1
|
Mount HO, Urbanus ML, Zangari F, Gingras AC, Ensminger AW. The Legionella pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. mSphere 2025; 10:e0089124. [PMID: 39699231 PMCID: PMC11774319 DOI: 10.1128/msphere.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of Legionella pneumophila, directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust in vitro inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner. Heterologous expression of PieF phenocopies knockout of the CNOT7 ortholog (POP2) in Saccharomyces cerevisiae, resulting in 6-azauracil sensitivity. In mammalian cells, expression of PieF leads to a variety of quantifiable phenotypes: PieF silences gene expression and reduces mRNA steady-state levels when artificially tethered to a reporter transcript, and its overexpression results in the nuclear exclusion of CNOT7. PieF expression also disrupts the association between CNOT6/6L EEP-type nucleases and CNOT7. Adding to the complexities of PieF activity in vivo, we identified a separate domain of PieF responsible for binding to eukaryotic kinases. Unlike what we observe for CNOT6/6L, we show that these interactions can occur concomitantly with PieF's binding to CNOT7. Collectively, this work reveals a new, highly conserved target of L. pneumophila effectors and suggests a mechanism by which the pathogen may be modulating host mRNA stability and expression during infection. IMPORTANCE The intracellular bacterial pathogen Legionella pneumophila targets conserved eukaryotic pathways to establish a replicative niche inside host cells. With a host range that spans billions of years of evolution (from protists to humans), the interaction between L. pneumophila and its hosts frequently involves conserved eukaryotic pathways (protein translation, ubiquitination, membrane trafficking, autophagy, and the cytoskeleton). Here, we present the identification of a new, highly conserved host target of L. pneumophila effectors: the CCR4-NOT complex. CCR4-NOT modulates mRNA stability in eukaryotes from yeast to humans, making it an attractive target for a generalist pathogen, such as L. pneumophila. We show that the uncharacterized L. pneumophila effector PieF specifically targets one component of this complex, the deadenylase subunit CNOT7/8. We show that the interaction between PieF and CNOT7 is direct, occurs with high affinity, and reshapes the catalytic activity, localization, and composition of the complex across evolutionarily diverse eukaryotic cells.
Collapse
Affiliation(s)
| | - Malene L. Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Zangari
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ladak RJ, Choi JH, Luo J, Chen OJ, Mahmood N, He AJ, Naeli P, Snell PH, Bayani E, Hoang HD, Alain T, Teodoro JG, Wang J, Zhang X, Jafarnejad SM, Sonenberg N. The 4EHP-mediated translational repression of cGAS impedes the host immune response against DNA viruses. Proc Natl Acad Sci U S A 2024; 121:e2413018121. [PMID: 39560640 PMCID: PMC11621783 DOI: 10.1073/pnas.2413018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
A critical host response against viral infections entails the activation of innate immune signaling that culminates in the production of antiviral proteins. DNA viruses are sensed by the cytosolic pattern recognition receptor cyclic GMP-AMP synthase (cGAS), which initiates a signaling pathway that results in production of proinflammatory cytokines such as Interferon-β (IFN-β) and activation of the antiviral response. Precise regulation of the antiviral innate immune response is required to avoid deleterious effects of its overactivation. We previously reported that the 4EHP/GIGYF2 translational repressor complex reduces the translation of Ifnb1 mRNA, which encodes IFN-β, upon RNA viral infections. Here, we report a distinct regulatory mechanism by which 4EHP controls replication of DNA viruses by translational repression of the Cgas mRNA, which encodes the DNA viral sensor cGAS. We show that 4EHP is required for effective translational repression of Cgas mRNA triggered by miR-23a. Upon infection, 4EHP deficiency bolsters the elicited innate immune response against the diverse DNA viruses Herpes simplex virus 1 (HSV-1) and Vaccinia Virus (VacV) and concomitantly reduces their rate of replication in vitro and in vivo. This study elucidates an intrinsic regulatory mechanism of the host response to DNA viruses which may provide unique opportunities for countering viral infections.
Collapse
Affiliation(s)
- Reese Jalal Ladak
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jun Luo
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Owen J. Chen
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alexander J. He
- Department of Physiology, McGill University, Montreal, QCH3A 1A2, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Esha Bayani
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QCH3A 2B4, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Jianwei Wang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, China
| | - Xu Zhang
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, BelfastBT9 7AE, United Kingdom
| | - Nahum Sonenberg
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
3
|
Yuan H, Liu X, Xi B, Gao C, Quan J, Zhao S, Yang Y. Ssc-miR-101-3p inhibits hypoxia-induced apoptosis and inflammatory response in alveolar type-II epithelial cells of Tibetan pigs via targeting FOXO3. Sci Rep 2024; 14:20124. [PMID: 39209907 PMCID: PMC11362518 DOI: 10.1038/s41598-024-70510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Tibetan pigs are a unique swine strain adapted to the hypoxic environment of the plateau regions in China. The unique mechanisms underlying the adaption by Tibetan pigs, however, are still elusive. Only few studies have investigated hypoxia-associated molecular regulation in the lung tissues of animals living in the plateau region of China. Our previous study reported that ssc-miR-101-3p expression significantly differed in the lung tissues of Tibetan pigs at different altitudes, suggesting that ssc-miR-101-3p plays an important role in the adaptation of Tibetan pigs to high altitude. To understand the underlying molecular mechanism, in this study, the target genes of ssc-miR-101-3p and their functions were analyzed via various methods including qRT-PCR and GO and KEGG pathway enrichment analyses. The action of ssc-miR-101-3p was investigated by culturing alveolar type-II epithelial cells (ATII) of Tibetan pigs under hypoxic conditions and transfecting ATII cells with vectors overexpressing or inhibiting ssc-miR-101-3p. Overexpression of ssc-miR-101-3p significantly increased the proliferation of ATII cells and decreased the expression of inflammatory and apoptotic factors. The target genes of ssc-miR-101-3p were significantly enriched in FOXO and PI3K-AKT signaling pathways required to mitigate lung injury. Further, FOXO3 was identified as a direct target of ssc-miR-101-3p. Interestingly, ssc-miR-101-3p overexpression reversed the damaging effect of FOXO3 in the ATII cells. In conclusion, ssc-miR-101-3p targeting FOXO3 could inhibit hypoxia-induced apoptosis and inflammatory response in ATII cells of Tibetan pigs. These results provided new insights into the molecular mechanisms elucidating the response of lung tissues of Tibetan pigs to hypoxic stress.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Binpeng Xi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yangnan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
4
|
Choi JH, Luo J, Hesketh GG, Guo S, Pistofidis A, Ladak RJ, An Y, Naeli P, Alain T, Schmeing TM, Gingras AC, Duchaine T, Zhang X, Sonenberg N, Jafarnejad SM. Repression of mRNA translation initiation by GIGYF1 via disrupting the eIF3-eIF4G1 interaction. SCIENCE ADVANCES 2024; 10:eadl5638. [PMID: 39018414 PMCID: PMC466957 DOI: 10.1126/sciadv.adl5638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Viruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as Ifnb1, which encodes the antiviral cytokine interferon-β (IFN-β). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism. Upon recruitment to a target mRNA, GIGYF1 binds to subunits of eukaryotic translation initiation factor 3 (eIF3) at the eIF3-eIF4G1 interaction interface. This interaction disrupts the eIF3 binding to eIF4G1, resulting in transcript-specific translational repression. Depletion of GIGYF1 induces a robust immune response by derepressing IFN-β production. Our study highlights a unique mechanism of translational regulation by GIGYF1 that involves sequestering eIF3 and abrogating its binding to eIF4G1. This mechanism has profound implications for the host response to viral infections.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jun Luo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Geoffrey G. Hesketh
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Angelos Pistofidis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Yuxin An
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Thomas Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
5
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
7
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
8
|
Collart MA, Audebert L, Bushell M. Roles of the CCR4-Not complex in translation and dynamics of co-translation events. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1827. [PMID: 38009591 PMCID: PMC10909573 DOI: 10.1002/wrna.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Martine A. Collart
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Léna Audebert
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Martin Bushell
- Cancer Research UK Beatson InstituteGlasgowUK
- School of Cancer Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
9
|
Pugsley L, Naineni SK, Amiri M, Yanagiya A, Cencic R, Sonenberg N, Pelletier J. C8ORF88: A Novel eIF4E-Binding Protein. Genes (Basel) 2023; 14:2076. [PMID: 38003019 PMCID: PMC10670996 DOI: 10.3390/genes14112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Translation initiation in eukaryotes is regulated at several steps, one of which involves the availability of the cap binding protein to participate in cap-dependent protein synthesis. Binding of eIF4E to translational repressors (eIF4E-binding proteins [4E-BPs]) suppresses translation and is used by cells to link extra- and intracellular cues to protein synthetic rates. The best studied of these interactions involves repression of translation by 4E-BP1 upon inhibition of the PI3K/mTOR signaling pathway. Herein, we characterize a novel 4E-BP, C8ORF88, whose expression is predominantly restricted to early spermatids. C8ORF88:eIF4E interaction is dependent on the canonical eIF4E binding motif (4E-BM) present in other 4E-BPs. Whereas 4E-BP1:eIF4E interaction is dependent on the phosphorylation of 4E-BP1, these sites are not conserved in C8ORF88 indicating a different mode of regulation.
Collapse
Affiliation(s)
- Lauren Pugsley
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | | | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
10
|
Wang H, Cui X, Wang L, Fan N, Yu M, Qin H, Liu S, Yan Q. α1,3-fucosylation of MEST promotes invasion potential of cytotrophoblast cells by activating translation initiation. Cell Death Dis 2023; 14:651. [PMID: 37798282 PMCID: PMC10556033 DOI: 10.1038/s41419-023-06166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Embryo implantation into the uterus is the gateway for successful pregnancy. Proper migration and invasion of embryonic trophoblast cells are the key for embryo implantation, and dysfunction causes pregnancy failure. Protein glycosylation plays crucial roles in reproduction. However, it remains unclear whether the glycosylation of trophoblasts is involved in trophoblast migration and invasion processes during embryo implantation failure. By Lectin array, we discovered the decreased α1,3-fucosylation, especially difucosylated Lewis Y (LeY) glycan, in the villus tissues of miscarriage patients when compared with normal pregnancy women. Downregulating LeY biosynthesis by silencing the key enzyme fucosyltransferase IV (FUT4) inhibited migration and invasion ability of trophoblast cells. Using proteomics and translatomics, the specific LeY scaffolding glycoprotein of mesoderm-specific transcript (MEST) with glycosylation site at Asn163 was identified, and its expression enhanced migration and invasion ability of trophoblast cells. The results also provided novel evidence showing that decreased LeY modification on MEST hampered the binding of MEST with translation factor eIF4E2, and inhibited implantation-related gene translation initiation, which caused pregnancy failure. The α1,3-fucosylation of MEST by FUT4 may serve as a new biomarker for evaluating the functional state of pregnancy, and a target for infertility treatment.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xinyuan Cui
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Luyao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ningning Fan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ming Yu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China.
| |
Collapse
|
11
|
Naeli P, Zhang X, Snell PH, Chatterjee S, Kamran M, Ladak RJ, Orr N, Duchaine T, Sonenberg N, Jafarnejad SM. The SARS-CoV-2 protein NSP2 enhances microRNA-mediated translational repression. J Cell Sci 2023; 136:jcs261286. [PMID: 37732428 PMCID: PMC10617620 DOI: 10.1242/jcs.261286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
Viruses use microRNAs (miRNAs) to impair the host antiviral response and facilitate viral infection by expressing their own miRNAs or co-opting cellular miRNAs. miRNAs inhibit translation initiation of their target mRNAs by recruiting the GIGYF2-4EHP (or EIF4E2) translation repressor complex to the mRNA 5'-cap structure. We recently reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-encoded non-structural protein 2 (NSP2) interacts with GIGYF2. This interaction is critical for blocking translation of the Ifnb1 mRNA that encodes the cytokine interferon β, and thereby impairs the host antiviral response. However, it is not known whether NSP2 also affects miRNA-mediated silencing. Here, we demonstrate the pervasive augmentation of miRNA-mediated translational repression of cellular mRNAs by NSP2. We show that NSP2 interacts with argonaute 2 (AGO2), the core component of the miRNA-induced silencing complex (miRISC), via GIGYF2 and enhances the translational repression mediated by natural miRNA-binding sites in the 3' untranslated region of cellular mRNAs. Our data reveal an additional layer of the complex mechanism by which SARS-CoV-2 and likely other coronaviruses manipulate the host gene expression program by co-opting the host miRNA-mediated silencing machinery.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Xu Zhang
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Muhammad Kamran
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Reese Jalal Ladak
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Nick Orr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Thomas Duchaine
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
12
|
Wang C, Ulryck N, Herzel L, Pythoud N, Kleiber N, Guérineau V, Jactel V, Moritz C, Bohnsack M, Carapito C, Touboul D, Bohnsack K, Graille M. N 2-methylguanosine modifications on human tRNAs and snRNA U6 are important for cell proliferation, protein translation and pre-mRNA splicing. Nucleic Acids Res 2023; 51:7496-7519. [PMID: 37283053 PMCID: PMC10415138 DOI: 10.1093/nar/gkad487] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Lydia Herzel
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, École polytechnique, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Chloé Moritz
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
13
|
Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, Nelson B, Wolfe C, Ha T, Green R, Liu J, Wu B. Bursting translation on single mRNAs in live cells. Mol Cell 2023; 83:2276-2289.e11. [PMID: 37329884 PMCID: PMC10330622 DOI: 10.1016/j.molcel.2023.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/14/2023] [Indexed: 06/19/2023]
Abstract
Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.
Collapse
Affiliation(s)
- Nathan M Livingston
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiwoong Kwon
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oliver Valera
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranav Reddy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clara Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
15
|
Naineni SK, Robert F, Nagar B, Pelletier J. Targeting DEAD-box RNA helicases: The emergence of molecular staples. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1738. [PMID: 35581936 DOI: 10.1002/wrna.1738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/29/2022]
Abstract
RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
17
|
Wang F, Zhang J, Lin X, Yang L, Zhou Q, Mi X, Li Q, Wang S, Li D, Liu XM, Zhou J. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2. Cell Rep 2023; 42:112150. [PMID: 36840945 DOI: 10.1016/j.celrep.2023.112150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
N6-methyladenosine (m6A) plays crucial roles in regulating RNA metabolisms. METTL16 identified as a single-component methyltransferase catalyzes m6A formation in the nucleus; whether it regulates cytoplasmic RNA fate remains unknown. Here, we detected the dual localization of METTL16 in the nucleus and cytoplasm. METTL16 depletion attenuates protein synthesis, but the methyltransferase activity is not required for its translation-promoting function. Mechanistically, we identified an interactor of METTL16, eIF4E2, which represses translation by acting as a competitor of eIF4E. The METTL16-eIF4E2 interaction impedes the recruitment of eIF4E2 to 5' cap structure, promoting the cap recognition by eIF4E and selective protein synthesis. Depletion of METTL16 suppresses lung tumorigenesis by downregulating the translation of key oncogenes. Collectively, our study reports a role of METTL16 in modulating translation and provides a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Fei Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xianrong Lin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lu Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Qi Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xue Mi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Qiujie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, 215600, Suzhou, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China.
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China.
| |
Collapse
|
18
|
Wiebe S, Huang Z, Ladak RJ, Skalecka A, Cagnetta R, Lacaille JC, Aguilar-Valles A, Sonenberg N. Cell-type-specific translational control of spatial working memory by the cap-binding protein 4EHP. Mol Brain 2023; 16:9. [PMID: 36650535 PMCID: PMC9847188 DOI: 10.1186/s13041-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023] Open
Abstract
The consolidation of learned information into long-lasting memories requires the strengthening of synaptic connections through de novo protein synthesis. Translation initiation factors play a cardinal role in gating the production of new proteins thereby regulating memory formation. Both positive and negative regulators of translation play a critical role in learning and memory consolidation. The eukaryotic initiation factor 4E (eIF4E) homologous protein (4EHP, encoded by the gene Eif4e2) is a pivotal negative regulator of translation but its role in learning and memory is unknown. To address this gap in knowledge, we generated excitatory (glutamatergic: CaMKIIα-positive) and inhibitory (GABAergic: GAD65-positive) conditional knockout mice for 4EHP, which were analyzed in various behavioral memory tasks. Knockout of 4EHP in Camk2a-expressing neurons (4EHP-cKOexc) did not impact long-term memory in either contextual fear conditioning or Morris water maze tasks. Similarly, long-term contextual fear memory was not altered in Gad2-directed 4EHP knockout mice (4EHP-cKOinh). However, when subjected to a short-term T-maze working memory task, both mouse models exhibited impaired cognition. We therefore tested the hypothesis that de novo protein synthesis plays a direct role in working memory. We discovered that phosphorylation of ribosomal protein S6, a measure of mTORC1 activity, is dramatically reduced in the CA1 hippocampus of 4EHP-cKOexc mice. Consistently, genetic reduction of mTORC1 activity in either excitatory or inhibitory neurons was sufficient to impair working memory. Taken together, these findings indicate that translational control by 4EHP and mTORC1 in both excitatory and inhibitory neurons are necessary for working memory.
Collapse
Affiliation(s)
- Shane Wiebe
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| | - Ziying Huang
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| | - Reese Jalal Ladak
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| | - Agnieszka Skalecka
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| | - Roberta Cagnetta
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| | - Jean-Claude Lacaille
- grid.14848.310000 0001 2292 3357Department of Neuroscience and CIRCA, University of Montreal, Succ. Downtown, P. O. Box 6128, Montreal, QC H3C 3J7 Canada
| | - Argel Aguilar-Valles
- grid.34428.390000 0004 1936 893XDepartment of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Nahum Sonenberg
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6 Canada ,Goodman Cancer Institute, 1160 Pine Avenue West, Room 614, Montreal, QC H3A 1A3 Canada
| |
Collapse
|
19
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
20
|
Lehner MH, Walker J, Temcinaite K, Herlihy A, Taschner M, Berger AC, Corbett AH, Dirac Svejstrup AB, Svejstrup JQ. Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 2022; 41:111536. [PMID: 36288698 PMCID: PMC9638028 DOI: 10.1016/j.celrep.2022.111536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
The "last resort" pathway results in ubiquitylation and degradation of RNA polymerase II in response to transcription stress and is governed by factors such as Def1 in yeast. Here, we show that the SMY2 gene acts as a multi-copy suppressor of DEF1 deletion and functions at multiple steps of the last resort pathway. We also provide genetic and biochemical evidence from disparate cellular processes that Smy2 works more broadly as a hitherto overlooked regulator of Cdc48 function. Similarly, the Smy2 homologs GIGYF1 and -2 affect the transcription stress response in human cells and regulate the function of the Cdc48 homolog VCP/p97, presently being explored as a target for cancer therapy. Indeed, we show that the apoptosis-inducing effect of VCP inhibitors NMS-873 and CB-5083 is GIGYF1/2 dependent.
Collapse
Affiliation(s)
- Michelle Harreman Lehner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kotryna Temcinaite
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Taschner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Adam C Berger
- Department of Biology, RRC 1021, Emory University, 1510 Clifton Road, NE, Atlanta 30322, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, 1510 Clifton Road, NE, Atlanta 30322, GA, USA
| | - A Barbara Dirac Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
21
|
SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc Natl Acad Sci U S A 2022; 119:e2204539119. [PMID: 35878012 PMCID: PMC9371684 DOI: 10.1073/pnas.2204539119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A robust antiviral innate immune response is indispensable for combating infections. However, an exacerbated response can result in pathological inflammation and tissue damage. mRNA translational control mechanisms play a crucial role in maintaining the appropriate magnitude and duration of the immune response. We show that the GIGYF2/4EHP translational repressor complex represses translation of Ifnb1 mRNA, which encodes type I interferon β (IFN-β). We also demonstrate that the NSP2 protein encoded by SARS-CoV-2 virus further impedes translation of Ifnb1 mRNA through coopting the GIGYF2/4EHP complex, leading to evasion of a cellular innate immune response. The knowledge of the mechanism of action of NSP2-mediated IFN-β suppression provides valuable information for development of treatments for infections of SARS-CoV-2 and other coronaviruses. Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-β. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-β production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.
Collapse
|
22
|
Wakiyama M, Takimoto K. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex. Genes Cells 2022; 27:579-585. [PMID: 35822830 DOI: 10.1111/gtc.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. MicroRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- RIKEN Systems and Structural Biology Center.,RIKEN Center for Life Science Technologies, Post-transcriptional Control Research Unit.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Nonnatural amino acid technology, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
23
|
Zou L, Moch C, Graille M, Chapat C. The SARS-CoV-2 protein NSP2 impairs the silencing capacity of the human 4EHP-GIGYF2 complex. iScience 2022; 25:104646. [PMID: 35756894 PMCID: PMC9213009 DOI: 10.1016/j.isci.2022.104646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need for a molecular understanding of how SARS-CoV-2 influences the machineries of the host cell. Herein, we focused our attention on the capacity of the SARS-CoV-2 protein NSP2 to bind the human 4EHP-GIGYF2 complex, a key factor involved in microRNA-mediated silencing of gene expression. Using in vitro interaction assays, our data demonstrate that NSP2 physically associates with both 4EHP and a central segment in GIGYF2 in the cytoplasm. We also provide functional evidence showing that NSP2 impairs the function of GIGYF2 in mediating translation repression using reporter-based assays. Collectively, these data reveal the potential impact of NSP2 on the post-transcriptional silencing of gene expression in human cells, pointing out 4EHP-GIGYF2 targeting as a possible strategy of SARS-CoV-2 to take over the silencing machinery and to suppress host defenses.
Collapse
Affiliation(s)
- Limei Zou
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Clara Moch
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Clément Chapat
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| |
Collapse
|
24
|
Abstract
Dominant missense mutations in RanBP2/Nup358 cause Acute Necrotizing Encephalopathy (ANE), a pediatric disease where seemingly healthy individuals develop a cytokine storm that is restricted to the central nervous system in response to viral infection. Untreated, this condition leads to seizures, coma, long-term neurological damage and a high rate of mortality. The exact mechanism by which RanBP2 mutations contribute to the development of ANE remains elusive. In November 2021, a number of clinicians and basic scientists presented their work on this disease and on the interactions between RanBP2/Nup358, viral infections, the innate immune response and other cellular processes.
Collapse
Affiliation(s)
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital, and the Department of Women and Children's Health, King's College London, London, UK
| | - Kiran T Thakur
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York
| |
Collapse
|
25
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
26
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
27
|
Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022; 9:832916. [PMID: 35237661 PMCID: PMC8882679 DOI: 10.3389/fmolb.2022.832916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by various trans-acting factors that bind to specific sequences in the messenger RNA (mRNA). The binding of different trans factors influences various aspects of the mRNA such as degradation rate, translation efficiency, splicing, localization, etc. MicroRNAs (miRNAs) are short endogenous ncRNAs that combine with the Argonaute to form the microRNA-induced silencing complex (miRISC), which uses base-pair complementation to silence the target transcript. RNA-binding proteins (RBPs) contribute to post-transcriptional control by influencing the mRNA stability and translation upon binding to cis-elements within the mRNA transcript. RBPs have been shown to impact gene expression through influencing the miRISC biogenesis, composition, or miRISC-mRNA target interaction. While there is clear evidence that those interactions between RBPs, miRNAs, miRISC and target mRNAs influence the efficiency of miRISC-mediated gene silencing, the exact mechanism for most of them remains unclear. This review summarizes our current knowledge on gene expression regulation through interactions of miRNAs and RBPs.
Collapse
|
28
|
Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA (NEW YORK, N.Y.) 2022; 28:36-47. [PMID: 34772786 PMCID: PMC8675286 DOI: 10.1261/rna.079026.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.
Collapse
Affiliation(s)
- Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathon A Ditlev
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
29
|
Mohamed HMA, Takahashi A, Nishijima S, Adachi S, Murai I, Okamura H, Yamamoto T. CNOT1 regulates circadian behaviour through Per2 mRNA decay in a deadenylation-dependent manner. RNA Biol 2021; 19:703-718. [PMID: 35510877 PMCID: PMC9090297 DOI: 10.1080/15476286.2022.2071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks are an endogenous internal timekeeping mechanism that drives the rhythmic expression of genes, controlling the 24 h oscillatory pattern in behaviour and physiology. It has been recently shown that post-transcriptional mechanisms are essential for controlling rhythmic gene expression. Controlling the stability of mRNA through poly(A) tail length modulation is one such mechanism. In this study, we show that Cnot1, encoding the scaffold protein of the CCR4-NOT deadenylase complex, is highly expressed in the suprachiasmatic nucleus, the master timekeeper. CNOT1 deficiency in mice results in circadian period lengthening and alterations in the mRNA and protein expression patterns of various clock genes, mainly Per2. Per2 mRNA exhibited a longer poly(A) tail and increased mRNA stability in Cnot1+/- mice. CNOT1 is recruited to Per2 mRNA through BRF1 (ZFP36L1), which itself oscillates in antiphase with Per2 mRNA. Upon Brf1 knockdown, Per2 mRNA is stabilized leading to increased PER2 expression levels. This suggests that CNOT1 plays a role in tuning and regulating the mammalian circadian clock.
Collapse
Affiliation(s)
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Iori Murai
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
30
|
Méndez-Solís O, Bendjennat M, Naipauer J, Theodoridis PR, Ho JJD, Verdun RE, Hare JM, Cesarman E, Lee S, Mesri EA. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep 2021; 37:110144. [PMID: 34965440 PMCID: PMC9121799 DOI: 10.1016/j.celrep.2021.110144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.
Collapse
Affiliation(s)
- Omayra Méndez-Solís
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mourad Bendjennat
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Julian Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Phaedra R Theodoridis
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J J David Ho
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramiro E Verdun
- Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Stephen Lee
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Enrique A Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Iwakawa HO, Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 2021; 82:30-43. [PMID: 34942118 DOI: 10.1016/j.molcel.2021.11.026] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
32
|
Zinshteyn B, Sinha NK, Enam SU, Koleske B, Green R. Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet 2021; 17:e1009813. [PMID: 34665823 PMCID: PMC8555832 DOI: 10.1371/journal.pgen.1009813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/29/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Translation of messenger RNAs (mRNAs) with premature termination codons produces truncated proteins with potentially deleterious effects. This is prevented by nonsense-mediated mRNA decay (NMD) of these mRNAs. NMD is triggered by ribosomes terminating upstream of a splice site marked by an exon-junction complex (EJC), but also acts on many mRNAs lacking a splice junction after their termination codon. We developed a genome-wide CRISPR flow cytometry screen to identify regulators of mRNAs with premature termination codons in K562 cells. This screen recovered essentially all core NMD factors and suggested a role for EJC factors in degradation of PTCs without downstream splicing. Among the strongest hits were the translational repressors GIGYF2 and EIF4E2. GIGYF2 and EIF4E2 mediate translational repression but not mRNA decay of a subset of NMD targets and interact with NMD factors genetically and physically. Our results suggest a model wherein recognition of a stop codon as premature can lead to its translational repression through GIGYF2 and EIF4E2.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Niladri K. Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Syed Usman Enam
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Benjamin Koleske
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Weber R, Chung MY, Keskeny C, Zinnall U, Landthaler M, Valkov E, Izaurralde E, Igreja C. 4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay. Cell Rep 2021; 33:108262. [PMID: 33053355 DOI: 10.1016/j.celrep.2020.108262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accumulate mRNAs with prominent ribosome pausing. They include, among others, transcripts encoding secretory and membrane-bound proteins or tubulin subunits. In addition, 4EHP-GIGYF1/2 complexes fail to reduce mRNA levels in the absence of ribosome stalling or upon disruption of their interaction with the cap structure, DDX6, and ZNF598. We further find that co-translational binding of GIGYF1/2 to the mRNA marks transcripts with perturbed elongation to decay. Our studies reveal how a repressor complex linked to neurological disorders minimizes the protein output of a subset of mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Ulrike Zinnall
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.
| |
Collapse
|
34
|
Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Cells 2021; 10:cells10071711. [PMID: 34359885 PMCID: PMC8306974 DOI: 10.3390/cells10071711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is tightly regulated at each step of translation. In particular, the formation of the basic cap-binding complex, eukaryotic initiation factor 4F (eIF4F) complex, on the 5' cap structure of mRNA is positioned as the rate-limiting step, and various cis-elements on mRNA contribute to fine-tune spatiotemporal protein expression. The cis-element on mRNAs is recognized and bound to the trans-acting factors, which enable the regulation of the translation rate or mRNA stability. In this review, we focus on the molecular mechanism of how the assembly of the eIF4F complex is regulated on the cap structure of mRNAs. We also summarize the fine-tuned regulation of translation initiation by various trans-acting factors through cis-elements on mRNAs.
Collapse
|
35
|
Mayya VK, Flamand MN, Lambert AM, Jafarnejad SM, Wohlschlegel JA, Sonenberg N, Duchaine TF. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Nucleic Acids Res 2021; 49:4803-4815. [PMID: 33758928 PMCID: PMC8136787 DOI: 10.1093/nar/gkab162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.
Collapse
Affiliation(s)
- Vinay K Mayya
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Mathieu N Flamand
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Alice M Lambert
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE UK
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Thomas F Duchaine
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
36
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
37
|
microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP. Mol Cell 2021; 81:1187-1199.e5. [PMID: 33581076 DOI: 10.1016/j.molcel.2021.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-β production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-β induction, prompting a negative feedback regulatory mechanism that represses IFN-β expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.
Collapse
|
38
|
Hirst J, Hesketh GG, Gingras AC, Robinson MS. Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex. J Cell Biol 2021; 220:211690. [PMID: 33464297 PMCID: PMC7814351 DOI: 10.1083/jcb.202002075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Adaptor protein complex 5 (AP-5) and its partners, SPG11 and SPG15, are recruited onto late endosomes and lysosomes. Here we show that recruitment of AP-5/SPG11/SPG15 is enhanced in starved cells and occurs by coincidence detection, requiring both phosphatidylinositol 3-phosphate (PI3P) and Rag GTPases. PI3P binding is via the SPG15 FYVE domain, which, on its own, localizes to early endosomes. GDP-locked RagC promotes recruitment of AP-5/SPG11/SPG15, while GTP-locked RagA prevents its recruitment. Our results uncover an interplay between AP-5/SPG11/SPG15 and the mTORC1 pathway and help to explain the phenotype of AP-5/SPG11/SPG15 deficiency in patients, including the defect in autophagic lysosome reformation.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Jennifer Hirst:
| | - Geoffrey G. Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S. Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Correspondence to Margaret S. Robinson:
| |
Collapse
|
39
|
Kim SH, Choi JH, Wang P, Go CD, Hesketh GG, Gingras AC, Jafarnejad SM, Sonenberg N. Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation. Mol Cell 2020; 81:398-407.e4. [PMID: 33340489 DOI: 10.1016/j.molcel.2020.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/14/2020] [Accepted: 11/19/2020] [Indexed: 02/02/2023]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Sung-Hoon Kim
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jung-Hyun Choi
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Peng Wang
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christopher D Go
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Geoffrey G Hesketh
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK.
| | - Nahum Sonenberg
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
40
|
Pelletier J, Schmeing TM, Sonenberg N. The multifaceted eukaryotic cap structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1636. [PMID: 33300197 DOI: 10.1002/wrna.1636] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
The 5' cap structure is added onto RNA polymerase II transcripts soon after initiation of transcription and modulates several post-transcriptional regulatory events involved in RNA maturation. It is also required for stimulating translation initiation of many cytoplasmic mRNAs and serves to protect mRNAs from degradation. These functional properties of the cap are mediated by several cap binding proteins (CBPs) involved in nuclear and cytoplasmic gene expression steps. The role that CBPs play in gene regulation, as well as the biophysical nature by which they recognize the cap, is quite intricate. Differences in mechanisms of capping as well as nuances in cap recognition speak to the potential of targeting these processes for drug development. In this review, we focus on recent findings concerning the cap epitranscriptome, our understanding of cap binding by different CBPs, and explore therapeutic targeting of CBP-cap interaction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Capping and 5' End Modifications Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Structure of a human 48 S translational initiation complex. Science 2020; 369:1220-1227. [PMID: 32883864 DOI: 10.1126/science.aba4904] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.
Collapse
Affiliation(s)
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
42
|
The eIF4E homolog 4EHP (eIF4E2) regulates hippocampal long-term depression and impacts social behavior. Mol Autism 2020; 11:92. [PMID: 33225984 PMCID: PMC7682028 DOI: 10.1186/s13229-020-00394-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background The regulation of protein synthesis is a critical step in gene expression, and its dysfunction is implicated in autism spectrum disorder (ASD). The eIF4E homologous protein (4EHP, also termed eIF4E2) binds to the mRNA 5′ cap to repress translation. The stability of 4EHP is maintained through physical interaction with GRB10 interacting GYF protein 2 (GIGYF2). Gene-disruptive mutations in GIGYF2 are linked to ASD, but causality is lacking. We hypothesized that GIGYF2 mutations cause ASD by disrupting 4EHP function. Methods Since homozygous deletion of either gene is lethal, we generated a cell-type-specific knockout model where Eif4e2 (the gene encoding 4EHP) is deleted in excitatory neurons of the forebrain (4EHP-eKO). In this model, we investigated ASD-associated synaptic plasticity dysfunction, ASD-like behaviors, and global translational control. We also utilized mice lacking one copy of Gigyf2, Eif4e2 or co-deletion of one copy of each gene to further investigate ASD-like behaviors. Results 4EHP is expressed in excitatory neurons and synaptosomes, and its amount increases during development. 4EHP-eKO mice display exaggerated mGluR-LTD, a phenotype frequently observed in mouse models of ASD. Consistent with synaptic plasticity dysfunction, the mice displayed social behavior impairments without being confounded by deficits in olfaction, anxiety, locomotion, or motor ability. Repetitive behaviors and vocal communication were not affected by loss of 4EHP in excitatory neurons. Heterozygous deletion of either Gigyf2, Eif4e2, or both genes in mice did not result in ASD-like behaviors (i.e. decreases in social behavior or increases in marble burying). Interestingly, exaggerated mGluR-LTD and impaired social behaviors were not attributed to changes in hippocampal global protein synthesis, which suggests that 4EHP and GIGYF2 regulate the translation of specific mRNAs to mediate these effects. Limitations This study did not identify which genes are translationally regulated by 4EHP and GIGYF2. Identification of mistranslated genes in 4EHP-eKO mice might provide a mechanistic explanation for the observed impairment in social behavior and exaggerated LTD. Future experiments employing affinity purification of translating ribosomes and mRNA sequencing in 4EHP-eKO mice will address this relevant issue. Conclusions Together these results demonstrate an important role of 4EHP in regulating hippocampal plasticity and ASD-associated social behaviors, consistent with the link between mutations in GIGYF2 and ASD.
Collapse
|
43
|
Huggins HP, Keiper BD. Regulation of Germ Cell mRNPs by eIF4E:4EIP Complexes: Multiple Mechanisms, One Goal. Front Cell Dev Biol 2020; 8:562. [PMID: 32733883 PMCID: PMC7358283 DOI: 10.3389/fcell.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
44
|
Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY, Hegde RS. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. eLife 2020; 9:e60038. [PMID: 32657267 PMCID: PMC7381030 DOI: 10.7554/elife.60038] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Translation of aberrant mRNAs can cause ribosomes to stall, leading to collisions with trailing ribosomes. Collided ribosomes are specifically recognised by ZNF598 to initiate protein and mRNA quality control pathways. Here we found using quantitative proteomics of collided ribosomes that EDF1 is a ZNF598-independent sensor of ribosome collisions. EDF1 stabilises GIGYF2 at collisions to inhibit translation initiation in cis via 4EHP. The GIGYF2 axis acts independently of the ZNF598 axis, but each pathway's output is more pronounced without the other. We propose that the widely conserved and highly abundant EDF1 monitors the transcriptome for excessive ribosome density, then triggers a GIGYF2-mediated response to locally and temporarily reduce ribosome loading. Only when collisions persist is translation abandoned to initiate ZNF598-dependent quality control. This tiered response to ribosome collisions would allow cells to dynamically tune translation rates while ensuring fidelity of the resulting protein products.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Greg Slodkowicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Zhewang Lin
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | | | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| |
Collapse
|
45
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
46
|
General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Int J Mol Sci 2020; 21:ijms21124402. [PMID: 32575790 PMCID: PMC7352612 DOI: 10.3390/ijms21124402] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Collapse
|
47
|
Frydrýšková K, Mašek T, Pospíšek M. Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1596. [PMID: 32362075 DOI: 10.1002/wrna.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
48
|
Räsch F, Weber R, Izaurralde E, Igreja C. 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev 2020; 34:847-860. [PMID: 32354837 PMCID: PMC7263148 DOI: 10.1101/gad.336073.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.
Collapse
Affiliation(s)
- Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
49
|
Otsuka H, Fukao A, Tomohiro T, Adachi S, Suzuki T, Takahashi A, Funakami Y, Natsume T, Yamamoto T, Duncan KE, Fujiwara T. ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism. Biochimie 2020; 174:49-56. [PMID: 32311426 DOI: 10.1016/j.biochi.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Eukaryotic gene expression can be spatiotemporally tuned at the post-transcriptional level by cis-regulatory elements in mRNA sequences. An important example is the AU-rich element (ARE), which induces mRNA destabilization in a variety of biological contexts in mammals and can also mediate translational control. Regulation is mediated by trans-acting factors that recognize the ARE, such as Tristetraprolin (TTP) and BRF1/ZFP36L1. Although both proteins can destabilize their target mRNAs through the recruitment of the CCR4-NOT deadenylation complex, TTP also directly regulates translation. Whether ZFP36L1 can directly repress translation remains unknown. Here, we used an in vitro translation system derived from mammalian cell lines to address this key mechanistic issue in ARE regulation by ZFP36L1. Functional assays with mutant proteins reveal that ZFP36L1 can repress translation via AU-Rich elements independent of deadenylation. ZFP36L1-mediated translation repression requires interaction between ZFP36L1 and CNOT1, suggesting that it might use a repression mechanism similar to either TPP or miRISC. However, several lines of evidence suggest that the similarity ends there. Unlike, TTP, it does not efficiently interact with either 4E-HP or GIGYF2, suggesting it does not repress translation by recruiting these proteins to the mRNA cap. Moreover, ZFP36L1 could not repress ECMV-IRES driven translation and was resistant to pharmacological eIF4A inhibitor silvestrol, suggesting fundamental differences with miRISC repression via eIF4A. Collectively, our results reveal that ZFP36L1 represses translation directly and suggest that it does so via a novel mechanism distinct from other translational regulators that interact with the CCR4-NOT deadenylase complex.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | - Takumi Tomohiro
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | | | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Kent E Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
50
|
Ruscica V, Bawankar P, Peter D, Helms S, Igreja C, Izaurralde E. Direct role for the Drosophila GIGYF protein in 4EHP-mediated mRNA repression. Nucleic Acids Res 2020; 47:7035-7048. [PMID: 31114929 PMCID: PMC6648886 DOI: 10.1093/nar/gkz429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.
Collapse
Affiliation(s)
- Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.,Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.,European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|