1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
3
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Yamagata HD, Akatsu H, Fukuoka T, Wake A, Watanabe I, KImura N, Miki T, Kamada K, Miyazaki T, Yamamoto T, Hori A, Sato N, Mimuro M, Yoshida M, Hashizume Y. Novel insights into presenilin 1 mutation associated with a distinctive dementia phenotype and cotton wool plaques. Neurol Sci 2024; 45:4829-4835. [PMID: 38755484 DOI: 10.1007/s10072-024-07537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The mutations in the presenilin 1 gene (PSEN1) are the main cause of familial Alzheimer's disease. PSEN1 mutations affect amyloid-beta peptide production, which accumulates in the brain as senile plaque and cotton wool plaques (CWPs) and relates to other neurodegenerative disorders. Here we report the second case of the PSEN1 G266S mutation, which showed distinctive neuropathological features, including abundant CWPs. Lewy body pathology, and altered amyloid-beta production. METHOD Using the proband's samples, we performed genetic analysis of the PSEN1, APP, MAPT, and APOE genes, histopathological and immunohistochemical analysis of the brain tissue, and biochemical analysis of Aβ production in COS cells transfected with wild-type or mutant PSEN1. RESULTS The patient presented with memory loss, abnormal behavior, and visual hallucinations. Brain scans showed reduced blood flow, mild atrophy, and white matter lesions. Genetic analysis revealed a heterozygous mutation at codon 266 (G266S) of PSEN1 and polymorphism of MAPT (Q230R). The brain had many CWPs, severe cerebral amyloid angiopathy (CAA), senile plaque, Lewy bodies, and neurites. Electron microscopy displayed myelinated fiber degeneration, mitochondrial damage, and amyloid fibrils in the white matter. The production level of Aβ42 in PSEN1 G266S-transfected cells significantly increased. CONCLUSION Our findings suggest that the PSEN1 G266S mutation may cause a heterogeneous clinical and pathological phenotype, influenced by other genetic or environmental factors.
Collapse
Affiliation(s)
| | | | - Tomoya Fukuoka
- Department of Clinical Laboratory Science, Tenri University, Nara, Japan
| | - Akito Wake
- Matsuyama Memorial Hospital, Matsuyama, Ehime, Japan
| | | | - Naoto KImura
- Matsuyama Memorial Hospital, Matsuyama, Ehime, Japan
| | - Tetsuro Miki
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Touon-shi, Ehime, Japan
| | - Kazuo Kamada
- Department of Pathology, Ehime University Graduate School of Medicine, Touon-shi, Ehime, Japan
| | - Tatsuhiko Miyazaki
- Department of Pathology, Ehime University Graduate School of Medicine, Touon-shi, Ehime, Japan
| | | | - Akira Hori
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Maya Mimuro
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
5
|
Pan Q, Parra GB, Myung Y, Portelli S, Nguyen TB, Ascher DB. AlzDiscovery: A computational tool to identify Alzheimer's disease-causing missense mutations using protein structure information. Protein Sci 2024; 33:e5147. [PMID: 39276018 PMCID: PMC11401060 DOI: 10.1002/pro.5147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 09/16/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and neurodegenerative diseases, characterized by the formation of neuritic plaques and neurofibrillary tangles. Many different proteins participate in this complicated pathogenic mechanism, and missense mutations can alter the folding and functions of these proteins, significantly increasing the risk of AD. However, many methods to identify AD-causing variants did not consider the effect of mutations from the perspective of a protein three-dimensional environment. Here, we present a machine learning-based analysis to classify the AD-causing mutations from their benign counterparts in 21 AD-related proteins leveraging both sequence- and structure-based features. Using computational tools to estimate the effect of mutations on protein stability, we first observed a bias of the pathogenic mutations with significant destabilizing effects on family AD-related proteins. Combining this insight, we built a generic predictive model, and improved the performance by tuning the sample weights in the training process. Our final model achieved the performance on area under the receiver operating characteristic curve up to 0.95 in the blind test and 0.70 in an independent clinical validation, outperforming all the state-of-the-art methods. Feature interpretation indicated that the hydrophobic environment and polar interaction contacts were crucial to the decision on pathogenic phenotypes of missense mutations. Finally, we presented a user-friendly web server, AlzDiscovery, for researchers to browse the predicted phenotypes of all possible missense mutations on these 21 AD-related proteins. Our study will be a valuable resource for AD screening and the development of personalized treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Georgina Becerra Parra
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Yoochan Myung
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Stephanie Portelli
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Thanh Binh Nguyen
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - David B. Ascher
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| |
Collapse
|
6
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024; 46:4585-4602. [PMID: 38753231 PMCID: PMC11335993 DOI: 10.1007/s11357-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. Specifically, we uncovered that Aβ expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aβ toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90191, USA.
| | - Manish Chamoli
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Christina D King
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Xueshu Xie
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Anna Foulger
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Julie K Andersen
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
7
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|
8
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
9
|
Scaduto P, Marcatti M, Bhatt N, Kayed R, Taglialatela G. Calcineurin inhibition prevents synaptic plasticity deficit induced by brain-derived tau oligomers. Brain Commun 2024; 6:fcae277. [PMID: 39239152 PMCID: PMC11375858 DOI: 10.1093/braincomms/fcae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Compelling evidence suggests that cognitive decline in Alzheimer's disease is associated with the accumulation and aggregation of tau protein, with the most toxic aggregates being in the form of oligomers. This underscores the necessity for direct isolation and analysis of brain-derived tau oligomers from patients with Alzheimer's disease, potentially offering novel perspectives into tau toxicity. Alzheimer's brain-derived tau oligomers are potent inhibitors of synaptic plasticity; however, the involved mechanism is still not fully understood. We previously reported a significantly reduced incidence of Alzheimer's disease in ageing humans chronically treated with a Food and Drug Administration-approved calcineurin inhibitor, FK506 (tacrolimus), used as an immunosuppressant after solid organ transplant. Using a combination of electrophysiological and RNA-sequencing techniques, we provide here evidence that FK506 has the potential to block the acute toxic effect of brain-derived tau oligomers on synaptic plasticity, as well as to restore the levels of some key synaptic mRNAs. These results further support FK506 as a promising novel therapeutic strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Lai R, Li B, Bishnoi R. P-tau217 as a Reliable Blood-Based Marker of Alzheimer's Disease. Biomedicines 2024; 12:1836. [PMID: 39200300 PMCID: PMC11351463 DOI: 10.3390/biomedicines12081836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid plaques and tau tangles are the hallmark pathologic features of Alzheimer's disease (AD). Traditionally, these changes are identified in vivo via cerebrospinal fluid (CSF) analysis or positron emission tomography (PET) scans. However, these methods are invasive, expensive, and resource-intensive. To address these limitations, there has been ongoing research over the past decade to identify blood-based markers for AD. Despite the challenges posed by their extremely low concentrations, recent advances in mass spectrometry and immunoassay techniques have made it feasible to detect these blood markers of amyloid and tau deposition. Phosphorylated tau (p-tau) has shown greater promise in reflecting amyloid pathology as evidenced by CSF and PET positivity. Various isoforms of p-tau, distinguished by their differential phosphorylation sites, have been recognized for their ability to identify amyloid-positive individuals. Notable examples include p-tau181, p-tau217, and p-tau235. Among these, p-tau217 has emerged as a superior and reliable marker of amyloid positivity and, thus, AD in terms of accuracy of diagnosis and ability for early prognosis. In this narrative review, we aim to elucidate the utility of p-tau217 as an AD marker, exploring its underlying basis, clinical diagnostic potential, and relevance in clinical care and trials.
Collapse
Affiliation(s)
- Roy Lai
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA (B.L.)
| | - Brenden Li
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA (B.L.)
| | - Ram Bishnoi
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL 33613, USA
- USF Health Byrd Alzheimer’s Center and Research Institute, Tampa, FL 33613, USA
- USF Memory Disorder Clinic, Tampa, FL 33613, USA
| |
Collapse
|
11
|
Li M, Guan M, Lin J, Zhu K, Zhu J, Guo M, Li Y, Chen Y, Chen Y, Zou Y, Wu D, Xu J, Yi W, Fan Y, Ma S, Chen Y, Xu J, Yang L, Dai J, Ye T, Lu Z, Chen Y. Early blood immune molecular alterations in cynomolgus monkeys with a PSEN1 mutation causing familial Alzheimer's disease. Alzheimers Dement 2024; 20:5492-5510. [PMID: 38973166 PMCID: PMC11350033 DOI: 10.1002/alz.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aβ42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aβ secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aβ42 and phosphorylated tau).
Collapse
Affiliation(s)
- Mengqi Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Mingfeng Guan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Jianbang Lin
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaichuan Zhu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Jiayi Zhu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Ming Guo
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Yefei Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Ying Zou
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Daiqiang Wu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Junxin Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Xu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Lixin Yang
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ji Dai
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhonghua Lu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen Key Laboratory for Molecular Biology of Neural DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and ManipulationShenzhen Key Laboratory of Translational Research for Brain Diseasesthe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyChinese Academy of Sciences, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research Institute, Shenzhen‐Hong Kong Institute of Brain Science—Shenzhen Fundamental Research InstitutionsShenzhenChina
- SIAT‐HKUST Joint Laboratory for Brain ScienceChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Swanson L, DeGuara S, Wang W, Yin F, Saini T, Weiss RJ, Selleck SB. Altering heparan sulfate suppresses cell abnormalities and neuron loss in Drosophila presenilin model of Alzheimer Disease. iScience 2024; 27:110256. [PMID: 39109174 PMCID: PMC11302002 DOI: 10.1016/j.isci.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert J. Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard Mueller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie O'Donnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey Swanson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sophia DeGuara
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Wang
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Tripti Saini
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ryan J. Weiss
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Yi LX, Zeng L, Wang Q, Tan EK, Zhou ZD. Reelin links Apolipoprotein E4, Tau, and Amyloid-β in Alzheimer's disease. Ageing Res Rev 2024; 98:102339. [PMID: 38754634 DOI: 10.1016/j.arr.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder that affects the cerebral cortex and hippocampus, and is characterised by progressive cognitive decline and memory loss. A recent report of a patient carrying a novel gain-of-function variant of RELN (H3447R, termed RELN-COLBOS) who developed resilience against presenilin-linked autosomal-dominant AD (ADAD) has generated enormous interest. The RELN-COLBOS variant enhances interactions with the apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), which are associated with delayed AD onset and progression. These findings were validated in a transgenic mouse model. Reelin is involved in neurodevelopment, neurogenesis, and neuronal plasticity. The evidence accumulated thus far has demonstrated that the Reelin pathway links apolipoprotein E4 (ApoE4), amyloid-β (Aβ), and tubulin-associated unit (Tau), which are key proteins that have been implicated in AD pathogenesis. Reelin and key components of the Reelin pathway have been highlighted as potential therapeutic targets and biomarkers for AD.
Collapse
Affiliation(s)
- Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore
| | - Li Zeng
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
14
|
Catlin JP, Tooley CES. Exploring potential developmental origins of common neurodegenerative disorders. Biochem Soc Trans 2024; 52:1035-1044. [PMID: 38661189 PMCID: PMC11440815 DOI: 10.1042/bst20230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
In the United States, it is now estimated that 6.7 million people over the age of 65 are afflicted by Alzheimer's disease (AD), over 1 million people are living with Parkinson's disease (PD), and over 200 000 have or are at risk for developing Huntington's disease (HD). All three of these neurodegenerative diseases result in the ultimate death of distinct neuronal subtypes, and it is widely thought that age-related damage is the single biggest contributing factor to this neuronal death. However, recent studies are now suggesting that developmental defects during early neurogenesis could also play a role in the pathology of neurodegenerative diseases. Loss or overexpression of proteins associated with HD, PD, and AD also result in embryonic phenotypes but whether these developmental defects slowly unmask over time and contribute to age-related neurodegeneration remains highly debated. Here, we discuss known links between embryonic neurogenesis and neurodegenerative disorders (including common signaling pathways), potential compensatory mechanisms that could delay presentation of neurodegenerative disorders, and the types of model systems that could be used to study these links in vivo.
Collapse
Affiliation(s)
- James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival. eLife 2024; 12:RP92673. [PMID: 38856715 PMCID: PMC11164531 DOI: 10.7554/elife.92673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Long Ma
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Youren Tong
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Jie Shen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
17
|
Maccioni R, Travisan C, Badman J, Zerial S, Wagener A, Andrade-Talavera Y, Picciau F, Grassi C, Chen G, Lemoine L, Fisahn A, Jiang R, Fluhrer R, Mentrup T, Schröder B, Nilsson P, Tambaro S. Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease. Prog Neurobiol 2024; 235:102585. [PMID: 38367747 DOI: 10.1016/j.pneurobio.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aβ production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aβ-induced upregulation of SPPL2b may enhance Aβ production in a vicious cycle, further aggravating Aβ pathology. Therefore, SPPL2b emerges as a potential anti-Aβ drug target.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States.
| | - Caterina Travisan
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; VIB-KU Leuven Center for Brain and Disease Research, Leuven 3001, Belgium.
| | - Jack Badman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Stefania Zerial
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of life science, University of Trieste, Trieste 34127, Italy.
| | - Annika Wagener
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 69117 Germany.
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Federico Picciau
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Biomedical Sciences, Cytomorphology, University of Cagliari, Cagliari 09042, Italy.
| | - Caterina Grassi
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - Laetitia Lemoine
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Germany.
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| |
Collapse
|
18
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
19
|
Chow TW, Raupp M, Reynolds MW, Li S, Kaeser GE, Chun J. Nucleoside Reverse Transcriptase Inhibitor Exposure Is Associated with Lower Alzheimer's Disease Risk: A Retrospective Cohort Proof-of-Concept Study. Pharmaceuticals (Basel) 2024; 17:408. [PMID: 38675371 PMCID: PMC11053431 DOI: 10.3390/ph17040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Brain somatic gene recombination (SGR) and the endogenous reverse transcriptases (RTs) that produce it have been implicated in the etiology of Alzheimer's disease (AD), suggesting RT inhibitors as novel prophylactics or therapeutics. This retrospective, proof-of-concept study evaluated the incidence of AD in people with human immunodeficiency virus (HIV) with or without exposure to nucleoside RT inhibitors (NRTIs) using de-identified medical claims data. Eligible participants were aged ≥60 years, without pre-existing AD diagnoses, and pursued medical services in the United States from October 2015 to September 2016. Cohorts 1 (N = 46,218) and 2 (N = 32,923) had HIV. Cohort 1 had prescription claims for at least one NRTI within the exposure period; Cohort 2 did not. Cohort 3 (N = 150,819) had medical claims for the common cold without evidence of HIV or antiretroviral therapy. The cumulative incidence of new AD cases over the ensuing 2.75-year observation period was lowest in patients with NRTI exposure and highest in controls. Age- and sex-adjusted hazard ratios showed a significantly decreased risk for AD in Cohort 1 compared with Cohorts 2 (HR 0.88, p < 0.05) and 3 (HR 0.84, p < 0.05). Sub-grouping identified a decreased AD risk in patients with NRTI exposure but without protease inhibitor (PI) exposure. Prospective clinical trials and the development of next-generation agents targeting brain RTs are warranted.
Collapse
Affiliation(s)
- Tiffany W. Chow
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Raupp
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
| | | | - Siying Li
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
| | - Gwendolyn E. Kaeser
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Pak V, Adewale Q, Bzdok D, Dadar M, Zeighami Y, Iturria-Medina Y. Distinctive whole-brain cell types predict tissue damage patterns in thirteen neurodegenerative conditions. eLife 2024; 12:RP89368. [PMID: 38512130 PMCID: PMC10957173 DOI: 10.7554/elife.89368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
For over a century, brain research narrative has mainly centered on neuron cells. Accordingly, most neurodegenerative studies focus on neuronal dysfunction and their selective vulnerability, while we lack comprehensive analyses of other major cell types' contribution. By unifying spatial gene expression, structural MRI, and cell deconvolution, here we describe how the human brain distribution of canonical cell types extensively predicts tissue damage in 13 neurodegenerative conditions, including early- and late-onset Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, amyotrophic lateral sclerosis, mutations in presenilin-1, and 3 clinical variants of frontotemporal lobar degeneration (behavioral variant, semantic and non-fluent primary progressive aphasia) along with associated three-repeat and four-repeat tauopathies and TDP43 proteinopathies types A and C. We reconstructed comprehensive whole-brain reference maps of cellular abundance for six major cell types and identified characteristic axes of spatial overlapping with atrophy. Our results support the strong mediating role of non-neuronal cells, primarily microglia and astrocytes, in spatial vulnerability to tissue loss in neurodegeneration, with distinct and shared across-disorder pathomechanisms. These observations provide critical insights into the multicellular pathophysiology underlying spatiotemporal advance in neurodegeneration. Notably, they also emphasize the need to exceed the current neuro-centric view of brain diseases, supporting the imperative for cell-specific therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
- Veronika Pak
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
- School of Computer Science, McGill UniversityMontrealCanada
- Mila – Quebec Artificial Intelligence InstituteMontrealCanada
| | | | | | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- Ludmer Centre for Neuroinformatics & Mental HealthMontrealCanada
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
- McGill Centre for Studies in AgingMontrealCanada
| |
Collapse
|
21
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
22
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Wang W, Yin F, Weiss R, Selleck SB. Heparan sulfate modified proteins affect cellular processes central to neurodegeneration and modulate presenilin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576895. [PMID: 38328107 PMCID: PMC10849577 DOI: 10.1101/2024.01.23.576895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aβ-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
|
23
|
Garamszegi SP, Brzostowicki DJ, Coyne TM, Vontell RT, Davis DA. TDP-43 and Alzheimer's Disease Pathology in the Brain of a Harbor Porpoise Exposed to the Cyanobacterial Toxin BMAA. Toxins (Basel) 2024; 16:42. [PMID: 38251257 PMCID: PMC10821503 DOI: 10.3390/toxins16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan. Here, we describe TAR DNA-binding protein 43 (TDP-43) proteinopathy and Alzheimer's disease (AD) neuropathological changes in a beached harbor porpoise (Phocoena phocoena) that was exposed to a toxin produced by cyanobacteria called β-N-methylamino-L-alanine (BMAA). We found pathogenic TDP-43 cytoplasmic inclusions in neurons throughout the cerebral cortex, midbrain and brainstem. P62/sequestosome-1, responsible for the autophagy of misfolded proteins, was observed in the amygdala, hippocampus and frontal cortex. Genes implicated in AD and TDP-43 neuropathology such as APP and TARDBP were expressed in the brain. AD neuropathological changes such as amyloid-β plaques, neurofibrillary tangles, granulovacuolar degeneration and Hirano bodies were present in the hippocampus. These findings further support the development of progressive neurodegenerative disease in cetaceans and a potential causative link to cyanobacterial toxins. Climate change, nutrient pollution and industrial waste are increasing the frequency of harmful cyanobacterial blooms. Cyanotoxins like BMAA that are associated with neurodegenerative disease pose an increasing public health risk.
Collapse
Affiliation(s)
- Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel J. Brzostowicki
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Coyne
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Regina T. Vontell
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David A. Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
24
|
Bagyinszky E, Kim M, Park YH, An SSA, Kim S. PSEN1 His214Asn Mutation in a Korean Patient with Familial EOAD and the Importance of Histidine-Tryptophan Interactions in TM-4 Stability. Int J Mol Sci 2023; 25:116. [PMID: 38203287 PMCID: PMC10778985 DOI: 10.3390/ijms25010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
A pathogenic mutation in presenilin-1 (PSEN1), His214Asn, was found in a male patient with memory decline at the age of 41 in Korea for the first time. The proband patient was associated with a positive family history from his father, paternal aunt, and paternal grandmother without genetic testing. He was diagnosed with early onset Alzheimer's disease (EOAD). PSEN1 His214Asn was initially reported in an Italian family, where the patient developed phenotypes similar to the current proband patient. Magnetic resonance imaging (MRI) scans revealed a mild hippocampal atrophy. The amyloid positron emission tomography (amyloid-PET) was positive, along with the positive test results of the increased amyloid ß (Aβ) oligomerization tendency with blood. The PSEN1 His214 amino acid position plays a significant role in the gamma-secretase function, especially from three additional reported mutations in this residue: His214Asp, His214Tyr, and His214Arg. The structure prediction model revealed that PSEN1 protein His214 may interact with Trp215 of His-Trp cation-π interaction, and the mutations of His214 would destroy this interaction. The His-Trp cation-π interaction between His214 and Trp215 would play a crucial structural role in stabilizing the 4th transmembrane domain of PSEN1 protein, especially when aromatic residues were often reported in the membrane interface of the lipid-extracellular region of alpha helices or beta sheets. The His214Asn would alter the cleavage dynamics of gamma-secretase from the disappeared interactions between His214 and Trp215 inside of the helix, resulting in elevated amyloid production. Hence, the increased Aβ was reflected in the increased Aβ oligomerization tendency and the accumulations of Aβ in the brain from amyloid-PET, leading to EOAD.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea;
| | - Minju Kim
- Department of Neurology, Seoul National University College of Medicine & Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (M.K.); (Y.H.P.)
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine & Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (M.K.); (Y.H.P.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine & Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (M.K.); (Y.H.P.)
| |
Collapse
|
25
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
26
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548937. [PMID: 37503138 PMCID: PMC10369951 DOI: 10.1101/2023.07.13.548937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. We demonstrate that Aβ expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aβ and that the gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and other age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191
| | - Manish Chamoli
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Christina D. King
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Xueshu Xie
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Anna Foulger
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Julie K. Andersen
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Birgit Schilling
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
27
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
28
|
Hook V, Podvin S, Mosier C, Boyarko B, Seyffert L, Stringer H, Rissman RA. Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:588-598. [PMID: 38125374 PMCID: PMC10732590 DOI: 10.20517/evcna.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Laura Seyffert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Haley Stringer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Veterans Affairs San Diego Health System, San Diego, CA 92093, USA
| |
Collapse
|
29
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
30
|
Baek H, Sanjay, Park M, Lee HJ. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J Neuroinflammation 2023; 20:268. [PMID: 37978414 PMCID: PMC10655395 DOI: 10.1186/s12974-023-02950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin with antioxidant, anti-inflammatory, and antitumor properties. However, as the effects of C3G on the amyloidogenic pathway, autophagy, tau phosphorylation, neuronal cell death, and synaptic plasticity in Alzheimer's disease models have not been reported, we attempted to investigate the same in the brains of APPswe/PS1ΔE9 mice were analyzed. After oral administration of C3G (30 mg/kg/day) for 16 weeks, the cortical and hippocampal regions in the brains of APPswe/PS1ΔE9 mice were analyzed. C3G treatment reduced the levels of soluble and insoluble Aβ (Aβ40 and Aβ42) peptides and reduced the protein expression of the amyloid precursor protein, presenilin-1, and β-secretase in the cortical and hippocampal regions. And C3G treatment upregulated the expression of autophagy-related markers, LC3B-II, LAMP-1, TFEB, and PPAR-α and downregulated that of SQSTM1/p62, improving the autophagy of Aβ plaques and neurofibrillary tangles. In addition, C3G increased the protein expression of phosphorylated-AMPK/AMPK and Sirtuin 1 and decreased that of mitogen-activated protein kinases, such as phosphorylated-Akt/Akt and phosphorylated-ERK/ERK, thus demonstrating its neuroprotective effects. Furthermore, C3G regulated the PI3K/Akt/GSK3β signaling by upregulating phosphorylated-Akt/Akt and phosphorylated-GSK3β/GSK3β expression. C3G administration mitigated tau phosphorylation and improved synaptic function and plasticity by upregulating the expression of synapse-associated proteins synaptophysin and postsynaptic density protein-95. Although the potential of C3G in the APPswe/PS1ΔE9 mouse models has not yet been reported, oral administration of the C3G is shown to protect the brain and improve cognitive behavior.
Collapse
Affiliation(s)
- Hana Baek
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
31
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
32
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Fukuda H, Mizuguchi T, Doi H, Kameyama S, Kunii M, Joki H, Takahashi T, Komiya H, Sasaki M, Miyaji Y, Ohori S, Koshimizu E, Uchiyama Y, Tsuchida N, Fujita A, Hamanaka K, Misawa K, Miyatake S, Tanaka F, Matsumoto N. Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet 2023; 68:689-697. [PMID: 37308565 DOI: 10.1038/s10038-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/01/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1-7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shinichi Kameyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Tatsuya Takahashi
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mei Sasaki
- Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, 236-0037, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, 252-0375, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
35
|
Maidhof C, Müller V, Lartillot O, Agres K, Bloska J, Asano R, Odell-Miller H, Fachner J. Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study. Front Psychol 2023; 14:1155732. [PMID: 37842703 PMCID: PMC10570426 DOI: 10.3389/fpsyg.2023.1155732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Real-life research into the underlying neural dynamics of improvisational music therapy, used with various clinical populations, is largely lacking. This single case study explored within-session differences in musical features and in within- and between-brain coupling between a Person with Dementia (PwD) and a music therapist during a music therapy session. Methods Dual-EEG from a music therapist and a PwD (male, 31 years) was recorded. Note density, pulse clarity and synchronicity were extracted from audio-visual data. Three music therapists identified moments of interest and no interest (MOI/MONI) in two drum improvisations. The Integrative Coupling Index, reflecting time-lagged neural synchronization, and musical features were compared between the MOI and MONI. Results Between-brain coupling of 2 Hz activity was increased during the MOI, showing anteriority of the therapist's neural activity. Within-brain coupling for the PwD was stronger from frontal and central areas during the MOI, but within-brain coupling for the therapist was stronger during MONI. Differences in musical features indicated that both acted musically more similar to one another during the MOI. Conclusion Within-session differences in neural synchronization and musical features highlight the dynamic nature of music therapy. Significance The findings contribute to a better understanding of social and affective processes in the brain and (interactive) musical behaviors during specific moments in a real-life music therapy session. This may provide insights into the role of such moments for relational-therapeutic processes.
Collapse
Affiliation(s)
- Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Olivier Lartillot
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Kat Agres
- Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore, Singapore
- Centre for Music and Health, National University of Singapore, Singapore, Singapore
| | - Jodie Bloska
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rie Asano
- Institute of Musicology, University of Cologne, Cologne, Germany
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Helen Odell-Miller
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| |
Collapse
|
36
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Spinal cord injury induced exacerbation of Alzheimer's disease like pathophysiology is reduced by topical application of nanowired cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and tumor necrosis factor alpha. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:3-35. [PMID: 37833015 DOI: 10.1016/bs.irn.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Hallmark of Alzheimer's disease include amyloid beta peptide and phosphorylated tau deposition in brain that could be aggravated following traumatic of concussive head injury. However, amyloid beta peptide or p-tau in spinal cord following injury is not well known. In this investigation we measured amyloid beta peptide and p-tau together with tumor necrosis factor-alpha (TNF-α) in spinal cord and brain following 48 h after spinal cord injury in relation to the blood-spinal cord and blood-brain barrier, edema formation, blood flow changes and cell injury in perifocal regions of the spinal cord and brain areas. A focal spinal cord injury was inflicted over the right dorsal horn of the T10-11 segment (4 mm long and 2 mm deep) and amyloid beta peptide and p-tau was measured in perifocal rostral (T9) and caudal (T12) spinal cord segments as well as in the brain areas. Our observations showed a significant increase in amyloid beta peptide in the T9 and T12 segments as well as in remote areas of brain and spinal cord after 24 and 48 h injury. This is associated with breakdown of the blood-spinal cord (BSCB) and brain barriers (BBB), edema formation, reduction in blood flow and cell injury. After 48 h of spinal cord injury elevation of amyloid beta peptide, phosphorylated tau (p-tau) and tumor necrosis factor-alpha (TNF-α) was seen in T9 and T12 segments of spinal cord in cerebral cortex, hippocampus and brain stem regions associated with microglial activation as seen by upregulation of Iba1 and CD86. Repeated nanowired delivery of cerebrolysin topically over the traumatized segment repeatedly together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP), p-tau and TNF-α significantly attenuated amyloid beta peptide, p-tau deposition and reduces Iba1, CD68 and TNF-α levels in the brain and spinal cord along with blockade of BBB and BSCB, reduction in blood flow, edema formation and cell injury. These observations are the first to show that spinal cord injury induces Alzheimer's disease like symptoms in the CNS, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
37
|
Banerjee R, Gunawardena S. Glycogen synthase kinase 3β (GSK3β) and presenilin (PS) are key regulators of kinesin-1-mediated cargo motility within axons. Front Cell Dev Biol 2023; 11:1202307. [PMID: 37363727 PMCID: PMC10288942 DOI: 10.3389/fcell.2023.1202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
It has been a quarter century since the discovery that molecular motors are phosphorylated, but fundamental questions still remain as to how specific kinases contribute to particular motor functions, particularly in vivo, and to what extent these processes have been evolutionarily conserved. Such questions remain largely unanswered because there is no cohesive strategy to unravel the likely complex spatial and temporal mechanisms that control motility in vivo. Since diverse cargoes are transported simultaneously within cells and along narrow long neurons to maintain intracellular processes and cell viability, and disruptions in these processes can lead to cancer and neurodegeneration, there is a critical need to better understand how kinases regulate molecular motors. Here, we review our current understanding of how phosphorylation can control kinesin-1 motility and provide evidence for a novel regulatory mechanism that is governed by a specific kinase, glycogen synthase kinase 3β (GSK3β), and a scaffolding protein presenilin (PS).
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
38
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
39
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
40
|
Li C, Shen X, Pan W. Nonlinear causal discovery with confounders. J Am Stat Assoc 2023; 119:1205-1214. [PMID: 39077372 PMCID: PMC11286219 DOI: 10.1080/01621459.2023.2179490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph with correlated Gaussian errors due to confounding. First, we derive model identifiability under the sublinear growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state-of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python implementation is available at https://github.com/chunlinli/defuse.
Collapse
Affiliation(s)
- Chunlin Li
- School of Statistics, University of Minnesota, Minneapolis, MN 55455
| | - Xiaotong Shen
- School of Statistics, University of Minnesota, Minneapolis, MN 55455
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
41
|
Wright CA, Taylor JW, Cochran M, Lawlor JMJ, Moyers BA, Amaral MD, Bonnstetter ZT, Carter P, Solomon V, Myers RM, Love MN, Geldmacher DS, Cooper SJ, Roberson ED, Cochran JN. Contributions of rare and common variation to early-onset and atypical dementia risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285383. [PMID: 36798301 PMCID: PMC9934786 DOI: 10.1101/2023.02.06.23285383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We collected and analyzed genomic sequencing data from individuals with clinician- diagnosed early-onset or atypical dementia. Thirty-two patients were previously described, with sixty-eight newly described in this report. Of those sixty-eight, sixty-two patients reported Caucasian, non-Hispanic ethnicity and six reported as African American, non-Hispanic. Fifty-three percent of patients had a returnable variant. Five patients harbored a pathogenic variant as defined by the American College of Medical Genetics criteria for pathogenicity. A polygenic risk score was calculated for Alzheimer's patients in the total cohort and compared to the scores of a late-onset Alzheimer's cohort and a control set. Patients with early-onset Alzheimer's had higher non- APOE polygenic risk scores than patients with late onset Alzheimer's, supporting the conclusion that both rare and common genetic variation associate with early-onset neurodegenerative disease risk.
Collapse
Affiliation(s)
- Carter A Wright
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Belle A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Princess Carter
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Veronika Solomon
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Marissa Natelson Love
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David S Geldmacher
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
42
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
43
|
A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules 2023; 28:molecules28031084. [PMID: 36770750 PMCID: PMC9921523 DOI: 10.3390/molecules28031084] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative brain disorder that affects millions of people worldwide, is characterized by memory loss and cognitive decline. Low levels of acetylcholine and abnormal levels of beta-amyloid, T protein aggregation, inflammation, and oxidative stress, have been associated with AD, and therefore, research has been oriented towards the cholinergic system and primarily on acetylcholinesterase (AChE) inhibitors. In this review, we are focusing on the discovery of AChE inhibitors using computer-based modeling and simulation techniques, covering the recent literature from 2018-2022. More specifically, the review discusses the structures of novel, potent acetylcholinesterase inhibitors and their binding mode to AChE, as well as the physicochemical requirements for the design of potential AChE inhibitors.
Collapse
|
44
|
Singh A, Yeates C, Deshpande P, Kango-Singh M. Signaling interactions among neurons impact cell fitness and death in Alzheimer’s disease. Neural Regen Res 2023; 18:784-789. [DOI: 10.4103/1673-5374.354516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023; 48:151-167. [PMID: 36056106 PMCID: PMC9700830 DOI: 10.1038/s41386-022-01426-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Over the last five decades, a large body of evidence has accrued for structural and metabolic brain alterations in schizophrenia. Here we provide an overview of these findings, focusing on measures that have traditionally been thought to reflect synaptic spine density or synaptic activity and that are relevant for understanding if there is lower synaptic density in the disorder. We conducted literature searches to identify meta-analyses or other relevant studies in patients with chronic or first-episode schizophrenia, or in people at high genetic or clinical risk for psychosis. We identified 18 meta-analyses including over 50,000 subjects in total, covering: structural MRI measures of gyrification index, grey matter volume, grey matter density and cortical thickness, neurite orientation dispersion and density imaging, PET imaging of regional glucose metabolism and magnetic resonance spectroscopy measures of N-acetylaspartate. We also review preclinical evidence on the relationship between ex vivo synaptic measures and structural MRI imaging, and PET imaging of synaptic protein 2A (SV2A). These studies show that schizophrenia is associated with lower grey matter volumes and cortical thickness, accelerated grey matter loss over time, abnormal gyrification patterns, and lower regional SV2A levels and metabolic markers in comparison to controls (effect sizes from ~ -0.11 to -1.0). Key regions affected include frontal, anterior cingulate and temporal cortices and the hippocampi. We identify several limitations for the interpretation of these findings in terms of understanding synaptic alterations. Nevertheless, taken with post-mortem findings, they suggest that schizophrenia is associated with lower synaptic density in some brain regions. However, there are several gaps in evidence, in particular whether SV2A findings generalise to other cohorts.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Connor Cummings
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Clare Hall (College), University of Cambridge, Cambridge, UK
| | - George E Chapman
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
46
|
Li C, Shen X, Pan W. Inference for a Large Directed Acyclic Graph with Unspecified Interventions. JOURNAL OF MACHINE LEARNING RESEARCH : JMLR 2023; 24:73. [PMID: 37701522 PMCID: PMC10497226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Statistical inference of directed relations given some unspecified interventions (i.e., the intervention targets are unknown) is challenging. In this article, we test hypothesized directed relations with unspecified interventions. First, we derive conditions to yield an identifiable model. Unlike classical inference, testing directed relations requires to identify the ancestors and relevant interventions of hypothesis-specific primary variables. To this end, we propose a peeling algorithm based on nodewise regressions to establish a topological order of primary variables. Moreover, we prove that the peeling algorithm yields a consistent estimator in low-order polynomial time. Second, we propose a likelihood ratio test integrated with a data perturbation scheme to account for the uncertainty of identifying ancestors and interventions. Also, we show that the distribution of a data perturbation test statistic converges to the target distribution. Numerical examples demonstrate the utility and effectiveness of the proposed methods, including an application to infer gene regulatory networks. The R implementation is available at https://github.com/chunlinli/intdag.
Collapse
Affiliation(s)
- Chunlin Li
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaotong Shen
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Di Liberto V, Mudò G. Role of Bioactive Molecules on Neuroprotection, Oxidative Stress, and Neuroinflammation Modulation. Int J Mol Sci 2022; 23:ijms232415925. [PMID: 36555565 PMCID: PMC9785177 DOI: 10.3390/ijms232415925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
As the global population ages, the burden of neurodegenerative and neurological disorders is dramatically increasing [...].
Collapse
|
48
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
49
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
50
|
Chong CM, Tan Y, Tong J, Ke M, Zhang K, Yan L, Cen X, Lu JH, Chen G, Su H, Qin D. Presenilin-1 F105C mutation leads to tau accumulation in human neurons via the Akt/mTORC1 signaling pathway. Cell Biosci 2022; 12:131. [PMID: 35965317 PMCID: PMC9375916 DOI: 10.1186/s13578-022-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer’s disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer’s disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. Methods We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aβ and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. Results Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aβ and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. Conclusion We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00874-8.
Collapse
|