1
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2024; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
2
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
3
|
Triphenyltin(IV) dithiocarbamate compound induces genotoxicity and cytotoxicity in K562 human erythroleukemia cells primarily via mitochondria-mediated apoptosis. Food Chem Toxicol 2022; 168:113336. [PMID: 35963475 DOI: 10.1016/j.fct.2022.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
The novel di-and triphenyltin(IV) dithiocarbamate compounds represented as RnSnL2 (where R = C4H9, C6H5; n = 2,3; L = N,N-dithiocarbamate), Ph2Sn(N,N-diisopropyldithiocarbamate) (OC1), Ph3Sn(N,N-diisopropyldithiocarbamate) (OC2), Ph2Sn(N,N-diallyldithiocarbamate) (OC3), Ph3Sn(N,N-diallyldithiocarbamate) (OC4), and Ph2Sn(N,N-diethyldithiocarbamate) (OC5) were assessed for their cytotoxicity in K562 human erythroleukemia cells. All compounds inhibited the growth of cells at low micromolar concentrations (<10 μM), and the mechanism underlying their antiproliferative effects on K562 cells was apoptosis, as corroborated by the exposure of plasma membrane phosphatidylserine. OC2, which showed the most promising antiproliferative activity, was selected for further analyses. The results demonstrated that OC2 induced apoptosis in K562 cells via an intrinsic mitochondrial pathway triggered upon DNA damage, an early apoptotic signal. Subsequently, OC2 produced excessive intracellular reactive oxygen species. The role of oxidative stress was corroborated by the significant reduction in GSH levels and percentage of apoptosis in NAC-pretreated cells. OC2 could arrest the cell cycle progression in the S phase. These new findings elucidate the antiproliferative potential of OC2 in the K562 human erythroleukemia cells and warrant further investigation, specifically to determine the exact signaling pathway underlying its antileukemic efficacy.
Collapse
|
4
|
Temps C, Lietha D, Webb ER, Li XF, Dawson JC, Muir M, Macleod KG, Valero T, Munro AF, Contreras-Montoya R, Luque-Ortega JR, Fraser C, Beetham H, Schoenherr C, Lopalco M, Arends MJ, Frame MC, Qian BZ, Brunton VG, Carragher NO, Unciti-Broceta A. A Conformation Selective Mode of Inhibiting SRC Improves Drug Efficacy and Tolerability. Cancer Res 2021; 81:5438-5450. [PMID: 34417202 PMCID: PMC7611940 DOI: 10.1158/0008-5472.can-21-0613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Despite the approval of several multikinase inhibitors that target SRC and the overwhelming evidence of the role of SRC in the progression and resistance mechanisms of many solid malignancies, inhibition of its kinase activity has thus far failed to improve patient outcomes. Here we report the small molecule eCF506 locks SRC in its native inactive conformation, thereby inhibiting both enzymatic and scaffolding functions that prevent phosphorylation and complex formation with its partner FAK. This mechanism of action resulted in highly potent and selective pathway inhibition in culture and in vivo. Treatment with eCF506 resulted in increased antitumor efficacy and tolerability in syngeneic murine cancer models, demonstrating significant therapeutic advantages over existing SRC/ABL inhibitors. Therefore, this mode of inhibiting SRC could lead to improved treatment of SRC-associated disorders. SIGNIFICANCE: Small molecule-mediated inhibition of SRC impairing both catalytic and scaffolding functions confers increased anticancer properties and tolerability compared with other SRC/ABL inhibitors.
Collapse
Affiliation(s)
- Carolin Temps
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Lietha
- Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue-Feng Li
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Rafael Contreras-Montoya
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan R Luque-Ortega
- Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Craig Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry Beetham
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Lopalco
- Edinburgh Innovations Ltd., Edinburgh, United Kingdom
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Tan YJ, Lee YT, Mancera RL, Oon CE. BZD9L1 sirtuin inhibitor: Identification of key molecular targets and their biological functions in HCT 116 colorectal cancer cells. Life Sci 2021; 284:119747. [PMID: 34171380 DOI: 10.1016/j.lfs.2021.119747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/22/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
BZD9L1 was previously described as a SIRT1/2 inhibitor with anti-cancer activities in colorectal cancer (CRC), either as a standalone chemotherapy or in combination with 5-fluorouracil. BZD9L1 was reported to induce apoptosis in CRC cells; however, the network of intracellular pathways and crosstalk between molecular players mediated by BZD9L1 is not fully understood. This study aimed to uncover the mechanisms involved in BZD9L1-mediated cytotoxicity based on previous and new findings for the prediction and identification of related pathways and key molecular players. BZD9L1-regulated candidate targets (RCTs) were identified using a range of molecular, cell-based and biochemical techniques on the HCT 116 cell line. BZD9L1 regulated major cancer pathways including Notch, p53, cell cycle, NFκB, Myc/MAX, and MAPK/ERK signalling pathways. BZD9L1 also induced reactive oxygen species (ROS), regulated apoptosis-related proteins, and altered cell polarity and adhesion profiles. In silico analyses revealed that most RCTs were interconnected, and were involved in the modulation of catalytic activity, metabolism and transcription regulation, response to cytokines, and apoptosis signalling pathways. These RCTs were implicated in p53-dependent apoptosis pathway. This study provides the first assessment of possible associations of molecular players underlying the cytotoxic activity of BZD9L1, and establishes the links between RCTs and apoptosis through the p53 pathway.
Collapse
Affiliation(s)
- Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI) and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI) and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
6
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Gilreath C, Boerma M, Qin Z, Hudson MK, Wang S. The Hypoxic Microenvironment of Breast Cancer Cells Promotes Resistance in Radiation Therapy. Front Oncol 2021; 10:629422. [PMID: 33680952 PMCID: PMC7930560 DOI: 10.3389/fonc.2020.629422] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
The American Cancer Society has estimated an expected 279,100 new breast cancer cases, and an expected 42,690 breast cancer deaths in the U.S. for the year 2020. This includes an estimated 276,480 women who are expected to be diagnosed. Radiation therapy, also called ionizing radiation therapy, is one of the most frequently used methods in the treatment of breast cancer. While radiation therapy is used in the treatment of more than 50% of all cancer cases, tumor resistance to ionizing radiation presents a major challenge for effective cancer treatment. Most tumor cells are in a hypoxic microenvironment that promotes resistance to radiation therapy. In addition to radiation resistance, the hypoxic microenvironment also promotes cancer proliferation and metastasis. In this review, we will discuss the hypoxic microenvironment of breast cancer tumors, related signaling pathways, breast cancer stem-like cells, and the resistance to radiation therapy. Recent developments in our understanding of tumor hypoxia and hypoxic pathways may assist us in developing new strategies to increase cancer control in radiation therapy.
Collapse
Affiliation(s)
- Cordell Gilreath
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Marjan Boerma
- Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zhiqiang Qin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - M Keith Hudson
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
8
|
Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella-Branger D, Helmbacher F, Maina F. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget 2018; 7:74747-74767. [PMID: 27732969 PMCID: PMC5342699 DOI: 10.18632/oncotarget.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic tyrosine kinase ABL exerts positive or negative effects in solid tumours according to the cellular context, thus functioning as a “switch modulator”. The therapeutic effects of drugs targeting a set of signals encompassing ABL have been explored in several solid tumours. However, the net contribution of ABL inhibition by these agents remains elusive as these drugs also act on other signalling components. Here, using glioblastoma (GBM) as a cellular paradigm, we report that ABL inhibition exacerbates mesenchymal features as highlighted by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Cells with permanent ABL inhibition exhibit enhanced motility and invasive capabilities, while proliferation and tumorigenic properties are reduced. Intriguingly, permanent ABL inhibition also interferes with GBM neurosphere formation and with expression of stemness markers in sphere-cultured GBM cells. Furthermore, we show that the molecular and biological characteristics of GBM cells with impaired ABL are reversible by restoring ABL levels, thus uncovering a remarkable plasticity of GBM cells to ABL threshold. A phospho-signalling screen revealed that loss of tumorigenic and self-renewal properties in GBM cells under permanent ABL inhibition coincide with drastic changes in the expression and/or phosphorylation levels of multiple signalling components. Our findings identify ABL as a crucial player for migration, invasion, proliferation, tumorigenic, and stem-cell like properties of GBM cells. Taken together, this work supports the notion that the oncogenic role of ABL in GBM cells is associated with its capability to coordinate a signalling setting that determines tumorigenic and stem-cell like properties.
Collapse
Affiliation(s)
- Fabienne Lamballe
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Sara Toscano
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Filippo Conti
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Maria Arechederra
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Nathalie Baeza
- Aix-Marseille Université, Inserm, CRO2 UMR S911, Marseille, France
| | | | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
9
|
Morrison CD, Allington TM, Thompson CL, Gilmore HL, Chang JC, Keri RA, Schiemann WP. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget 2018; 7:72777-72794. [PMID: 27626309 PMCID: PMC5340126 DOI: 10.18632/oncotarget.11909] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression.
Collapse
Affiliation(s)
- Chevaun D Morrison
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado-Denver, Aurora, CO 80045, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX 77030, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma. Cancers (Basel) 2017; 9:E57. [PMID: 28587121 PMCID: PMC5483876 DOI: 10.3390/cancers9060057] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022] Open
Abstract
Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.
Collapse
Affiliation(s)
- Laura Annovazzi
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| | - Marta Mellai
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| | - Davide Schiffer
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| |
Collapse
|
11
|
DNA Repair--A Double-Edged Sword in the Genomic Stability of Cancer Cells--The Case of Chronic Myeloid Leukemia. Int J Mol Sci 2015; 16:27535-49. [PMID: 26593906 PMCID: PMC4661907 DOI: 10.3390/ijms161126049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is a common feature of cancer cells, which can result from aberrant DNA damage reaction (DDR). We and others showed that the well-known BCR-ABL1 fusion oncogene, the cause of chronic myeloid leukemia, induced an increased production of reactive oxygen species (ROS) and conferred therapeutic drug resistance by suppression of apoptotic signaling, prolonged G2/M arrest and stimulation of several pathways of DNA repair. However, to protect from apoptosis, cancer cells may tolerate some DNA lesions, which may increase genomic instability. Moreover, BCR/ABL1-stimulated DNA repair might be faulty, especially non-homologous end joining in its alternative forms. Normal DNA repair can remove DNA damage and prevent mutations, reducing genome instability, but on the other hand, due to its imprecise nature, it may increase genomic instability by increasing the ratio of mutagenic DNA lesions. The example of BCR-ABL1-expressing cells shows that DNA repair can both increase and decrease genomic instability of cancer cells and understanding the mechanism of the regulation of these opposite effects would be helpful in anticancer strategies.
Collapse
|
12
|
Zhao H, Chen MS, Lo YH, Waltz SE, Wang J, Ho PC, Vasiliauskas J, Plattner R, Wang YL, Wang SC. The Ron receptor tyrosine kinase activates c-Abl to promote cell proliferation through tyrosine phosphorylation of PCNA in breast cancer. Oncogene 2013; 33:1429-37. [PMID: 23542172 DOI: 10.1038/onc.2013.84] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
Abstract
Multiple growth pathways lead to enhanced proliferation in malignant cells. However, how the core machinery of DNA replication is regulated by growth signaling remains largely unclear. The sliding clamp proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA machinery responsible for replicating the genome and maintaining genomic integrity. We previously reported that epidermal growth factor receptor (EGFR) triggered tyrosine 211 (Y211) phosphorylation of PCNA, which in turn stabilized PCNA on chromatin to promote cell proliferation. Here we show that the phosphorylation can also be catalyzed by the non-receptor tyrosine kinase c-Abl. We further demonstrate that, in the absence of EGFR, signaling to PCNA can be attained through the activation of the Ron receptor tyrosine kinase and the downstream non-receptor tyrosine kinase c-Abl. We show that Ron and c-Abl form a complex, and that activation of Ron by its ligand, hepatocyte growth factor-like protein (HGFL), stimulates c-Abl kinase activity, which in turn directly phosphorylates PCNA at Y211 and leads to an increased level of chromatin-associated PCNA. Correspondingly, HGFL-induced Ron activation resulted in Y211 phosphorylation of PCNA while silencing of c-Abl blocked this effect. We show that c-Abl and Y211 phosphorylation of PCNA is an important axis downstream of Ron, which is required for cell proliferation. Treatment with a specific peptide that inhibits Y211 phosphorylation of PCNA or with the c-Abl pharmacological inhibitor imatinib suppressed HGFL-induced cell proliferation. Our findings identify the pathway of Ron-c-Abl-PCNA as a mechanism of oncogene-induced cell proliferation, with potentially important implications for development of combination therapy of breast cancer.
Collapse
Affiliation(s)
- H Zhao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M-S Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Y-H Lo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S E Waltz
- 1] Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - J Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - P-C Ho
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Vasiliauskas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R Plattner
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Y-L Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S-C Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Rossi G, Bertani C, Mari S, Marini C, Renzoni G, Ogilvie G, Magi GE. Ex vivo evaluation of imatinib mesylate for induction of cell death on canine neoplastic mast cells with mutations in c-Kit exon 11 via apoptosis. Vet Res Commun 2013; 37:101-8. [DOI: 10.1007/s11259-013-9550-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 11/29/2022]
|
14
|
Gao K, Deng XY, Qian HY, Wu P, Qin GX, Liu T, Guo XJ. cDNA cloning and characterization of LASP1 from silkworm, Bombyx mori, involved in cytoplasmic polyhedrosis virus infection. Gene 2012; 511:389-97. [PMID: 23031809 DOI: 10.1016/j.gene.2012.09.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/12/2012] [Indexed: 12/29/2022]
Abstract
Full-length cDNA of a LIM and SH3 contained protein 1 (named BmLASP1) was identified from the silkworm, Bombyx mori, for the first time by rapid amplification of cDNA ends. The full-length cDNA of BmLASP1 is 2094 bp, consisting of a 5'-terminal untranslated region (UTR) of 117 bp, and a 3'-UTR of 610 bp with two poly-adenylation signal sequence AATAAA and a poly (A) tail. The BmLASP1 cDNA encodes a polypeptide comprising 455 amino acids, including a LIM domain, two nebulin domains and an SH3 domain. The theoretical isoelectric point is 7.07 and the predicted molecular weight is 51.8 kDa. BmLASP1 has no signal peptide but three potential N-glycosylation sites. Sequence similarity and phylogenic analyses indicated that BmLASP1 belonged to the group of insect LASP1 with a longer linker region which is different from vertebrate LASP1. The LASP1 in silkworm contained eight exons in its coding regions, and the last exon-intron boundary was conserved the same as in mammalian and Ciona intestinalis LASP1 genes. By fluorescent quantitative real-time polymerase chain reaction, the mRNA transcripts of BmLASP1 were mainly detected in the gonad, head, and spiracle, and slightly in the silk gland, vasa mucosa, midgut, fat body, and hemocytes. After silkworm larvae were infected by B. mori cytoplasmic polyhedrosis virus (BmCPV), the relative expression level of BmLASP1 was down-regulated in the midgut. This result suggested that BmLASP1 may play an important role in the response of silkworm to BmCPV infection.
Collapse
Affiliation(s)
- Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Ren X, Xu J, Cooper JP, Kang MH, Erdreich-Epstein A. c-Abl is an upstream regulator of acid sphingomyelinase in apoptosis induced by inhibition of integrins αvβ3 and αvβ5. PLoS One 2012; 7:e42291. [PMID: 22879933 PMCID: PMC3411766 DOI: 10.1371/journal.pone.0042291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/05/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val) can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM), and increased ceramides C16, C18∶0, C24∶0 and C24∶1 while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl) inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity.
Collapse
Affiliation(s)
- Xiuhai Ren
- Division of Hematology-Oncology, Department of Pediatrics, Keck School of Medicine, University of Southern California and the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | |
Collapse
|
16
|
Qin Y, Stokman G, Yan K, Ramaiahgari S, Verbeek F, de Graauw M, van de Water B, Price LS. cAMP signalling protects proximal tubular epithelial cells from cisplatin-induced apoptosis via activation of Epac. Br J Pharmacol 2012; 165:1137-50. [PMID: 21745194 PMCID: PMC3346244 DOI: 10.1111/j.1476-5381.2011.01594.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Nephrotoxicity is the principal dose-limiting factor for cisplatin chemotherapy and is primarily associated with proximal tubular epithelial cells, including disruption of cell adhesions and induction of apoptosis. Cell adhesion and survival is regulated by, amongst other factors, the small GTPase Rap and its activator, the exchange protein directly activated by cAMP (Epac). Epac is particularly enriched in renal tubule epithelium. This study investigates the cytoprotective effects of cAMP-Epac-Rap signalling in a model of cisplatin-induced renal cell injury. EXPERIMENTAL APPROACH The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP was used to activate the Epac-Rap signalling pathway in proximal tubular epithelial cells. Cells were exposed to cisplatin, in the presence or absence of 8-pCPT-2'-O-Me-cAMP, and nephrotoxicity was determined by monitoring cell-cell junctions and cell apoptosis. KEY RESULTS Activation of Epac-Rap signalling preserves cell-cell junctions and protects against cell apoptosis of mouse proximal tubular cells during cisplatin treatment. Activation with the Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP or receptor-mediated induction of cAMP both induced cytoprotection against cisplatin, whereas a PKA-selective cAMP analogue was not cytoprotective. 8-pCPT-2'-O-Me-cAMP mediated cytoprotection was blocked by RNAi-mediated silencing of Epac-Rap signalling in these cells. In contrast, 8-pCPT-2'-O-Me-cAMP did not protect against cisplatin-induced cell death of cancer cells that lacked Epac1 expression. CONCLUSIONS AND IMPLICATIONS Our study identifies activation of Epac-Rap signalling as a potential strategy for reducing the nephrotoxicity associated with cisplatin treatments and, as a result, broadens the therapeutic window of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Geurt Stokman
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Kuan Yan
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Sreenivasa Ramaiahgari
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Fons Verbeek
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Marjo de Graauw
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| |
Collapse
|
17
|
Kim MR, Chang HW, Nam HY, Han MW, Moon SY, Kim HJ, Lee HJ, Roh JL, Kim SW, Kim SY. Activation of p53-p21 is closely associated with the acquisition of resistance to apoptosis caused by β1-integrin silencing in head and neck cancer cells. Biochem Biophys Res Commun 2012; 418:260-6. [PMID: 22266309 DOI: 10.1016/j.bbrc.2012.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 12/28/2022]
Abstract
The issue of whether aberrant expression of β1-integrin is associated with cancer progression and development of resistance to cytotoxic therapy is of considerable interest. Studies to date have shown that the anchorage-independent survival of cancer is attributed, in part, to epithelial-to-mesenchymal transition (EMT). Here, we have reported a novel alternative mechanism of anchorage-independent survival of cancer cells. Cell lines derived from head and neck cancer patients (AMC-HN-3 and AMC-HN-9) and the well-known EMT cancer cell line, MDA-MB231, were examined. The EMT features of AMC-HN-9 cells were comparable to those of MDA-MB231, whereas AMC-HN-3 cells showed no EMT characteristics. Although the pattern and degree of β1-integrin expression were similar in all three cell lines, sensitivities of the cells to β1-integrin knockdown with small interfering RNA (siRNA) were different. Cancer cells with no EMT features underwent cell death to a more significant extent following β1-integrin silencing than those with EMT. Intriguingly, we observed reactive activation of the p53-p21 pathway after β1-integrin silencing in AMC-HN-9 cells lacking an apparent cell death response. Simultaneous knockdown of wild-type p53 and β1-integrin in this cell line promoted cell death. Our data collectively indicate that β1-integrin-related cell death is closely associated with EMT phenotypes and activation of the p53-p21 pathway is partly involved in the acquisition of resistance to apoptosis induced by β1-integrin silencing. Further clarification of the mechanisms underlying p53 integration with β1-integrin signaling may facilitate the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Ra Kim
- Department of Otolaryngology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Modulation of Tumor Cell Survival, Proliferation, and Differentiation by the Peptide Derived from Tenascin-C: Implication of β1-Integrin Activation. Int J Cell Biol 2011; 2012:647594. [PMID: 22216033 PMCID: PMC3246736 DOI: 10.1155/2012/647594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022] Open
Abstract
Cell adhesion to extracellular matrix (ECM) participates in various biological processes, such as cell survival, proliferation, differentiation, and migration. Since these processes are essential for keeping homeostasis, aberration of these processes leads to a variety of diseases including cancer. Previously, we found that a peptide derived from tenascin- (TN-) C, termed TNIIIA2, stimulates cell adhesion to ECM through activation of β1-integrin. It has been shown that TNIIIA2 can modulate cell proliferation and differentiation. Interestingly, TNIIIA2 could not only enhance cell proliferation but also induce apoptotic cell death, depending on cellular context. In this review, we show the function of the peptide TNIIIA2 in cell survival, proliferation, and differentiation and refer to the possibility of new strategy for tumor suppression by regulating cell adhesion status using the ECM-derived functional peptides.
Collapse
|
19
|
DE Wever O, Sobczak-Thépot J, Vercoutter-Edouart AS, Michalski JC, Ouelaa-Benslama R, Stupack DG, Bracke M, Wang JYJ, Gespach C, Emami S. Priming and potentiation of DNA damage response by fibronectin in human colon cancer cells and tumor-derived myofibroblasts. Int J Oncol 2011; 39:393-400. [PMID: 21567080 PMCID: PMC5003111 DOI: 10.3892/ijo.2011.1034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/28/2011] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that the genotoxin-induced apoptosis in mouse embryo fibroblasts was enhanced by the extracellular matrix protein fibronectin (FN). In the present study, we tested the hypothesis that FN regulates the DNA damage response (DDR) signaling pathways in HCT116 (p53-wt) and HT29 (p53-mut) human colon cancer cells and tumor-derived myofibroblasts. DNA damage recognition mechanisms were analyzed by immunofluorescence staining, cell cycle analysis and immunoblotting addressed at specific molecular sensors and executors involved in the DDR pathways. The results show that FN, but not collagen type IV or Matrigel, initiates and potentiates the DDR to the anticancer drug cisplatin in an α5 integrin and cell cycle-dependent manner (S and G2/M phases) in human colon cancer cells. Accordingly, we demonstrate that adhesion of HCT116 cells to FN upregulated the expression of α5 integrin FN receptors at the cell surface. These FN-induced DDR pathways include the concerted phosphorylation of histone H2AX on Ser139 detected as nuclear foci (γ-H2AX, 15 and 25 kDa forms), of ataxia telangiectasia mutated (ATM-Ser1981), checkpoint kinase 2 (CHK2-Thr68, 62 and 67 kDa) and p53-Ser15. These FN-induced γ-H2AX signals were interrupted or attenuated by selective inhibitors acting on the DDR pathway kinases, including wortmannin (targeting the phosphatidylinositol-3-kinase-related protein kinases, PIKK), KU55933 (ATM), NU7026 (DNA-dependent protein kinase catalytic subunit, DNA-PK-cs) and SP600125 (JNK2, stress activated protein kinase/c-Jun N-terminal kinase-2). Adhesion to FN also potentiated the γ-H2AX signals and the cytotoxic effects of cisplatin in human colon tumor-derived myofibroblasts. These data provide evidence that FN promotes DNA damage recognition and chemosensitization to cisplatin via the potentiation of the DNA damage signaling responses in human colon cancer cells and tumor-derived myofibroblasts.
Collapse
Affiliation(s)
- Olivier DE Wever
- Laboratory of Experimental Cancerology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Jean-Claude Michalski
- Unité de Glycobiologie Structurale et Fonctionnelle UMR USTL/CNRS no. 8576 - IFR147, Villeneuve-d'Ascq, France
| | - Radia Ouelaa-Benslama
- INSERM U673 and U938, Laboratory of Cancer Biology and Therapeutics, Centre de recherche Saint-Antoine
| | - Dwayne G Stupack
- Moores UCSD Cancer Center, UCSD School of Medicine, La Jolla, CA, USA
| | - Marc Bracke
- Laboratory of Experimental Cancerology, Ghent University Hospital, Ghent, Belgium
| | - Jean Y J Wang
- Moores UCSD Cancer Center, UCSD School of Medicine, La Jolla, CA, USA
| | - Christian Gespach
- INSERM U673 and U938, Laboratory of Cancer Biology and Therapeutics, Centre de recherche Saint-Antoine
- Université Pierre-et-Marie-Curie (UPMC) Paris-6, Paris, France
| | - Shahin Emami
- INSERM U673 and U938, Laboratory of Cancer Biology and Therapeutics, Centre de recherche Saint-Antoine
- Université Pierre-et-Marie-Curie (UPMC) Paris-6, Paris, France
| |
Collapse
|
20
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
21
|
Nelson ES, Folkmann AW, Henry MD, DeMali KA. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy. Mol Cancer Res 2011; 9:712-23. [PMID: 21460181 DOI: 10.1158/1541-7786.mcr-10-0599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand-binding properties. Here, we report that a novel reagent, denoted vinculin-activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated (i) numbers of active integrins, (ii) adhesion of cells to extracellular matrix ligands, (iii) numbers of cell-matrix adhesions, and (iv) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we show that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively, these findings show that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas.
Collapse
Affiliation(s)
- Elke S Nelson
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
22
|
Bridoux A, Khan RA, Chen C, Chevé G, Cui H, Dyskin E, Yasri A, Mousa SA. Design, synthesis, and biological evaluation of bifunctional thyrointegrin inhibitors: new anti-angiogenesis analogs. J Enzyme Inhib Med Chem 2011; 26:871-82. [DOI: 10.3109/14756366.2011.557023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre Bridoux
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
| | - Riaz A. Khan
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Department of Chemistry, Manav Rachna International University (MRIU), Faridabad, Haryana, India
| | - Celei Chen
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Gwenaël Chevé
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Huadong Cui
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Evgeny Dyskin
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Aziz Yasri
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
- King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Walsby EJ, Coles SJ, Knapper S, Burnett AK. The topoisomerase II inhibitor voreloxin causes cell cycle arrest and apoptosis in myeloid leukemia cells and acts in synergy with cytarabine. Haematologica 2010; 96:393-9. [PMID: 21134979 DOI: 10.3324/haematol.2010.032680] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Topoisomerase II is essential for the maintenance of DNA integrity and the survival of proliferating cells. Topoisomerase II poisons, including etoposide and doxorubicin, inhibit enzyme-mediated DNA ligation causing the accumulation of double-stranded breaks and have been front-line drugs for the treatment of leukemia for many years. Voreloxin is a first-in-class anti-cancer quinolone derivative that intercalates DNA and inhibits topoisomerase II. The efficacy and mechanisms of action of voreloxin in acute myeloid leukaemia were addressed in this study. DESIGN AND METHODS Primary acute myeloid leukemia blasts (n = 88) and myeloid cell lines were used in vitro to study voreloxin through viability assays to assess cell killing and synergy with other drugs. Apoptosis and cell cycling were assessed by flow cytometry. DNA relaxation assays were utilized to determine that voreloxin was active on topoisomerase II. RESULTS The mean lethal dose 50% (LD(50)) (± standard deviation) of voreloxin for primary acute myeloid leukemia blasts was 2.30 μM (± 1.87). Synergy experiments between voreloxin and cytarabine identified synergism in 22 of 25 primary acute myeloid leukemia samples tested, with a mean combination index of 0.79. Apoptosis was shown to increase in a dose-dependent manner. Furthermore, voreloxin was active in the p53-null K562 cell line suggesting that the action of voreloxin is not affected by p53 status. The action of voreloxin on topoisomerase II was confirmed using a DNA relaxation assay. CONCLUSIONS Voreloxin may provide an interesting addition to the cache of drugs available for the treatment of acute myeloid leukemia, a disease with a poor long-term survival. In addition to its potent action as a single agent in dividing cells, the synergy we demonstrated between voreloxin and cytarabine recommends further investigation of this topoisomerase II inhibitor.
Collapse
Affiliation(s)
- Elisabeth J Walsby
- Cardiff Experimental Cancer Medicine Centre, Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | | | |
Collapse
|
24
|
Allington TM, Schiemann WP. The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-β in mammary epithelial cells. Cells Tissues Organs 2010; 193:98-113. [PMID: 21051857 DOI: 10.1159/000320163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis.
Collapse
Affiliation(s)
- Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colo., USA
| | | |
Collapse
|
25
|
Basu A, Krishnamurthy S. Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010; 2010:201367. [PMID: 20811617 PMCID: PMC2929606 DOI: 10.4061/2010/201367] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022] Open
Abstract
Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Soumya Krishnamurthy
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
26
|
Schwartz MA. Remembrance of dead cells past: discovering that the extracellular matrix is a cell survival factor. Mol Biol Cell 2010; 21:499-500. [PMID: 20150528 PMCID: PMC2820415 DOI: 10.1091/mbc.e09-07-0602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 1992, Jere Meredith and I followed up on a serendipitous observation and showed that matrix deprivation can lead to apoptosis. Our article in Molecular Biology of the Cell, together with work form Steve Frisch's lab, helped establish the paradigm that integrin signals control cell survival in a variety of systems. It has been a pleasure to watch that work take on a life of its own as other investigators have explored its role in processes such as cavitation, regression of the mammary gland at the end of pregnancy, cancer metastasis, and tumor resistance to chemotherapy. Recently, we described an exception to the paradigm: In some tumors, reagents that activate integrin signaling enhance apoptosis in response to chemotherapy.
Collapse
Affiliation(s)
- Martin A Schwartz
- Departments of Microbiology, Cell Biology, and Biomedical Engineering, Cardiovascular Research Center and Mellon Urological Cancer Research Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
27
|
c-Abl mediates endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 and by disruption of actin. Blood 2010; 115:2709-18. [PMID: 20124512 DOI: 10.1182/blood-2009-05-223776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of integrins alphavbeta3 and alphavbeta5 in human brain microvascular endothelial cells (HBMECs) by the function-blocking peptide RGDfV induces loss of spreading on vitronectin, cell detachment, and apoptosis. We demonstrate that cell detachment is not required for apoptosis because plating on bovine serum albumin-blocked poly-L-lysine (allows attachment, but not integrin ligation and cell spreading) also induced apoptosis. Latrunculin B (LatB), which inhibits F-actin polymerization, induced transient loss of HBMEC spreading on vitronectin, but not their detachment, and induced apoptosis despite recovery of cell spreading. However, LatB did not cause apoptosis in 5 tumor cell lines. In HBMECs, both LatB and RGDfV induced transient Y412 and Y245 phosphorylation of endogenous c-Abl, a nonreceptor tyrosine kinase that reciprocally regulates F-actin. LatB also induced nuclear translocation of c-Abl in HBMECs. STI-571 (imatinib), a targeted therapy for BCR-ABL1(+) leukemias and inhibitor of c-Abl, platelet-derived growth factor receptor, and c-Kit, decreased endothelial apoptosis. LatB-induced HBMEC apoptosis, and its inhibition by STI-571 also occurred in a 3-dimensional collagen model, supporting physiologic relevance. Last, siRNA to c-Abl (but not nonspecific siRNA) also inhibited RGDfV- and LatB-induced apoptosis. Thus, endogenous c-Abl mediates endothelial apoptosis induced by inhibition of integrins alphavbeta3/alphavbeta5 or by LatB-induced disruption of F-actin.
Collapse
|
28
|
Schwartz MA, McRoberts K, Coyner M, Andarawewa KL, Frierson HF, Sanders JM, Swenson S, Markland F, Conaway MR, Theodorescu D. Integrin agonists as adjuvants in chemotherapy for melanoma. Clin Cancer Res 2008; 14:6193-7. [PMID: 18829498 DOI: 10.1158/1078-0432.ccr-08-1285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic melanomas are generally resistant to chemotherapy and radiation, even when wild-type for p53. These tumors often grow in small nests where many of the cells have little contact with extracellular matrix (ECM). Previous work showed that M21 melanomas undergo apoptosis in response to chemotherapy when cells are adherent to ECM but not in suspension. Thus, reduced integrin-dependent adhesion to ECM could mediate therapy resistance. The goal of this study was to test whether stimulation of integrin signaling could increase chemotherapeutic efficacy. EXPERIMENTAL DESIGN Colony forming assays and survival assays were used to test the responses of melanoma lines in vitro. Severe combined immunodeficient mice with subcutaneous human melanomas received chemotherapy with or without reagents that stimulate integrin signaling; tumor volume was then monitored over time. RESULTS Clonal growth assays confirmed that M21 cells showed reduced sensitivity to the chemotherapeutic drug 1-beta-D-arabinofuranosylcytosine (araC). When five additional primary melanoma lines were screened, 80% showed higher sensitivity when adherent compared with suspended. Subcutaneous M21 tumors in vivo showed minimal ECM between tumor cells. To evaluate the importance of integrin signaling in chemoresistance in this model, mice were treated with araC, with or without the multivalent snake venom disintegrin contortrostatin or the activating anti-beta1 integrin antibody TS2/16. Although araC, TS2/16, or contortrostatin alone had little effect on M21 tumor growth, combining araC with either integrin signaling reagents strongly reduced growth (P = 0001). CONCLUSIONS Loss of integrin-mediated adhesion is rate limiting for therapeutic response in this model. Combining chemotherapy with reagents that stimulate integrin signaling may therefore provide a new approach to therapy.
Collapse
Affiliation(s)
- Martin A Schwartz
- Department of Microbiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marengo MS, Wassarman DA. A DNA damage signal activates and derepresses exon inclusion in Drosophila TAF1 alternative splicing. RNA (NEW YORK, N.Y.) 2008; 14:1681-1695. [PMID: 18596254 PMCID: PMC2491473 DOI: 10.1261/rna.1048808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/06/2008] [Indexed: 05/26/2023]
Abstract
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.
Collapse
Affiliation(s)
- Matthew S Marengo
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Molecular and Cellular Pharmacology Program, Madison, WI 53706, USA
| | | |
Collapse
|
30
|
Sudhakar C, Jain N, Swarup G. Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin. FEBS J 2008; 275:2200-13. [DOI: 10.1111/j.1742-4658.2008.06373.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Abstract
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.
Collapse
|
32
|
Galan-Moya EM, Hernandez-Losa J, Aceves Luquero CI, de la Cruz-Morcillo MA, Ramírez-Castillejo C, Callejas-Valera JL, Arriaga A, Aranburo AF, Ramón y Cajal S, Silvio Gutkind J, Sánchez-Prieto R. c-Abl activates p38 MAPK independently of its tyrosine kinase activity: Implications in cisplatin-based therapy. Int J Cancer 2008; 122:289-97. [PMID: 17893873 DOI: 10.1002/ijc.23063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of p38 MAPK is a critical requisite for the therapeutics activity of the antitumor agent cisplatin. In this sense, a growing body of evidences supports the role of c-Abl as a major determinant of p38 MAPK activation, especially in response to genotoxic stress when triggered by cisplatin. Here, we demonstrate that p38 MAPK activation in response to cisplatin does not require the tyrosine kinase activity of c-Abl. Indeed, c-Abl can activate the p38 MAPK signaling pathway by a mechanism that is independent of its tyrosine kinase activity, but that instead involves the ability of c-Abl to increase the stability of MKK6. Similar results were obtained in chronic myeloid leukemia-derived cell lines, in which a chimeric Bcr/Abl protein mimics the effects of c-Abl overexpression on p38 MAPK activation. These findings may explain why a clinically used c-Abl inhibitor, imatinib mesylate, fails to inhibit the p38 MAPK pathway alone or in combination with cisplatin, and provide evidence of a novel signaling mechanism in which these antitumor agents act.
Collapse
|
33
|
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.
Collapse
Affiliation(s)
- Nishant Jain
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
34
|
Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 2007; 117:1370-80. [PMID: 17446929 PMCID: PMC1849987 DOI: 10.1172/jci30866] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/20/2007] [Indexed: 11/17/2022] Open
Abstract
Breast cancers lacking estrogen and progesterone receptor expression and Her2 amplification exhibit distinct gene expression profiles and clinical features, and they comprise the majority of BRCA1-associated tumors. Here we demonstrated that the p53 family member p63 controls a pathway for p73-dependent cisplatin sensitivity specific to these "triple-negative" tumors. In vivo, DeltaNp63 and TAp73 isoforms were coexpressed exclusively within a subset of triple-negative primary breast cancers that commonly exhibited mutational inactivation of p53. The DeltaNp63alpha isoform promoted survival of breast cancer cells by binding TAp73 and thereby inhibiting its proapoptotic activity. Consequently, inhibition of p63 by RNA interference led to TAp73-dependent induction of proapoptotic Bcl-2 family members and apoptosis. Breast cancer cells expressing DeltaNp63alpha and TAp73 exhibited cisplatin sensitivity that was uniquely dependent on TAp73. Thus, in response to treatment with cisplatin, but not other chemotherapeutic agents, TAp73 underwent c-Abl-dependent phosphorylation, which promoted dissociation of the DeltaNp63alpha/TAp73 protein complex, TAp73-dependent transcription of proapoptotic Bcl-2 family members, and apoptosis. These findings define p63 as a survival factor in a subset of breast cancers; furthermore, they provide what we believe to be a novel mechanism for cisplatin sensitivity in these triple-negative cancers, and they suggest that such cancers may share the cisplatin sensitivity of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Chee-Onn Leong
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nick Vidnovic
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maurice Phillip DeYoung
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dennis Sgroi
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Preyer M, Shu CW, Wang JYJ. Delayed activation of Bax by DNA damage in embryonic stem cells with knock-in mutations of the Abl nuclear localization signals. Cell Death Differ 2007; 14:1139-48. [PMID: 17363963 DOI: 10.1038/sj.cdd.4402119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The non-receptor tyrosine kinase Abl contains nuclear localization (NLS) and nuclear export signals that drive its nucleo-cytoplasmic shuttling. The nuclear Abl tyrosine kinase is activated by DNA damage through ataxia telangiectasia mutated (ATM). Previous studies have suggested nuclear Abl to have proapoptotic activity. To determine the requirement for Abl nuclear import in DNA damage-induced apoptosis, we took a genetic approach by mutating the three NLS (muNLS) of abl1 in mouse embryonic stem (ES) cells through homologous recombination. Exposure of ES cells to genotoxins caused an ATM-dependent nuclear accumulation of Abl but not Abl muNLS. ES cells expressing Abl muNLS exhibited delayed Bax activation, reduced cytochrome c release and decreased caspase-9 activity in response to DNA damage. These results provide a genetic proof that Abl nuclear entry contributes to DNA damage-induced activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- M Preyer
- Division of Hematology-Oncology, Department of Medicine, and Moores-UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA 92093-0820, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- David M Hockenbery
- Fred Hutchinson Cancer Research Center, Division of Clinical Research and Human Biology, 1100 Fairview Avenue North, C3-168, Seattle, WA 98109-1024, USA.
| |
Collapse
|
37
|
MESH Headings
- Animals
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Benzamides
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Movement/drug effects
- Cell Movement/physiology
- Female
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Models, Biological
- Piperazines/adverse effects
- Piperazines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/metabolism
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
- Receptor, EphA1/physiology
Collapse
|
38
|
Castro JE, Prada CE, Aguillon RA, Kitada S, Fukuda T, Motta M, Wu C, Dicker F, Sun G, Wang JYJ, Carson DA, Reed JC, Kipps TJ. Thymidine-phosphorothioate oligonucleotides induce activation and apoptosis of CLL cells independently of CpG motifs or BCL-2 gene interference. Leukemia 2006; 20:680-8. [PMID: 16498393 DOI: 10.1038/sj.leu.2404144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We compared antisense phosphorothioate oligonucleotides (PS-ODN) that target BCL-2 such as Genasense (G3139-PS), with other PS-ODN or phosphodiester-ODN (PO-ODN) in their relative capacity to induce apoptosis of chronic lymphocytic leukemia (CLL) B cells in vitro. Surprisingly, we found that thymidine-containing PS-ODN, but not PO-ODN, induced activation and apoptosis of CLL cells independent of BCL-2 antisense sequence or CpG motifs. All tested thimidine-containing PS-ODN, irrespective of their primary sequences, reduced the expression of Bcl-2 protein and increased the levels of the proapoptotic molecules p53, Bid, Bax in CLL cells. Apoptosis induced by thymidine-containing PS-ODN was preceded by cellular activation, could be blocked by the tyrosine-kinase inhibitor imatinib mesylate (Gleevec), and was dependent on ABL kinase. We conclude that thymidine-containing PS-ODN can activate CLL cells and induce apoptosis via a mechanism that is independent of BCL-2 gene interference or CpG motifs.
Collapse
Affiliation(s)
- J E Castro
- John and Rebecca Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morozevich GE, Kozlova NI, Preobrazhenskaya ME, Ushakova NA, Eltsov IA, Shtil AA, Berman AE. The role of beta1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance. BIOCHEMISTRY (MOSCOW) 2006; 71:489-95. [PMID: 16732726 DOI: 10.1134/s000629790605004x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Integrin expression was investigated in MCF-7 human breast adenocarcinoma line and in the MCF-7Dox line, which was selected from MCF-7 by a resistance to multiple antitumor drugs (MDR). We have shown that acquisition of MDR was accompanied by a drastically reduced expression of some integrins of the beta1-subfamily (alpha2beta1, alpha3beta1, alpha6beta1) and of alpha vbeta5 intergin in the adenocarcinoma cells. In contrast, expression of alpha5beta1 integrin was markedly increased in the MDR cells. Along with multiple antitumor drug resistance, MCF-7Dox cells demonstrate elevated resistance to anchorage-dependent apoptosis (anoikis) and enhanced in vitro invasive activity. To elucidate the implication of beta1-integrins in the above phenotypic modifications, the effect of beta1-integrin signaling was assayed. Stimulation of beta1-mediated signaling was accomplished by treating of the cells with antibodies to the beta1-subunit common for members of the beta1-subfamily. These data show that activation of beta1-integrin signaling markedly upregulated anoikis of the adenocarcinoma cells.
Collapse
Affiliation(s)
- G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
40
|
Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat Cell Biol 2006; 8:815-25. [PMID: 16862147 DOI: 10.1038/ncb1438] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 04/07/2006] [Indexed: 01/06/2023]
Abstract
Recent evidence supports a role for EphB receptor tyrosine kinases as tumour suppressors in colorectal and prostate cancer. However, it is unclear how these receptors inhibit cancer cell tumorigenicity - an activity that is highly unusual for a family of receptor tyrosine kinases. Here, we report that the EphB4 receptor can behave as a tumour suppressor in a mouse xenograft model of breast cancer when stimulated by its ligand, ephrin-B2. In breast cancer cells, EphB4 activates an antioncogenic pathway involving Abl family tyrosine kinases and the Crk adaptor protein. This Abl-Crk pathway inhibits breast cancer cell viability and proliferation in addition to motility and invasion, and also downregulates the pro-invasive matrix metalloprotease, MMP-2. Consistent with these effects, EphB4 and the Abl-Crk pathway are constitutively active in non-transformed mammary epithelial cells. These findings identify a novel Eph receptor signalling pathway with tumour-suppressor activity and predict that therapeutic intervention to activate EphB4 signalling will inhibit tumour progression.
Collapse
Affiliation(s)
- Nicole K Noren
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, Bissell MJ. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 2006; 66:1526-35. [PMID: 16452209 PMCID: PMC2933188 DOI: 10.1158/0008-5472.can-05-3071] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Current therapeutic approaches to cancer are designed to target molecules that contribute to malignant behavior but leave normal tissues intact. beta(1) integrin is a candidate target well known for mediating cell-extracellular matrix (ECM) interactions that influence diverse cellular functions; its aberrant expression has been implicated in breast cancer progression and resistance to cytotoxic therapy. The addition of beta(1) integrin inhibitory agents to breast cancer cells at a single-cell stage in a laminin-rich ECM (three-dimensional lrECM) culture was shown to down-modulate beta(1) integrin signaling, resulting in malignant reversion. To investigate beta(1) integrin as a therapeutic target, we modified the three-dimensional lrECM protocol to approximate the clinical situation: before treatment, we allowed nonmalignant cells to form organized acinar structures and malignant cells to form tumor-like colonies. We then tested the ability of beta(1) integrin inhibitory antibody, AIIB2, to inhibit tumor cell growth in several breast cancer cell lines (T4-2, MDA-MB-231, BT474, SKBR3, and MCF-7) and one nonmalignant cell line (S-1). We show that beta(1) integrin inhibition resulted in a significant loss of cancer cells, associated with a decrease in proliferation and increase in apoptosis, and a global change in the composition of residual colonies. In contrast, nonmalignant cells that formed tissue-like structures remained resistant. Moreover, these cancer cell-specific antiproliferative and proapoptotic effects were confirmed in vivo with no discernible toxicity to animals. Our findings indicate that beta(1) integrin is a promising therapeutic target, and that the three-dimensional lrECM culture assay can be used to effectively distinguish malignant and normal tissue response to therapy.
Collapse
Affiliation(s)
- Catherine C Park
- Departments of Radiation Oncology and Pathology, University of California-San Francisco/Mt. Zion Cancer Center, 1600 Divisadero Street, San Francisco, CA 94143-1708, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Holcomb M, Rufini A, Barilà D, Klemke RL. Deregulation of Proteasome Function Induces Abl-mediated Cell Death by Uncoupling p130CAS and c-CrkII. J Biol Chem 2006; 281:2430-40. [PMID: 16267043 DOI: 10.1074/jbc.m508454200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cell migration and survival are coordinately regulated through activation of c-Abl (Abl) family tyrosine kinases. Activated Abl phosphorylates tyrosine 221 of c-CrkII (Crk; Crk-Y221-P), which prevents Crk from binding to the docking protein p130(CAS) (CAS). Disruption of CAS-Crk binding blocks downstream effectors of the actin cytoskeleton and focal adhesion assembly, inhibits cell migration, and disrupts survival signals leading to apoptosis. Here we show that inhibition of the 26 S proteasome and ubiquitination facilitates Abl-mediated Crk-Y221-P, leading to disassembly of CAS-Crk complexes in cells. Surprisingly, inhibition of these molecular interactions does not perturb cell migration but rather specifically induces apoptosis. Furthermore, we demonstrate that attachment to an extracellular matrix plays a key role in regulating the apoptotic machinery through caspase-mediated cleavage of Abl and Crk-Y221-P. Our findings indicate that regulated protein degradation by the proteasome specifically controls cell death through regulation of Abl-mediated Crk Tyr221 phosphorylation and assembly of the CAS-Crk signaling scaffold.
Collapse
Affiliation(s)
- Monica Holcomb
- The Scripps Research Institute, Department of Immunology, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Cell to matrix adhesion regulates cellular homeostasis in multiple ways. Integrin attachment to the extracellular matrix mediates this regulation through direct and indirect connections to the actin cytoskeleton, growth factor receptors, and intracellular signal transduction cascades. Disruption of this connection to the extracellular matrix has deleterious effects on cell survival. It leads to a specific type of apoptosis known as anoikis in most non-transformed cell types. Anchorage independent growth is a critical step in the tumorigenic transformation of cells. Thus, breaching the anoikis barrier disrupts the cell's defenses against transformation. This review examines recent investigations into the molecular mechanisms of anoikis to illustrate current understanding of this important process.
Collapse
Affiliation(s)
- Peter J Reddig
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
44
|
Radisky DC, Bissell MJ. Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev 2005; 16:45-50. [PMID: 16377172 PMCID: PMC2933219 DOI: 10.1016/j.gde.2005.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/07/2005] [Indexed: 02/07/2023]
Abstract
Increased expression of matrix metalloproteinases (MMPs) is associated with nearly every tumor type. Although many studies have shown that MMPs can promote malignancy, recent evidence has revealed that MMPs can play a causative role also in the earliest stages of cancer development. A complex story is now emerging in which MMPs not only compromise cell-cell and cell-substratum adhesion processes that impact genomic surveillance mechanisms but also act directly on molecules at the cell surface to stimulate physiological processes that cause genetic alterations. Delineating the mechanisms involved in these processes and identifying how they are coordinated in vivo could aid identification of the crucial contribution of MMPs to tumorigenesis.
Collapse
|
45
|
Wang JY. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res 2005; 15:43-8. [PMID: 15686626 DOI: 10.1038/sj.cr.7290263] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genotoxic agents or inflammatory cytokines activate cellular stress responses and trigger programmed cell death. We have identified a signal transduction module, including three nuclear proteins that participate in the regulation of cell death induced by chemotherapeutic agents and tumor necrosis factor (TNF). In this nuclear signaling module, retinoblastoma protein (Rb) functions as an inhibitor of apoptotic signal transduction. Inactivation of Rb by phosphorylation or caspase-dependent cleavage/degradation is required for cell death to occur. Rb inhibits the Abl tyrosine kinase. Thus, Rb inactivation is a pre-requisite for Abl activation by DNA damage or TNF. Activation of nuclear Abl and its downstream effector p73 induces mitochondriadependent cell death. The involvement of these nuclear signal transducers in TNF induced apoptosis, which does not require new gene expression, indicates that nuclear events other than transcription can contribute to extrinsic apoptotic signal transduction.
Collapse
Affiliation(s)
- Jean Yj Wang
- Division of Biological Sciences and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
46
|
Borges HL, Chao C, Xu Y, Linden R, Wang JYJ. Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53. Cell Death Differ 2005; 11:494-502. [PMID: 14752509 DOI: 10.1038/sj.cdd.4401366] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.
Collapse
Affiliation(s)
- H L Borges
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | | | | | |
Collapse
|
47
|
Cordes N. Overexpression of Hyperactive Integrin-Linked Kinase Leads to Increased Cellular Radiosensitivity. Cancer Res 2004; 64:5683-92. [PMID: 15313908 DOI: 10.1158/0008-5472.can-04-1056] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrin-linked kinase (ILK), bound to the cytoplasmic tails of integrin beta1, beta2, and beta3, is thought to signal through AKT and glycogen synthase kinase-3beta (GSK-3beta) for survival and proliferation regulation. To determine the role of ILK in the cellular radiation response, stably transfected A549 lung cancer cells overexpressing either wild-type (ILK-wk) or hyperactive ILK (ILK-hk) were studied for survival, signaling, proliferation, and examined in immunofluorescence and adhesion assays. Strong radiosensitization was observed in ILK-hk in contrast to ILK-wk mutants and empty vector controls. ILK small interfering RNA transfections showed radioresistance similar to irradiation on fibronectin. AKT, GSK-3beta-cyclin D1, mitogen-activated protein kinase kinase 1/2-mitogen-activated protein kinase, and c-Jun NH2-terminal kinase signaling was dysregulated in irradiated ILK-hk mutants. Immunofluorescence stainings of ILK-hk cells indicated disturbed ILK and paxillin membrane localization with concomitant decrease in focal adhesions. Profound ILK-hk-dependent changes in morphology were characterized by spindle-like cell shape, cell size reduction, increased cell protrusions, strong formation of membranous f-actin rings, and significantly reduced adhesion to matrix proteins. Additionally, ILK-wk and ILK-hk overexpression impaired beta1-integrin clustering and protein Tyr-phosphorylation. Taken together, the data provide evidence that ILK signaling modulates the cellular radiation response involving diverse signaling pathways and through changes in f-actin-based processes such as focal adhesion formation, cell adhesion, and spreading. Identification of ILK and its signaling partners as potential targets for tumor radiosensitization might promote innovative anticancer strategies by providing insight into the mechanism of cell adhesion-mediated radioresistance, oncogenic transformation, and tumor growth and spread.
Collapse
Affiliation(s)
- Nils Cordes
- Bundeswehr Institute of Radiobiology, Munich, Germany.
| |
Collapse
|
48
|
Lin YH, Park ZY, Lin D, Brahmbhatt AA, Rio MC, Yates JR, Klemke RL. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol 2004; 165:421-32. [PMID: 15138294 PMCID: PMC2172195 DOI: 10.1083/jcb.200311045] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Large-scale proteomic and functional analysis of isolated pseudopodia revealed the Lim, actin, and SH3 domain protein (Lasp-1) as a novel protein necessary for cell migration, but not adhesion to, the extracellular matrix (ECM). Lasp-1 is a ubiquitously expressed actin-binding protein with a unique domain configuration containing SH3 and LIM domains, and is overexpressed in 8–12% of human breast cancers. We find that stimulation of nonmotile and quiescent cells with growth factors or ECM proteins facilitates Lasp-1 relocalization from the cell periphery to the leading edge of the pseudopodium, where it associates with nascent focal complexes and areas of actin polymerization. Interestingly, although Lasp-1 dynamics in migratory cells occur independently of c-Abl kinase activity and tyrosine phosphorylation, c-Abl activation by apoptotic agents specifically promotes phosphorylation of Lasp-1 at tyrosine 171, which is associated with the loss of Lasp-1 localization to focal adhesions and induction of cell death. Thus, Lasp-1 is a dynamic focal adhesion protein necessary for cell migration and survival in response to growth factors and ECM proteins.
Collapse
Affiliation(s)
- Yi Hsing Lin
- Department of Immunology, SP231, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chau BN, Chen TT, Wan YY, DeGregori J, Wang JYJ. Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol Cell Biol 2004; 24:4438-47. [PMID: 15121862 PMCID: PMC400462 DOI: 10.1128/mcb.24.10.4438-4447.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 11/21/2003] [Accepted: 02/21/2004] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma protein (RB) suppresses cell proliferation and apoptosis. We have previously shown that RB degradation is required for tumor necrosis factor alpha (TNF-alpha) to induce apoptosis. We show here the identification of two apoptotic effectors, i.e., c-ABL tyrosine kinase and p73, which are activated by TNF-alpha following RB degradation. In cells expressing a degradation-resistant RB protein (RB-MI), TNF-alpha does not activate c-ABL. RB-MI also inhibits TNF-alpha-mediated activation of p73. Genetic deletion and pharmacological inhibition of c-ABL or p73 diminish the apoptotic response to TNF-alpha in human cell lines and mouse fibroblasts. Thymocytes isolated from Rb(MI/MI), Abl(-/-), or p73(-/-) mice are resistant to TNF-alpha-induced apoptosis compared to their wild-type counterparts. This is in contrast to p53(-/-) thymocytes, which exhibit a wild-type level of apoptosis in response to TNF-alpha. Thus, c-ABL and p73 contribute to apoptosis induced by TNF-alpha, in addition to their role in promoting DNA damage-associated cell death.
Collapse
Affiliation(s)
- B Nelson Chau
- Division of Biological Sciences and Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | |
Collapse
|
50
|
Wang Y, Zhu S, Cloughesy TF, Liau LM, Mischel PS. p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 2004; 23:1283-90. [PMID: 14961077 DOI: 10.1038/sj.onc.1207244] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A critical challenge in cancer research is to identify genetic lesions that sensitize patients to chemotherapy. p53, which is mutated in nearly one-third to half of glioblastomas, may be such a lesion. In this paper, we demonstrate that p53 disruption dramatically sensitizes glioblastoma cells to DNA topoisomerase I inhibitor-mediated apoptosis. Using 19 glioblastoma cell lines, including 15 low-passage ex vivo cell lines derived from patients, as well as isogenic glioblastoma cells varying in p53 status, we show that clinically relevant levels of SN-38 potently induce cell cycle arrest and temporary senescence in glioblastoma cells with wild-type p53 while causing massive apoptosis in p53-deficient cells (P<0.0002). We demonstrate that glioblastoma cells with wild-type p53 proliferate when recultured in drug-free medium, whereas p53-deficient cells do not. We also show that p16 protein expression is neither necessary nor sufficient for initiation and/or maintenance of SN-38-induced arrest/senescence. These results indicate that p53 disruption has a dramatic effect on how glioblastoma cells process topoisomerase I inhibitor-mediated DNA damage.
Collapse
Affiliation(s)
- Yinglin Wang
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, 13-317 Center for the Health Science, Los Angeles, CA 90095-1732, USA
| | | | | | | | | |
Collapse
|