1
|
Netzer WJ, Sinha A, Ghias M, Chang E, Gindinova K, Mui E, Seo JS, Sinha SC. Stretching the structural envelope of imatinib to reduce β-amyloid production by modulating both β- and γ-secretase cleavages of APP. Front Chem 2024; 12:1381205. [PMID: 39439934 PMCID: PMC11493595 DOI: 10.3389/fchem.2024.1381205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
We previously showed that the anticancer drug imatinib mesylate (IMT, trade name: Gleevec) and a chemically distinct compound, DV2-103 (a kinase-inactive derivative of the potent Abl and Src kinase inhibitor, PD173955) lower Aβ levels at low micromolar concentrations primarily through a lysosome-dependent mechanism that renders APP less susceptible to proteolysis by BACE1 without directly inhibiting BACE1 enzymatic activity, or broadly inhibiting the processing of other BACE1 substrates. Additionally, IMT indirectly inhibits γ-secretase and stimulates autophagy, and thus may decrease Aβ levels through multiple pathways. In two recent studies we demonstrated similar effects on APP metabolism caused by derivatives of IMT and DV2-103. In the present study, we synthesized and tested radically altered IMT isomers (IMTi's) that possess medium structural similarity to IMT. Independent of structural similarity, these isomers manifest widely differing potencies in altering APP metabolism. These will enable us to choose the most potent isomers for further derivatization.
Collapse
Affiliation(s)
- William J. Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Mondana Ghias
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Emily Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Katherina Gindinova
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Emily Mui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Ji-Seon Seo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
2
|
Zhao F, Guo L, Huang T, Liu C, Wu D, Fang L, Min W. Interaction between the Neuroprotective and Hyperglycemia Mitigation Effects of Walnut-Derived Peptide LVRL via the Wnt3a/β-Catenin/GSK-3β Pathway in a Type 2 Diabetes Mellitus Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16204-16220. [PMID: 38984968 DOI: 10.1021/acs.jafc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/β-Catenin/GSK-3β pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/β-Catenin/GSK-3β pathway.
Collapse
Affiliation(s)
- Fanrui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ting Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| |
Collapse
|
3
|
Schiavi A, Cirotti C, Gerber LS, Di Lauro G, Maglioni S, Shibao PYT, Montresor S, Kirstein J, Petzsch P, Köhrer K, Schins RPF, Wahle T, Barilà D, Ventura N. Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species. Cell Death Discov 2023; 9:376. [PMID: 37838776 PMCID: PMC10576830 DOI: 10.1038/s41420-023-01592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 10/16/2023] Open
Abstract
Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aβ)-induced detrimental effects in different C. elegans AD models and it reduces Aβ-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aβ toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Claudia Cirotti
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Lora-Sophie Gerber
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Giulia Di Lauro
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany
| | - Priscila Yumi Tanaka Shibao
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Janine Kirstein
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Patrick Petzsch
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Tina Wahle
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Daniela Barilà
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany.
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany.
| |
Collapse
|
4
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
5
|
Saka R, Chella N, Khan W. Development of Imatinib Mesylate-Loaded Liposomes for Nose to Brain Delivery: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2021; 22:192. [PMID: 34184160 DOI: 10.1208/s12249-021-02072-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer's disease require treatment where it is essential for drug to reach brain. Nose to brain delivery of drugs enables direct transport to brain bypassing blood brain barrier. Imatinib mesylate, an anti-cancer agent, was found to have potential anti-Alzheimer's activity and thus repurposed for the same. However, the drug has severe side effects, poor brain bioavailability which may hinder effective treatment of Alzheimer's disease. In the current work, imatinib mesylate-loaded liposomes were prepared with particle size below 150 nm with sustained drug release up to 96 h. The liposomal drug formulation was compared with plain drug solution for cytotoxicity on N2a cells and did not show any kind of toxicity at concentrations up to 25 μg/mL. The nanocarrier formulation was then evaluated for brain deposition by nose to brain administration in comparison with drug solution in rats. The liposomes effectively improved the brain deposition of drug in brain from formulation compared to pure drug solution as indicated by AUC from in vivo experiments. These results indicate that the nose to brain delivery of liposomal imatinib mesylate improved the drug deposition and residence time in brain compared to drug solution administered through oral and intranasal routes.
Collapse
|
6
|
Advani D, Kumar P. Therapeutic Targeting of Repurposed Anticancer Drugs in Alzheimer's Disease: Using the Multiomics Approach. ACS OMEGA 2021; 6:13870-13887. [PMID: 34095679 PMCID: PMC8173619 DOI: 10.1021/acsomega.1c01526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
AIM/HYPOTHESIS The complexity and heterogeneity of multiple pathological features make Alzheimer's disease (AD) a major culprit to global health. Drug repurposing is an inexpensive and reliable approach to redirect the existing drugs for new indications. The current study aims to study the possibility of repurposing approved anticancer drugs for AD treatment. We proposed an in silico pipeline based on "omics" data mining that combines genomics, transcriptomics, and metabolomics studies. We aimed to validate the neuroprotective properties of repurposed drugs and to identify the possible mechanism of action of the proposed drugs in AD. RESULTS We generated a list of AD-related genes and then searched DrugBank database and Therapeutic Target Database to find anticancer drugs related to potential AD targets. Specifically, we researched the available approved anticancer drugs and excluded the information of investigational and experimental drugs. We developed a computational pipeline to prioritize the anticancer drugs having a close association with AD targets. From data mining, we generated a list of 2914 AD-related genes and obtained 49 potential druggable targets by functional enrichment analysis. The protein-protein interaction (PPI) studies for these genes revealed 641 interactions. We found that 15 AD risk/direct PPI genes were associated with 30 approved oncology drugs. The computational validation of candidate drug-target interactions, structural and functional analysis, investigation of related molecular mechanisms, and literature-based analysis resulted in four repurposing candidates, of which three drugs were epidermal growth factor receptor (EGFR) inhibitors. CONCLUSION Our computational drug repurposing approach proposed EGFR inhibitors as potential repurposing drugs for AD. Consequently, our proposed framework could be used for drug repurposing for different indications in an economical and efficient way.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional
Genomics Laboratory, Delhi Technological
University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional
Genomics Laboratory, Delhi Technological
University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India
| |
Collapse
|
7
|
The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer's Disease. Mol Neurobiol 2021; 58:4038-4050. [PMID: 33914267 DOI: 10.1007/s12035-021-02385-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular amyloid beta peptides and neurofibrillary tangles consisted of intracellular hyperphosphorylated Tau in the hippocampus and cerebral cortex. Most of the mutations in key genes that code for amyloid precursor protein can lead to significant accumulation of these peptides in the brain and cause Alzheimer's disease. Moreover, some point mutations in amyloid precursor protein can cause familial Alzheimer's disease, such as Swedish mutation (KM670/671NL) and A673V mutation. However, recent studies have found that the A673T mutation in amyloid precursor protein gene can protect against Alzheimer's disease, even if it is located next to the Swedish mutation (KM670/671NL) and at the same site as A673V mutation, which are pathogenic. It makes us curious about the protective A673T mutation. Here, we summarize the most recent insights of A673T mutation, focus on their roles in protective mechanisms against Alzheimer's disease, and discuss their involvement in future treatment.
Collapse
|
8
|
Sinha A, Chang JC, Xu P, Gindinova K, Cho Y, Sun W, Wu X, Li YM, Greengard P, Kelly JW, Sinha SC. Brain Permeable Tafamidis Amide Analogs for Stabilizing TTR and Reducing APP Cleavage. ACS Med Chem Lett 2020; 11:1973-1979. [PMID: 33062181 PMCID: PMC7549266 DOI: 10.1021/acsmedchemlett.9b00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Tafamidis, 1, a potent transthyretin kinetic stabilizer, weakly inhibits the γ-secretase enzyme in vitro. We have synthesized four amide derivatives of 1. These compounds reduce production of the Aβ peptide in N2a695 cells but do not inhibit the γ-secretase enzyme in cell-free assays. By performing fluorescence correlation spectroscopy, we have shown that TTR inhibits Aβ oligomerization and that addition of tafamidis or its amide derivative does not affect TTR's ability to inhibit Aβ oligomerization. The piperazine amide derivative of tafamidis (1a) efficiently penetrates and accumulates in mouse brain and undergoes proteolysis under physiological conditions in mice to produce tafamidis.
Collapse
Affiliation(s)
- Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Jerry C Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Peng Xu
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Katherina Gindinova
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Younhee Cho
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Weilin Sun
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Yue Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
9
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
10
|
Iannuzzi F, Sirabella R, Canu N, Maier TJ, Annunziato L, Matrone C. Fyn Tyrosine Kinase Elicits Amyloid Precursor Protein Tyr682 Phosphorylation in Neurons from Alzheimer's Disease Patients. Cells 2020; 9:E1807. [PMID: 32751526 PMCID: PMC7463977 DOI: 10.3390/cells9081807] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid β peptides. Of interest, Fyn tyrosine kinase (TK) interaction with APP Tyr682 residue increases in AD neurons. Here we proved that when Fyn TK was overexpressed it elicited APP Tyr682 phosphorylation in neurons from healthy donors and promoted the amyloidogenic APP processing with Aβ peptides accumulation and neuronal death. Phosphorylation of APP at Tyr (pAPP-Tyr) increased in neurons of AD patients and AD neurons that exhibited high pAPP-Tyr also had higher Fyn TK activity. Fyn TK inhibition abolished the pAPP-Tyr and reduced Aβ42 secretion in AD neurons. In addition, the multidomain adaptor protein Fe65 controlled the Fyn-mediated pAPP-Tyr, warranting the possibility of targeting the Fe65-APP-Fyn pathway to develop innovative strategies in AD. Altogether, these results strongly emphasize the relevance of focusing on pAPP Tyr682 either for diagnostic purposes, as an early biomarker of the disease, or for pharmacological targeting, using Fyn TKI.
Collapse
Affiliation(s)
- Filomena Iannuzzi
- Department of Biomedicine, Aarhus University, Aarhus C, 8000 Aarhus, Denmark;
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Nadia Canu
- Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Institute of Biochemistry and Cell Biology, CNR, 00015 Monterotondo, Rome, Italy
| | - Thorsten J. Maier
- Paul-Ehrlich-Institut, (Federal Institute for Vaccines and Biomedicines), 63225 Langen, Germany;
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Gianturco, 80131 Naples, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
11
|
Yañez MJ, Marín T, Balboa E, Klein AD, Alvarez AR, Zanlungo S. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165875. [PMID: 32522631 DOI: 10.1016/j.bbadis.2020.165875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.
Collapse
Affiliation(s)
- M J Yañez
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - A R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile; CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Knupp A, Mishra S, Martinez R, Braggin JE, Szabo M, Kinoshita C, Hailey DW, Small SA, Jayadev S, Young JE. Depletion of the AD Risk Gene SORL1 Selectively Impairs Neuronal Endosomal Traffic Independent of Amyloidogenic APP Processing. Cell Rep 2020; 31:107719. [PMID: 32492427 PMCID: PMC7409533 DOI: 10.1016/j.celrep.2020.107719] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 02/09/2023] Open
Abstract
SORL1/SORLA is a sorting receptor involved in retromer-related endosomal traffic and an Alzheimer's disease (AD) risk gene. Using CRISPR-Cas9, we deplete SORL1 in hiPSCs to ask if loss of SORL1 contributes to AD pathogenesis by endosome dysfunction. SORL1-deficient hiPSC neurons show early endosome enlargement, a hallmark cytopathology of AD. There is no effect of SORL1 depletion on endosome size in hiPSC microglia, suggesting a selective effect on neuronal endosomal trafficking. We validate defects in neuronal endosomal traffic by showing altered localization of amyloid precursor protein (APP) in early endosomes, a site of APP cleavage by the β-secretase (BACE). Inhibition of BACE does not rescue endosome enlargement in SORL1-deficient neurons, suggesting that this phenotype is independent of amyloidogenic APP processing. Our data, together with recent findings, underscore how sporadic AD pathways regulating endosomal trafficking and autosomal-dominant AD pathways regulating APP cleavage independently converge on the defining cytopathology of AD.
Collapse
Affiliation(s)
- Allison Knupp
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Swati Mishra
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Refugio Martinez
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | | | - Marcell Szabo
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Chizuru Kinoshita
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Dale W Hailey
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jessica E Young
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Bassendine MF, Taylor-Robinson SD, Fertleman M, Khan M, Neely D. Is Alzheimer's Disease a Liver Disease of the Brain? J Alzheimers Dis 2020; 75:1-14. [PMID: 32250293 PMCID: PMC7306895 DOI: 10.3233/jad-190848] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Clinical specialization is not only a force for progress, but it has also led to the fragmentation of medical knowledge. The focus of research in the field of Alzheimer's disease (AD) is neurobiology, while hepatologists focus on liver diseases and lipid specialists on atherosclerosis. This article on AD focuses on the role of the liver and lipid homeostasis in the development of AD. Amyloid-β (Aβ) deposits accumulate as plaques in the brain of an AD patient long before cognitive decline is evident. Aβ generation is a normal physiological process; the steady-state level of Aβ in the brain is determined by balance between Aβ production and its clearance. We present evidence suggesting that the liver is the origin of brain Aβ deposits and that it is involved in peripheral clearance of circulating Aβ in the blood. Hence the liver could be targeted to decrease Aβ production or increase peripheral clearance.
Collapse
Affiliation(s)
- Margaret F. Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Hepatology & Gastroenterology, Division of Surgery and Cancer, Imperial College London, St Mary’s Campus, UK
| | - Simon D. Taylor-Robinson
- Department of Hepatology & Gastroenterology, Division of Surgery and Cancer, Imperial College London, St Mary’s Campus, UK
| | - Michael Fertleman
- Department of Hepatology & Gastroenterology, Division of Surgery and Cancer, Imperial College London, St Mary’s Campus, UK
- Department of Bioengineering, Imperial College London, UK
| | - Michael Khan
- University of Warwick & University Hospitals of Coventry and Warwickshire NHS Trust, UK
| | - Dermot Neely
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| |
Collapse
|
14
|
Sinha A, Gindinova K, Mui E, Netzer WJ, Sinha SC. Development of Kinase Inactive PD173955 Analogues for Reducing Production of Aβ Peptides. ACS Med Chem Lett 2019; 10:1430-1435. [PMID: 31620229 DOI: 10.1021/acsmedchemlett.9b00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Compound 3a, DV2-103, is a kinase inactive analogue of a potent Abl1/Src kinase inhibitor, PD173955, 2. Both compounds, 2 and 3a, are known to reduce production of beta amyloid (Aβ) peptide in cells and animal models. We have now prepared and evaluated a series of PD-173955 analogues, several of which reduced Aβ production potently. This occurs in cells expressing human full-length amyloid precursor protein (APP) and not in cells expressing APP β-C terminal fragment (APP-C99), suggesting that the kinase inactive analogues strongly affect β-secretase (BACE1) cleavage of APP, similarly to Gleevec. A combination of the kinase inactive analogues of PD173955 with a BACE1 inhibitor (BACEi), namely, BACE IV, strongly reduced Aβ levels in cells, as noted previously with Gleevec and analogues. Several potent compounds also penetrated and accumulated in mouse brain in high nanomolar to low micromolar concentration.
Collapse
Affiliation(s)
- Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Katherina Gindinova
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Mui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - William J. Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
15
|
Lopez-Font I, Boix CP, Zetterberg H, Blennow K, Sáez-Valero J. Characterization of Cerebrospinal Fluid BACE1 Species. Mol Neurobiol 2019; 56:8603-8616. [PMID: 31290061 DOI: 10.1007/s12035-019-01677-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Abstract
The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the main brain β-secretase responsible for the amyloidogenic processing of the amyloid precursor protein (APP). Previous studies have suggested that cerebrospinal fluid (CSF) β-secretase activity may be a candidate diagnostic biomarker for Alzheimer's disease (AD), but biochemical characterization of BACE1 protein in CSF is needed. CSF samples from 19 AD patients and 19 age-matched non-AD controls (n = 19) were classified according to their Aβ42, total tau, and P-tau CSF biomarker levels. We found that β-secretase activity was higher in the CSF of AD subjects than in that of the controls. We found that the majority of the β-secretase activity in the CSF, measured using a peptide substrate homologous to the BACE1 cleavage site, was not inhibited by specific BACE1 inhibitors. We defined enzymatic activity attributable specifically to BACE1 as the activity that was blocked by the specific inhibitors, which is still higher in AD subjects. BACE1 protein levels were characterized by lectin binding, immunoprecipitation, blue native-PAGE, and western blotting using antibodies against specific protein domains. BACE1 was found to be present in human CSF as a mature form of ~ 70 kDa that probably comprised truncated and full-length species, and also as an immature form of ~ 50 kDa that retains the prodomain. CSF-BACE1 was found to assemble into hetero-complexes containing distinct species. Immunoblotting with an antibody against the C-terminus of BACE1 revealed significantly higher levels of the 70-kDa full-length BACE1, while the 50 kDa immature form remained unaltered. When the 70-kDa species was probed with an antibody against the N-terminus of BACE1 (which does not discriminate between truncated and full-length forms), no increase in immunoreactivity was observed, suggesting that truncated forms of BACE1 do not increase in AD. In conclusion, the complexity of BACE1 species in CSF has to be taken into consideration when determining BACE1 activity and protein levels in CSF as biomarkers of AD.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
16
|
Matrone C, Iannuzzi F, Annunziato L. The Y 682ENPTY 687 motif of APP: Progress and insights toward a targeted therapy for Alzheimer's disease patients. Ageing Res Rev 2019; 52:120-128. [PMID: 31039414 DOI: 10.1016/j.arr.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which no curative treatments, disease modifying strategies or effective symptomatic therapies exist. Current pharmacologic treatments for AD can only decelerate the progression of the disease for a short time, often at the cost of severe side effects. Therefore, there is an urgent need for biomarkers able to diagnose AD at its earliest stages, to conclusively track disease progression, and to accelerate the clinical development of innovative therapies. Scientific research and economic efforts for the development of pharmacotherapies have recently homed in on the hypothesis that neurotoxic β-amyloid (Aβ) peptides in their oligomeric or fibrillary forms are primarily responsible for the cognitive impairment and neuronal death seen in AD. As such, modern pharmacologic approaches are largely based on reducing production by inhibiting β and γ secretase cleavage of the amyloid precursor protein (APP) or on dissolving existing cerebral Aβ plaques or to favor Aβ clearance from the brain. The following short review aims to persuade the reader of the idea that APP plays a much larger role in AD pathogenesis. APP plays a greater role in AD pathogenesis than its role as the precursor for Aβ peptides: both the abnormal cleavage of APP leading to Aβ peptide accumulation and the disruption of APP physiological functions contribute to AD pathogenesis. We summarize our recent results on the role played by the C-terminal APP motif -the Y682ENPTY68 motif- in APP function and dysfunction, and we provide insights into targeting the Tyr682 residue of APP as putative novel strategy in AD.
Collapse
|
17
|
Kumar M, Kulshrestha R, Singh N, Jaggi AS. Expanding spectrum of anticancer drug, imatinib, in the disorders affecting brain and spinal cord. Pharmacol Res 2019; 143:86-96. [PMID: 30902661 DOI: 10.1016/j.phrs.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Imatinib is a tyrosine kinase inhibitor and is used as a first line drug in the treatment of Philadelphia-chromosome-positive chronic myeloid leukaemia and gastrointestinal stromal tumors. Being tyrosine kinase inhibitor, imatinib modulates the activities of Abelson gene (c-Abl), Abelson related gene (ARG), platelet-derived growth factor receptor (PDGFR), FMS-like tyrosine kinase 3 (FLT3), lymphocyte-specific protein (Lck), mitogen activated protein kinase (MAPK), amyloid precursor protein intracellular domain (AICD), α-synuclein and the stem-cell factor receptor (c-kit). Studies have shown the role of imatinib in modulating the pathophysiological state of a number of disorders affecting brain and spinal cord such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and spinal cord injury. The present review discusses the role of imatinib in the above described disorders and the possible mechanisms involved in these diseases.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
18
|
Sun W, Netzer WJ, Sinha A, Gindinova K, Chang E, Sinha SC. Development of Gleevec Analogues for Reducing Production of β-Amyloid Peptides through Shifting β-Cleavage of Amyloid Precursor Proteins. J Med Chem 2019; 62:3122-3134. [DOI: 10.1021/acs.jmedchem.8b02007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weilin Sun
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - William J. Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Katherina Gindinova
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Emily Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
19
|
A phenotypic approach to the discovery of compounds that promote non-amyloidogenic processing of the amyloid precursor protein: Toward a new profile of indirect β-secretase inhibitors. Eur J Med Chem 2018; 159:104-125. [PMID: 30268822 DOI: 10.1016/j.ejmech.2018.08.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022]
Abstract
Dysregulation of the Amyloid Precursor Protein (APP) processing leading to toxic species of amyloid β peptides (Aβ) is central to Alzheimer's disease (AD) etiology. Aβ peptides are produced by sequential cleavage of APP by β-secretase (BACE-1) and γ-secretase. Lysosomotropic agent, chloroquine (CQ), has been reported to inhibit Aβ peptide production. However, this effect is accompanied by an inhibition of lysosome-mediated degradation pathways. Following on from the promising activity of two series of APP metabolism modulators derived from CQ, we sought to develop new series of compounds that would retain the inhibitory effects on Aβ production without altering lysosome functions. Herein, we applied a ligand-based pharmacophore modeling approach coupled with de novo design that led to the discovery of a series of biaryl compounds. Structure-activity relationship studies revealed that minor modifications like replacing a piperidine moiety of compound 30 by a cyclohexyl (compound 31) allowed for the identification of compounds with the desired profile. Further studies have demonstrated that compounds 30 and 31 act through an indirect mechanism to inhibit β-secretase activity. This work shows that it is possible to dissociate the inhibitory effect on Aβ peptide secretion of CQ-derived compounds from the lysosome-mediated degradation effect, providing a new profile of indirect β-secretase inhibitors.
Collapse
|
20
|
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 2017; 36:3356-3371. [PMID: 29018038 PMCID: PMC5731665 DOI: 10.15252/embj.201796797] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by β‐secretase to generate a 99‐aa C‐terminal fragment (C99) that is then cleaved by γ‐secretase to generate the β‐amyloid (Aβ) found in senile plaques. In previous reports, we and others have shown that γ‐secretase activity is enriched in mitochondria‐associated endoplasmic reticulum (ER) membranes (MAM) and that ER–mitochondrial connectivity and MAM function are upregulated in AD. We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ‐secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Medical Campus, New York, NY, USA
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mark F Mehler
- Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Geoffrey S Perumal
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zachary Z Freyberg
- Departments of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebeca Acin-Perez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|