and ultraviolet (UV) spectra, were analyzed using the hybrid B3LYP/6-311 + + G** level of theory. Complete vibrational assignments were performed for both forms utilizing the scaled quantum mechanical force field (SQMFF) methodology. To evaluate the conductivity of these molecules, we utilized current-voltage (I-V) characteristics, transmission spectra, molecular projected self-consistent Hamiltonian (MPSH), HOMO-LUMO gap, and second-order interaction energies (E2). The trendline extrapolation of the current-voltage plots confirmed our findings. We investigated the effect of different electrodes (Ag, Au, Pt) and various connection sites (hollow, top, bridge) on conductivity. The Ag electrode with the hollow site exhibited the highest efficiency. Our results indicate that the Cis form has higher conductivity than the Trans form.
Collapse
Affiliation(s)
- Amin Hamedian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran
| | - Mohammad Vakili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran.
| | - Silvia A Brandán
- Cátedra de Química General, Instituto de Química, Inorgánica Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
| | - Mahmood Akbari
- UNESCO‑UNISA-ITL Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Ayoub Kanaani
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Vahidreza Darugar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran
| |
Collapse
|
3
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Damodaran K, Khan T, Bickel D, Jaya S, Vranken WF, Sudandiradoss C. New simulation insights on the structural transition mechanism of bovine rhodopsin activation. Proteins 2023; 91:771-780. [PMID: 36629258 DOI: 10.1002/prot.26465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Inactive rhodopsin can absorb photons, which induces different structural transitions that finally activate rhodopsin. We have examined the change in spatial configurations and physicochemical factors that result during the transition mechanism from the inactive to the active rhodopsin state via intermediates. During the activation process, many existing atomic contacts are disrupted, and new ones are formed. This is related to the movement of Helix 5, which tilts away from Helix 3 in the intermediate state in lumirhodopsin and moves closer to Helix 3 again in the active state. Similar patterns of changing atomic contacts are observed between Helices 3 and 5 of the adenosine and neurotensin receptors. In addition, residues 220-238 of rhodopsin, which are disordered in the inactive state, fold in the active state before binding to the Gα, where it catalyzes GDP/GTP exchange on the Gα subunit. Finally, molecular dynamics simulations in the membrane environment revealed that the arrestin binding region adopts a more flexible extended conformation upon phosphorylation, likely promoting arrestin binding and inactivation. In summary, our results provide additional structural understanding of specific rhodopsin activation which might be relevant to other Class A G protein-coupled receptor proteins.
Collapse
Affiliation(s)
- Kamalesh Damodaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India.,Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium
| | - Taushif Khan
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sreeshma Jaya
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chinnappan Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
8
|
Chen S, Getter T, Salom D, Wu D, Quetschlich D, Chorev DS, Palczewski K, Robinson CV. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 2022; 604:384-390. [PMID: 35388214 PMCID: PMC9007743 DOI: 10.1038/s41586-022-04547-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell-surface receptors that respond to various stimuli to induce signalling pathways across cell membranes. Recent progress has yielded atomic structures of key intermediates1,2 and roles for lipids in signalling3,4. However, capturing signalling events of a wild-type receptor in real time, across a native membrane to its downstream effectors, has remained elusive. Here we probe the archetypal class A GPCR, rhodopsin, directly from fragments of native disc membranes using mass spectrometry. We monitor real-time photoconversion of dark-adapted rhodopsin to opsin, delineating retinal isomerization and hydrolysis steps, and further showing that the reaction is significantly slower in its native membrane than in detergent micelles. Considering the lipids ejected with rhodopsin, we demonstrate that opsin can be regenerated in membranes through photoisomerized retinal-lipid conjugates, and we provide evidence for increased association of rhodopsin with unsaturated long-chain phosphatidylcholine during signalling. Capturing the secondary steps of the signalling cascade, we monitor light activation of transducin (Gt) through loss of GDP to generate an intermediate apo-trimeric G protein, and observe Gαt•GTP subunits interacting with PDE6 to hydrolyse cyclic GMP. We also show how rhodopsin-targeting compounds either stimulate or dampen signalling through rhodopsin-opsin and transducin signalling pathways. Our results not only reveal the effect of native lipids on rhodopsin signalling and regeneration but also enable us to propose a paradigm for GPCR drug discovery in native membrane environments.
Collapse
Affiliation(s)
- Siyun Chen
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tamar Getter
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Di Wu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Daniel Quetschlich
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Trifonov L, Rothstein A, Korshin EE, Viskind O, Afri M, Leitus G, Palczewski K, Gruzman A. Straightforward Access to Terminally Disubstituted Electron‐Deficient Alkylidene Cyclopent‐2‐en‐4‐ones through Olefination with α‐Carbonyl and α‐Cyano Secondary Alkyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Gregory Leitus
- Department of Chemical Research Support the Weizmann Institute of Science Rehovot 76100 Israel
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute Department of Ophthalmology and Departments of Physiology and Biophysics and Chemistry and Molecular Biology and Biochemistry, University of California Irvine CA 92697 USA
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
10
|
Identification of small molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. J Biol Chem 2021; 297:101401. [PMID: 34774799 PMCID: PMC8665362 DOI: 10.1016/j.jbc.2021.101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein–coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein–coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.
Collapse
|
11
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
12
|
Chen MS, Zuehlsdorff TJ, Morawietz T, Isborn CM, Markland TE. Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments. J Phys Chem Lett 2020; 11:7559-7568. [PMID: 32808797 DOI: 10.1021/acs.jpclett.0c02168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The excited-state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited-state electronic structure calculations severely limits first-principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited-state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of machine learning models that greatly accelerate the calculation of multidimensional optical spectra from first principles.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Tobias Morawietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions. J Chem Phys 2020; 153:044127. [PMID: 32752702 DOI: 10.1063/5.0013739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
14
|
de la Fuente M, Han X, Miyagi M, Nieman MT. Expression and Purification of Protease-Activated Receptor 4 (PAR4) and Analysis with Histidine Hydrogen-Deuterium Exchange. Biochemistry 2020; 59:671-681. [PMID: 31957446 DOI: 10.1021/acs.biochem.9b00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolysis of the N-terminus, which exposes a tethered ligand that interacts with the receptor. Numerous studies have focused on the signaling pathways mediated by PARs. However, the structural basis for initiation of these pathways is unknown. Here, we describe a strategy for the expression and purification of PAR4. This is the first PAR family member to be isolated without stabilizing modifications for biophysical studies. We monitored PAR4 activation with histidine hydrogen-deuterium exchange. PAR4 has nine histidines that are spaced throughout the protein, allowing a global view of solvent accessible and nonaccessible regions. Peptides containing each of the nine His residues were used to determine the t1/2 for each His residue in apo or thrombin-activated PAR4. The thrombin-cleaved PAR4 exhibited a 2-fold increase (p > 0.01) in t1/2 values observed for four histidine residues (His180, His229, His240, and His380), demonstrating that these regions have decreased solvent accessibility upon thrombin treatment. In agreement, thrombin-cleaved PAR4 also was resistant to thermolysin digestion. In contrast, the rate of thermolysin proteolysis following stimulation with the PAR4 activation peptide was the same as that of unstimulated PAR4. Further analysis showed the C-terminus is protected in thrombin-activated PAR4 compared to uncleaved or agonist peptide-treated PAR4. The studies described here are the first to examine the tethered ligand activation mechanism for a PAR family member biophysically and shed light on the overall conformational changes that follow activation of PARs by a protease.
Collapse
Affiliation(s)
- Maria de la Fuente
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Xu Han
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Masaru Miyagi
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Marvin T Nieman
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| |
Collapse
|
15
|
Getter T, Gulati S, Zimmerman R, Chen Y, Vinberg F, Palczewski K. Stereospecific modulation of dimeric rhodopsin. FASEB J 2019; 33:9526-9539. [PMID: 31121099 PMCID: PMC6662988 DOI: 10.1096/fj.201900443rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
The classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown. In this study, we identified econazole and sulconazole, two small molecules that disrupt Rh dimer contacts, by implementing a cell-based high-throughput screening assay. Racemic mixtures of identified lead compounds were separated and tested for their stereospecific binding to Rh using UV-visible spectroscopy and intrinsic fluorescence of tryptophan (Trp) 265 after illumination. By following the changes in UV-visible spectra and Trp265 fluorescence in vitro, we found that binding of R-econazole modulates the formation of Meta III and quenches the intrinsic fluorescence of Trp265. In addition, electrophysiological ex vivo recording revealed that R-econazole slows photoresponse kinetics, whereas S-econazole decreased the sensitivity of rods without effecting the kinetics. Thus, this study contributes new methodology to identify compounds that disrupt the dimerization of GPCRs in general and validates the first active compounds that disrupt the Rh dimer specifically.-Getter, T., Gulati, S., Zimmerman, R., Chen, Y., Vinberg, F., Palczewski, K. Stereospecific modulation of dimeric rhodopsin.
Collapse
Affiliation(s)
- Tamar Getter
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California–Irvine, California, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sahil Gulati
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California–Irvine, California, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, University of California–Irvine, Irvine, California, USA
| | - Remy Zimmerman
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California–Irvine, California, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Frans Vinberg
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California–Irvine, California, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, University of California–Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Wink LH, Baker DL, Cole JA, Parrill AL. A benchmark study of loop modeling methods applied to G protein-coupled receptors. J Comput Aided Mol Des 2019; 33:573-595. [PMID: 31123958 PMCID: PMC6628340 DOI: 10.1007/s10822-019-00196-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCR) are important drug discovery targets. Despite progress, many GPCR structures have not yet been solved. For these targets, comparative modeling is used in virtual ligand screening to prioritize experimental efforts. However, the structure of extracellular loop 2 (ECL2) is often poorly predicted. This is significant due to involvement of ECL2 in ligand binding for many Class A GPCR. Here we examine the performance of loop modeling protocols available in the Rosetta (cyclic coordinate descent [CCD], KIC with fragments [KICF] and next generation KIC [NGK]) and Molecular Operating Environment (MOE) software suites (de novo search). ECL2 from GPCR crystal structures served as the structure prediction targets and were divided into four sets depending on loop length. Results suggest that KICF and NGK sampled and scored more loop models with sub-angstrom and near-atomic accuracy than CCD or de novo search for loops of 24 or fewer residues. None of the methods were able to sample loop conformations with near-atomic accuracy for the longest targets ranging from 25 to 32 residues based on 1000 models generated. For these long loop targets, increased conformational sampling is necessary. The strongly conserved disulfide bond between Cys3.25 and Cys45.50 in ECL2 proved an effective filter. Setting an upper limit of 5.1 Å on the S-S distance improved the lowest RMSD model included in the top 10 scored structures in Groups 1-4 on average between 0.33 and 1.27 Å. Disulfide bond formation and geometry optimization of ECL2 provided an additional incremental benefit in structure quality.
Collapse
Affiliation(s)
- Lee H Wink
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Daniel L Baker
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Judith A Cole
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA
| | - Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
17
|
Katayama K, Gulati S, Ortega JT, Alexander NS, Sun W, Shenouda MM, Palczewski K, Jastrzebska B. Specificity of the chromophore-binding site in human cone opsins. J Biol Chem 2019; 294:6082-6093. [PMID: 30770468 DOI: 10.1074/jbc.ra119.007587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.
Collapse
Affiliation(s)
- Kota Katayama
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Life Science and Applied Chemistry, Showa-ku, Nagoya 466-8555, Japan; OptoBio Technology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
| | - Joseph T Ortega
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nathan S Alexander
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | - Marina M Shenouda
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697; Polgenix Inc., Cleveland, Ohio 44106.
| | - Beata Jastrzebska
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
18
|
Gulati S, Palczewski K, Engel A, Stahlberg H, Kovacik L. Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. SCIENCE ADVANCES 2019; 5:eaav4322. [PMID: 30820458 PMCID: PMC6392808 DOI: 10.1126/sciadv.aav4322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) work in conjunction with adenylate/guanylate cyclases to regulate the key second messengers of G protein-coupled receptor signaling. Previous attempts to determine the full-length structure of PDE family members at high-resolution have been hindered by structural flexibility, especially in their linker regions and N- and C-terminal ends. Therefore, most structure-activity relationship studies have so far focused on truncated and conserved catalytic domains rather than the regulatory domains that allosterically govern the activity of most PDEs. Here, we used single-particle cryo-electron microscopy to determine the structure of the full-length PDE6αβ2γ complex. The final density map resolved at 3.4 Å reveals several previously unseen structural features, including a coiled N-terminal domain and the interface of PDE6γ subunits with the PDE6αβ heterodimer. Comparison of the PDE6αβ2γ complex with the closed state of PDE2A sheds light on the conformational changes associated with the allosteric activation of type I PDEs.
Collapse
Affiliation(s)
- Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, 829 Health Sciences Road, Irvine, CA 92617, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, 829 Health Sciences Road, Irvine, CA 92617, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Andreas Engel
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Lubomir Kovacik
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
19
|
Gao S, Parmar T, Palczewska G, Dong Z, Golczak M, Palczewski K, Jastrzebska B. Protective Effect of a Locked Retinal Chromophore Analog against Light-Induced Retinal Degeneration. Mol Pharmacol 2018; 94:1132-1144. [PMID: 30018116 DOI: 10.1124/mol.118.112581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment rhodopsin are typical early signs of this condition. Excessive concentrations of unliganded, constitutively active opsin and increased levels of all-trans-retinal and its byproducts in photoreceptors also accelerate retinal degeneration after light exposure. Exogenous 9-cis-retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup of retinoid photoproducts when their clearance is defective in human retinopathies, such as Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked chromophore analog, 11-cis-6-membered ring-retinal against bright light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Using in vivo imaging techniques, optical coherence tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro histologic analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-retinal before light stimulation prevented rod and cone photoreceptor degradation and preserved functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-retinal measured in the eyes of these mice by quantitative liquid chromatography-mass spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in Abca4-/-Rdh8-/- mice.
Collapse
Affiliation(s)
- Songqi Gao
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Tanu Parmar
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Grazyna Palczewska
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Zhiqian Dong
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine (S.G., T.P., M.G., K.P., B.J.) and Cleveland Center for Membrane and Structural Biology (M.G., K.P., B.J.), Case Western Reserve University, and Polgenix Inc., Department of Medical Devices (G.P., Z.D.), Cleveland, Ohio
| |
Collapse
|
20
|
Stenkamp RE. Identifying G protein-coupled receptor dimers from crystal packings. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:655-670. [PMID: 29968675 DOI: 10.1107/s2059798318008136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Dimers of G protein-coupled receptors (GPCRs) are believed to be important for signaling with their associated G proteins. Low-resolution electron microscopy has shown rhodopsin dimers in native retinal membranes, and CXCR4 dimers have been found in several different crystal structures. Evidence for dimers of other GPCRs is more indirect. An alternative to computational modeling studies is to search for parallel dimers in the packing environments of the reported crystal structures of GPCRs. Two major structural types of GPCR dimers exist (as predicted by others), but there is considerable structural variation within each cluster. The different structural variants described here might reflect different functional properties and should provide a range of model structures for computational and experimental examination.
Collapse
Affiliation(s)
- Ronald E Stenkamp
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center, University of Washington, Box 357420, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 2018; 9:1996. [PMID: 29777099 PMCID: PMC5959942 DOI: 10.1038/s41467-018-04432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/25/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by mediating a GDP to GTP exchange in the Gα subunit. This leads to dissociation of the heterotrimer into Gα-GTP and Gβγ dimer. The Gα-GTP and Gβγ dimer each regulate a variety of downstream pathways to control various aspects of human physiology. Dysregulated Gβγ-signaling is a central element of various neurological and cancer-related anomalies. However, Gβγ also serves as a negative regulator of Gα that is essential for G protein inactivation, and thus has the potential for numerous side effects when targeted therapeutically. Here we report a llama-derived nanobody (Nb5) that binds tightly to the Gβγ dimer. Nb5 responds to all combinations of β-subtypes and γ-subtypes and competes with other Gβγ-regulatory proteins for a common binding site on the Gβγ dimer. Despite its inhibitory effect on Gβγ-mediated signaling, Nb5 has no effect on Gαq-mediated and Gαs-mediated signaling events in living cells.
Collapse
|
22
|
Chen Y, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li X, Jin H, Han Y, Gao S, Zhang J, Liu X, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 2018; 9:1976. [PMID: 29773803 PMCID: PMC5958115 DOI: 10.1038/s41467-018-04261-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - William E Harte
- Office of Translation and Innovation, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Gao S, Kahremany S, Zhang J, Jastrzebska B, Querubin J, Petersen-Jones SM, Palczewski K. Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells in Blind Mice and Dogs. Mol Pharmacol 2018; 93:438-452. [PMID: 29453250 DOI: 10.1124/mol.117.111294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
The retinoid (visual) cycle consists of a series of biochemical reactions needed to regenerate the visual chromophore 11-cis-retinal and sustain vision. Genetic or environmental factors affecting chromophore production can lead to blindness. Using animal models that mimic human retinal diseases, we previously demonstrated that mechanism-based pharmacological interventions can maintain vision in otherwise incurable genetic diseases of the retina. Here, we report that after 9-cis-retinal administration to lecithin:retinol acyltransferase-deficient (Lrat-/- ) mice, the drug was rapidly absorbed and then cleared within 1 to 2 hours. However, when conjugated to form chitosan-9-cis-retinal, this prodrug was slowly absorbed from the gastrointestinal tract, resulting in sustainable plasma levels of 9-cis-retinol and recovery of visual function without causing elevated levels, as occurs with unconjugated drug treatment. Administration of chitosan-9-cis-retinal conjugate intravitreally in retinal pigment epithelium-specific 65 retinoid isomerase (RPE65)-deficient dogs improved photoreceptor function as assessed by electroretinography. Functional rescue was dose dependent and maintained for several weeks. Dosing via the gastrointestinal tract in canines was found ineffective, most likely due to peculiarities of vitamin A blood transport in canines. Use of the chitosan conjugate in combination with 11-cis-6-ring-retinal, a locked ring analog of 11-cis-retinal that selectively blocks rod opsin consumption of chromophore while largely sparing cone opsins, was found to prolong cone vision in Lrat-/- mice. Development of such combination low-dose regimens to selectively prolong useful cone vision could not only expand retinal disease treatments to include Leber congenital amaurosis but also the age-related decline in human dark adaptation from progressive retinoid cycle deficiency.
Collapse
Affiliation(s)
- Songqi Gao
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Shirin Kahremany
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Jianye Zhang
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Janice Querubin
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Simon M Petersen-Jones
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (S.G., S.K., J.Z., B.J., K.P.) and Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan (J.Q., S.M.P.-J.)
| |
Collapse
|
24
|
Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Cordeiro MNDS. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Curr Neuropharmacol 2018; 16:786-848. [PMID: 29521236 PMCID: PMC6080095 DOI: 10.2174/1570159x16666180308161642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 02/16/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel antiparkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.
Collapse
Affiliation(s)
- Agostinho Lemos
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, 4000Liège, Belgium
| | - Rita Melo
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Antonio Jose Preto
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Jose Guilherme Almeida
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Irina Sousa Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands
| | - Maria Natalia Dias Soeiro Cordeiro
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
| |
Collapse
|
25
|
Gacasan SB, Baker DL, Parrill AL. G protein-coupled receptors: the evolution of structural insight. AIMS BIOPHYSICS 2017; 4:491-527. [PMID: 29951585 DOI: 10.3934/biophy.2017.3.491] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise a diverse superfamily of over 800 proteins that have gained relevance as biological targets for pharmaceutical drug design. Although these receptors have been investigated for decades, three-dimensional structures of GPCR have only recently become available. In this review, we focus on the technological advancements that have facilitated efforts to gain insights into GPCR structure. Progress in these efforts began with the initial crystal structure determination of rhodopsin (PDB: 1F88) in 2000 and has continued to the most recently published structure of the A1AR (PDB: 5UEN) in 2017. Numerous experimental developments over the past two decades have opened the door for widespread GPCR structural characterization. These efforts have resulted in the determination of three-dimensional structures for over 40 individual GPCR family members. Herein we present a comprehensive list and comparative analysis of over 180 individual GPCR structures. This includes a summary of different GPCR functional states crystallized with agonists, dual agonists, partial agonists, inverse agonists, antagonists, and allosteric modulators.
Collapse
Affiliation(s)
- Samantha B Gacasan
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| | - Daniel L Baker
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| | - Abby L Parrill
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| |
Collapse
|
26
|
Alexander NS, Katayama K, Sun W, Salom D, Gulati S, Zhang J, Mogi M, Palczewski K, Jastrzebska B. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue. J Biol Chem 2017; 292:10983-10997. [PMID: 28487362 DOI: 10.1074/jbc.m117.780478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
Phototransduction is initiated when the absorption of light converts the 11-cis-retinal chromophore to its all-trans configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11-cis-retinal is continuously regenerated from its all-trans conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11-cis-retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11-cis-6-membered ring (11-cis-6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11-cis-6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11-cis-6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11-cis-6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11-cis-6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11-cis-6mr-retinal.
Collapse
Affiliation(s)
| | - Kota Katayama
- From the Department of Pharmacology, School of Medicine and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106, and
| | - David Salom
- From the Department of Pharmacology, School of Medicine and
| | - Sahil Gulati
- From the Department of Pharmacology, School of Medicine and
| | - Jianye Zhang
- From the Department of Pharmacology, School of Medicine and
| | - Muneto Mogi
- the Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts 02139
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine and .,Polgenix Inc., Cleveland, Ohio 44106, and.,the Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- From the Department of Pharmacology, School of Medicine and .,the Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|