1
|
Lynch TL, Marin VL, McClure RA, Phipps C, Ronau JA, Rouhimoghadam M, Adams AM, Kandi S, Wolke ML, Shergalis AG, Potts GK, Nacham O, Richardson P, Kakavas SJ, Chhor G, Jenkins GJ, Woller KR, Warder SE, Vasudevan A, Reitsma JM. Quantitative Measurement of Rate of Targeted Protein Degradation. ACS Chem Biol 2024; 19:1604-1615. [PMID: 38980123 DOI: 10.1021/acschembio.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.
Collapse
Affiliation(s)
- Thomas L Lynch
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Colin Phipps
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Judith A Ronau
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ashley M Adams
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Soumya Kandi
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Malerie L Wolke
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Andrea G Shergalis
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul Richardson
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Stephan J Kakavas
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gekleng Chhor
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kevin R Woller
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Scott E Warder
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Tao XN, Liu HT, Xiang XW, Zhu CH, Qiu J, Zhao H, Liu KF. Regulating the Distribution and Accumulation of Charged Molecules by Progressive Electroporation for Improved Intracellular Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36063-36076. [PMID: 38958208 DOI: 10.1021/acsami.4c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10-40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.
Collapse
Affiliation(s)
- Xiao-Nan Tao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hao-Tian Liu
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Xiao-Wei Xiang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Cai-Hui Zhu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jian Qiu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hui Zhao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Ke-Fu Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
4
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
5
|
Tóth Á, Janaszkiewicz A, Crespi V, Di Meo F. On the interplay between lipids and asymmetric dynamics of an NBS degenerate ABC transporter. Commun Biol 2023; 6:149. [PMID: 36737455 PMCID: PMC9898250 DOI: 10.1038/s42003-023-04537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance-associated proteins are ABC C-family exporters. They are crucial in pharmacology as they transport various substrates across membranes. However, the role of the degenerate nucleotide-binding site (NBS) remains unclear likewise the interplay with the surrounding lipid environment. Here, we propose a dynamic and structural overview of MRP1 from ca. 110 μs molecular dynamics simulations. ATP binding to NBS1 is likely maintained along several transport cycles. Asymmetric NBD behaviour is ensured by lower signal transduction from NBD1 to the rest of the protein owing to the absence of ball-and-socket conformation between NBD1 and coupling helices. Even though surrounding lipids play an active role in the allosteric communication between the substrate-binding pocket and NBDs, our results suggest that lipid composition has a limited impact, mostly by affecting transport kinetics. We believe that our work can be extended to other degenerate NBS ABC proteins and provide hints for deciphering mechanistic differences among ABC transporters.
Collapse
Affiliation(s)
- Ágota Tóth
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Angelika Janaszkiewicz
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Veronica Crespi
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute-Univ. Limoges, 2 rue du Prof. Descottes, 87000 F, Limoges, France.
| |
Collapse
|
6
|
Zhang J, He M, Xie Q, Su A, Yang K, Liu L, Liang J, Li Z, Huang X, Hu J, Liu Q, Song B, Hu C, Chen L, Wang Y. Predicting In Vitro and In Vivo Anti-SARS-CoV-2 Activities of Antivirals by Intracellular Bioavailability and Biochemical Activity. ACS OMEGA 2022; 7:45023-45035. [PMID: 36530252 PMCID: PMC9753181 DOI: 10.1021/acsomega.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Cellular drug response (concentration required for obtaining 50% of a maximum cellular effect, EC50) can be predicted by the intracellular bioavailability (F ic) and biochemical activity (half-maximal inhibitory concentration, IC50) of drugs. In an ideal model, the cellular negative log of EC50 (pEC50) equals the sum of log F ic and the negative log of IC50 (pIC50). Here, we measured F ic's of remdesivir, favipiravir, and hydroxychloroquine in various cells and calculated their anti-SARS-CoV-2 EC50's. The predicted EC50's are close to the observed EC50's in vitro. When the lung concentrations of antiviral drugs are higher than the predicted EC50's in alveolar type 2 cells, the antiviral drugs inhibit virus replication in vivo, and vice versa. Overall, our results indicate that both in vitro and in vivo antiviral activities of drugs can be predicted by their intracellular bioavailability and biochemical activity without using virus. This virus-free strategy can help medicinal chemists and pharmacologists to screen antivirals during early drug discovery, especially for researchers who are not able to work in the high-level biosafety lab.
Collapse
Affiliation(s)
- Jinwen Zhang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Mingfeng He
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Qian Xie
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ailing Su
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Kuangyang Yang
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Lichu Liu
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Jianhui Liang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ziqi Li
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiuxin Huang
- The
First Clinical College of Changsha Medical College, Changsha410219, China
| | - Jianshu Hu
- Department
of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | - Qian Liu
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Bing Song
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Chun Hu
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lei Chen
- School of
Life Science and Technology, Key Laboratory of Developmental Genes
and Human Disease, Southeast University, Nanjing210096, China
| | - Yan Wang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
7
|
Hu F, Wang D, Huang H, Hu Y, Yin P. Bridging the Gap between Target-Based and Cell-Based Drug Discovery with a Graph Generative Multitask Model. J Chem Inf Model 2022; 62:6046-6056. [PMID: 36401569 DOI: 10.1021/acs.jcim.2c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of new drugs is crucial for protecting humans from disease. In the past several decades, target-based screening has been one of the most popular methods for developing new drugs. This method efficiently screens potential inhibitors of a target protein in vitro, but it frequently fails in vivo due to insufficient activity of the selected drugs. There is a need for accurate computational methods to bridge this gap. Here, we present a novel graph multi-task deep learning model to identify compounds with both target inhibitory and cell active (MATIC) properties. On a carefully curated SARS-CoV-2 data set, the proposed MATIC model shows advantages compared with the traditional method in screening effective compounds in vivo. Following this, we investigated the interpretability of the model and discovered that the learned features for target inhibition (in vitro) or cell active (in vivo) tasks are different with molecular property correlations and atom functional attention. Based on these findings, we utilized a Monte Carlo-based reinforcement learning generative model to generate novel multiproperty compounds with both in vitro and in vivo efficacy, thus bridging the gap between target-based and cell-based drug discovery. The tool is freely accessible at https://github.com/SIAT-code/MATIC.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Dongqi Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Huazhen Huang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yishen Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Peng Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
8
|
Poller B, Werner S, Domange N, Mettler L, Stein RR, Loretan J, Wartmann M, Faller B, Huth F. Time Matters - In vitro Cellular Disposition Kinetics Help Rationalizing Cellular Potency Disconnects. Xenobiotica 2022; 52:878-889. [PMID: 36189672 DOI: 10.1080/00498254.2022.2130837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Loss in potency is commonly observed in early drug discovery when moving from biochemical to more complex cellular systems. Among other factors, low permeability is often considered to cause such potency disconnects.We developed a novel cellular disposition assay in MDCK cells to determine passive uptake clearance (PSinf), cell-to-medium ratios at steady-state (Kp) and the time to reach 90% steady-state (TTSS90) from a single experiment in a high-throughput format.The assay was validated using 40 marketed drugs, showing a wide distribution of PSinf and Kp values. The parameters generally correlated with transcellular permeability and lipophilicity, while PSinf data revealed better resolution in the high and low permeability ranges compared to traditional permeability data. A linear relationship between the Kp/PSinf ratio and TTSS90 was mathematically derived and experimentally validated, demonstrating the dependency of TTSS90 on the rate and extent of cellular accumulation.Cellular disposition parameters could explain potency (IC50) disconnects noted for seven Bruton's tyrosine kinase degrader compounds in a cellular potency assay. In contrast to transcellular permeability, PSinf data enabled identification of the compounds with IC50 disconnects based on their time to reach equilibrium. Overall, the novel assay offers the possibility to address potency disconnects in early drug discovery.
Collapse
Affiliation(s)
- Birk Poller
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sophie Werner
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Norbert Domange
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Lina Mettler
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Richard R Stein
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jacqueline Loretan
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Wartmann
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Bernard Faller
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
9
|
Rzepiela AA, Viarengo-Baker LA, Tatarskii V, Kombarov R, Whitty A. Conformational Effects on the Passive Membrane Permeability of Synthetic Macrocycles. J Med Chem 2022; 65:10300-10317. [PMID: 35861996 DOI: 10.1021/acs.jmedchem.1c02090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrocyclic compounds (MCs) can have complex conformational properties that affect pharmacologically important behaviors such as membrane permeability. We measured the passive permeability of 3600 diverse nonpeptidic MCs and used machine learning to analyze the results. Incorporating selected properties based on the three-dimensional (3D) conformation gave models that predicted permeability with Q2 = 0.81. A biased spatial distribution of polar versus nonpolar regions was particularly important for good permeability, consistent with a mechanism in which the initial insertion of nonpolar portions of a MC helps facilitate the subsequent membrane entry of more polar parts. We also examined effects on permeability of 800 substructural elements by comparing matched molecular pairs. Some substitutions were invariably beneficial or invariably deleterious to permeability, while the influence of others was highly contextual. Overall, the work provides insights into how the permeability of MCs is influenced by their 3D conformational properties and suggests design hypotheses for achieving macrocycles with high membrane permeability.
Collapse
Affiliation(s)
- Anna A Rzepiela
- Pyxis Discovery, Delftechpark 26, 2628XH Delft, The Netherlands
| | - Lauren A Viarengo-Baker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Victor Tatarskii
- Asinex Corporation, 101 N Chestnut St # 104, Winston-Salem, North Carolina 27101,United States
| | - Roman Kombarov
- Asinex Corporation, 101 N Chestnut St # 104, Winston-Salem, North Carolina 27101,United States
| | - Adrian Whitty
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Center for Molecular Discovery, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Kelly KP, Borsetti H, Wenzler ME, Ustione A, Kim K, Christov PP, Ramirez B, Bauer JA, Piston DW, Johnson CH, Sulikowski GA. Screen for Small-Molecule Modulators of Circadian Rhythms Reveals Phenazine as a Redox-State Modifying Clockwork Tuner. ACS Chem Biol 2022; 17:1658-1664. [PMID: 35679588 PMCID: PMC9398883 DOI: 10.1021/acschembio.2c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-throughput cell-based screen identified redox-active small molecules that produce a period lengthening of the circadian rhythm. The strongest period lengthening phenotype was induced by a phenazine carboxamide (VU661). Comparison to two isomeric benzquinoline carboxamides (VU673 and VU164) shows the activity is associated with the redox modulating phenazine functionality. Furthermore, ex vivo cell analysis using optical redox ratio measurements shows the period lengthening phenotype to be associated with a shift to the NAD/FAD oxidation state of nicotinamide and flavine coenzymes.
Collapse
Affiliation(s)
- Kevin P Kelly
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hugo Borsetti
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta E Wenzler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alessandro Ustione
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bianca Ramirez
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua A Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David W Piston
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, Bednarczyk D, Morrison D, Lesuisse D, Hoppe E, Terstappen GC, Fischer H, Di L, Colclough N, Summerfield S, Buckley ST, Maurer TS, Fridén M. Unbound Brain-to-Plasma Partition Coefficient, K p,uu,brain-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res 2022; 39:1321-1341. [PMID: 35411506 PMCID: PMC9246790 DOI: 10.1007/s11095-022-03246-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
Collapse
Affiliation(s)
- Irena Loryan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden.
| | | | - Bo Feng
- DMPK, Vertex Pharmaceuticals, Boston, Massachusetts, 02210, USA
| | | | - Christopher Shaffer
- External Innovation, Research & Development, Biogen Inc., Cambridge, Massachusetts, USA
| | - Cory Kalvass
- DMPK-BA, AbbVie, Inc., North Chicago, Illinois, USA
| | - Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | - Edmund Hoppe
- DMPK, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Holger Fischer
- Translational PK/PD and Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | - Scott Summerfield
- Bioanalysis Immunogenicity and Biomarkers, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | | | - Tristan S Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Markus Fridén
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
12
|
Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Molecules 2022; 27:molecules27134194. [PMID: 35807438 PMCID: PMC9268608 DOI: 10.3390/molecules27134194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer cell proliferation and migration are inhibited by naturally extracted trans-(−)-kusunokinin. However, three additional enantiomers of kusunokinin have yet to be investigated: trans-(+)-kusunokinin, cis-(−)-isomer and cis-(+)-isomer. According to the results of molecular docking studies of kusunokinin isomers on 60 breast cancer-related proteins, trans-(−)-kusunokinin was the most preferable and active component of the trans-racemic mixture. Trans-(−)-kusunokinin targeted proteins involved in cell growth and proliferation, whereas the cis-(+)-isomer targeted proteins involved in metastasis. Trans-(−)-kusunokinin targeted CSF1R specifically, whereas trans-(+)-kusunokinin and both cis-isomers may have bound AKR1B1. Interestingly, the compound’s stereoisomeric effect may influence protein selectivity. CSF1R preferred trans-(−)-kusunokinin over trans-(+)-kusunokinin because the binding pocket required a ligand planar arrangement to form a π-π interaction with a selective Trp550. Because of its large binding pocket, EGFR exhibited no stereoselectivity. MD simulation revealed that trans-(−)-kusunokinin, trans-(+)-kusunokinin and pexidartinib bound CSF1R differently. Pexidartinib had the highest binding affinity, followed by trans-(−)-kusunokinin and trans-(+)-kusunokinin, respectively. The trans-(−)-kusunokinin-CSF1R complex was found to be stable, whereas trans-(+)-kusunokinin was not. Trans-(±)-kusunokinin, a potential racemic compound, could be developed as a selective CSF1R inhibitor when combined.
Collapse
|
13
|
Hann E, Malagu K, Stott A, Vater H. The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:163-214. [PMID: 35753715 DOI: 10.1016/bs.pmch.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasma protein binding and tissue binding are arguably two of the most critical parameters that are measured as part of a drug discovery program since, according to the free drug hypothesis, it is the free drug that is responsible for both efficacy and toxicity. This chapter aims to deconstruct the role of plasma protein and tissue binding in drug discovery programs, and to consider the conclusion made by Pfizer and Genentech/Depomed a decade ago that optimising plasma protein binding as an independent parameter does not significantly influence efficacy. This chapter will also examine how binding metrics are applied in drug discovery programs and explore circumstances where optimising plasma protein or tissue binding can be an effective strategy to deliver a candidate molecule for preclinical development with an early indication of sufficient therapeutic index.
Collapse
Affiliation(s)
- Elizabeth Hann
- Charles River Laboratories, Robinson Building, Chesterford Research Park, Saffron Walden, United Kingdom.
| | - Karine Malagu
- Charles River Laboratories, Robinson Building, Chesterford Research Park, Saffron Walden, United Kingdom
| | - Andrew Stott
- Charles River Laboratories, Robinson Building, Chesterford Research Park, Saffron Walden, United Kingdom
| | - Huw Vater
- Charles River Laboratories, Robinson Building, Chesterford Research Park, Saffron Walden, United Kingdom
| |
Collapse
|
14
|
Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Sci Rep 2022; 12:7057. [PMID: 35488116 PMCID: PMC9054760 DOI: 10.1038/s41598-022-10755-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called “charge-relay system” that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.
Collapse
|
15
|
Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2. Viruses 2022; 14:v14030605. [PMID: 35337012 PMCID: PMC8953050 DOI: 10.3390/v14030605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
We extend our established agent-based multiscale computational model of infection of lung tissue by SARS-CoV-2 to include pharmacokinetic and pharmacodynamic models of remdesivir. We model remdesivir treatment for COVID-19; however, our methods are general to other viral infections and antiviral therapies. We investigate the effects of drug potency, drug dosing frequency, treatment initiation delay, antiviral half-life, and variability in cellular uptake and metabolism of remdesivir and its active metabolite on treatment outcomes in a simulated patch of infected epithelial tissue. Non-spatial deterministic population models which treat all cells of a given class as identical can clarify how treatment dosage and timing influence treatment efficacy. However, they do not reveal how cell-to-cell variability affects treatment outcomes. Our simulations suggest that for a given treatment regime, including cell-to-cell variation in drug uptake, permeability and metabolism increase the likelihood of uncontrolled infection as the cells with the lowest internal levels of antiviral act as super-spreaders within the tissue. The model predicts substantial variability in infection outcomes between similar tissue patches for different treatment options. In models with cellular metabolic variability, antiviral doses have to be increased significantly (>50% depending on simulation parameters) to achieve the same treatment results as with the homogeneous cellular metabolism.
Collapse
|
16
|
Summerfield SG, Yates JWT, Fairman DA. Free Drug Theory - No Longer Just a Hypothesis? Pharm Res 2022; 39:213-222. [PMID: 35112229 DOI: 10.1007/s11095-022-03172-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
The Free Drug Hypothesis is a well-established concept within the scientific lexicon pervading many areas of Drug Discovery and Development, and yet it is poorly defined by virtue of many variations appearing in the literature. Clearly, unbound drug is in dynamic equilibrium with respect to absorption, distribution, metabolism, elimination, and indeed, interaction with the desired pharmacological target. Binding interactions be they specific (e.g. high affinity) or nonspecific (e.g. lower affinity/higher capacity) are governed by the same fundamental physicochemical tenets including Hill-Langmuir Isotherms, the Law of Mass Action and Drug Receptor Theory. With this in mind, it is time to recognise a more coherent version and consider it the Free Drug Theory and a hypothesis no longer. Today, we have the experimental and modelling capabilities, pharmacological knowledge, and an improved understanding of unbound drug distribution (e.g. Kpuu) to raise the bar on our understanding and analysis of experimental data. The burden of proof should be to rule out mechanistic possibilities and/or experimental error before jumping to the conclusion that any observations contradict these fundamentals.
Collapse
Affiliation(s)
- Scott G Summerfield
- UK Bioanalysis Immunogenicity and Biomarkers, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - James W T Yates
- Drug Metabolism and Pharmacokinetics, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David A Fairman
- Clinical Pharmacology Modelling and Simulation, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
17
|
Localization and Absolute Quantification of Dopamine in Discrete Intravesicular Compartments Using NanoSIMS Imaging. Int J Mol Sci 2021; 23:ijms23010160. [PMID: 35008583 PMCID: PMC8745556 DOI: 10.3390/ijms23010160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The absolute concentration and the compartmentalization of analytes in cells and organelles are crucial parameters in the development of drugs and drug delivery systems, as well as in the fundamental understanding of many cellular processes. Nanoscale secondary ion mass spectrometry (NanoSIMS) imaging is a powerful technique which allows subcellular localization of chemical species with high spatial and mass resolution, and high sensitivity. In this study, we combined NanoSIMS imaging with spatial oversampling with transmission electron microscopy (TEM) imaging to discern the compartments (dense core and halo) of large dense core vesicles in a model cell line used to study exocytosis, and to localize 13C dopamine enrichment following 4–6 h of 150 μM 13C L-3,4-dihydroxyphenylalanine (L-DOPA) incubation. In addition, the absolute concentrations of 13C dopamine in distinct vesicle domains as well as in entire single vesicles were quantified and validated by comparison to electrochemical data. We found concentrations of 87.5 mM, 16.0 mM and 39.5 mM for the dense core, halo and the whole vesicle, respectively. This approach adds to the potential of using combined TEM and NanoSIMS imaging to perform absolute quantification and directly measure the individual contents of nanometer-scale organelles.
Collapse
|
18
|
Route of intracellular uptake and cytotoxicity of sesamol, sesamin, and sesamolin in human melanoma SK-MEL-2 cells. Biomed Pharmacother 2021; 146:112528. [PMID: 34906777 DOI: 10.1016/j.biopha.2021.112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The intracellular uptake concentration determines drug absorption, drug activity, and toxicity. Sesamol, sesamin, and sesamolin are promising bioactive components from Sesame indicum L. Their respective intracellular uptake pathway and cytotoxicity were evaluated using melanoma and non-cancerous cells. Quantitative structure-activity relationship (QSAR) models were built to identify the molecular features affecting drug uptake in cells. The respective intracellular uptake pathway for sesamol vs. sesamin and sesamolin was carrier-mediated vs. passive transport. Topological polar surface area (PSA) and 2D autocorrections increase the intracellular concentration (C/M ratio) of these compounds. Sesamol has the lowest C/M ratio compared to sesamin and sesamolin, but only sesamol inhibits the cell viability of melanoma and provides an inhibition concentration at 50% (IC50) against melanoma cells. The slightly aqueous solubility of sesamin and sesamolin, therefore, limits testing of their cytotoxicity. In conclusion, sesamol has the potential to inhibit melanoma cell growth, but requires improvement of the C/M ratio to increase its physicochemical properties. Thus, in order to investigate the cytotoxicity of sesamin and sesamolin against melanoma cells a solubility enhancer is needed.
Collapse
|
19
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
20
|
Di L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin Drug Discov 2021; 16:1453-1465. [PMID: 34403271 DOI: 10.1080/17460441.2021.1961741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Plasma protein binding (PPB) remains a controversial topic in drug discovery and development. Fraction unbound (fu) is a critical parameter that needs to be measured accurately, because it has significant impacts on the predictions of drug-drug interactions (DDI), estimations of therapeutic indices (TI), and developments of PK/PD relationships. However, it is generally not advisable to change PPB through structural modifications, because PPB on its own has little relevance for in vivo efficacy.Areas covered: PPB fundamentals are discussed including the three main classes of drug binding proteins (i.e., albumin, alpha1-acid glycoprotein, and lipoproteins) and their physicochemical properties, in vivo half-life, and synthesis rate. State-of-the-art methodologies for PPB are highlighted. Applications of PPB in drug discovery and development are presented.Expert opinion: PPB is an old topic in pharmacokinetics, but there are still many misconceptions. Improving the accuracy of PPB for highly bound compounds is an ongoing effort in the field with high priority. As the field continues to generate high quality data, the regulatory agencies will increase their confidence in our ability to accurately measure PPB of highly bound compounds, and experimental fu values below 0.01 will more likely be used for DDI predictions in the future.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, US
| |
Collapse
|
21
|
Parvez MM, Basit A, Jariwala PB, Gáborik Z, Kis E, Heyward S, Redinbo MR, Prasad B. Quantitative Investigation of Irinotecan Metabolism, Transport, and Gut Microbiome Activation. Drug Metab Dispos 2021; 49:683-693. [PMID: 34074730 PMCID: PMC8407663 DOI: 10.1124/dmd.121.000476] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by β-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Parth B Jariwala
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Zsuzsanna Gáborik
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Emese Kis
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Matthew R Redinbo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| |
Collapse
|
22
|
Di L, Riccardi K, Tess D. Evolving approaches on measurements and applications of intracellular free drug concentration and Kp uu in drug discovery. Expert Opin Drug Metab Toxicol 2021; 17:733-746. [PMID: 34058926 DOI: 10.1080/17425255.2021.1935866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Intracellular-free drug concentration (Cu,cell) and unbound partition coefficient (Kpuu) are two important parameters to develop pharmacokinetic and pharmacodynamic relationships, predict drug-drug interaction potentials and estimate therapeutic indices.Area covered: Methods on measurements of Cu,cell, Kpuu, partition coefficient (Kp) and fraction unbound of cells (fuc) are discussed. Advantages and limitations of several fuc methods are reviewed. Applications highlighted here are bridging the potency gaps between biochemical and cell-based assays, in vitro hepatocyte assay to predict in vivo liver-to-plasma Kpuu, the role of Kpuu in prediction of hepatic clearance for enzyme- and transporter-mediated mechanisms using extended clearance equation, and structural attributes governing tissue Kpuu.Expert opinion: Cu,cell and Kpuu are of growing applications in drug discovery. Methods for measurements of these properties continue to evolve in order to achieve higher precision/accuracy and obtain more detailed information at the subcellular levels. Future directions of the field include the development of in vitro and in silico models to predict tissue Kpuu, direct measurement of free drug concentration in subcellular organelles, and further investigations into the critical elements governing cell and tissue Kpuu. Significant innovation is needed to advance this complex, but highly impactful and exciting area of science.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA
| | - David Tess
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA
| |
Collapse
|
23
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Tubulin Inhibitors: A Chemoinformatic Analysis Using Cell-Based Data. Molecules 2021; 26:2483. [PMID: 33923169 PMCID: PMC8123128 DOI: 10.3390/molecules26092483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibiting the tubulin-microtubules (Tub-Mts) system is a classic and rational approach for treating different types of cancers. A large amount of data on inhibitors in the clinic supports Tub-Mts as a validated target. However, most of the inhibitors reported thus far have been developed around common chemical scaffolds covering a narrow region of the chemical space with limited innovation. This manuscript aims to discuss the first activity landscape and scaffold content analysis of an assembled and curated cell-based database of 851 Tub-Mts inhibitors with reported activity against five cancer cell lines and the Tub-Mts system. The structure-bioactivity relationships of the Tub-Mts system inhibitors were further explored using constellations plots. This recently developed methodology enables the rapid but quantitative assessment of analog series enriched with active compounds. The constellations plots identified promising analog series with high average biological activity that could be the starting points of new and more potent Tub-Mts inhibitors.
Collapse
Affiliation(s)
- Edgar López-López
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
24
|
Yin Q, Pan A, Chen B, Wang Z, Tang M, Yan Y, Wang Y, Xia H, Chen W, Du H, Chen M, Fu C, Wang Y, Yuan X, Lu Z, Zhang Q, Wang Y. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nat Commun 2021; 12:2385. [PMID: 33888701 PMCID: PMC8062465 DOI: 10.1038/s41467-021-22678-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Nanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7-28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.
Collapse
Affiliation(s)
- Qingqing Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Anni Pan
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mingmei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongliang Du
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
25
|
Wegler C, Matsson P, Krogstad V, Urdzik J, Christensen H, Andersson TB, Artursson P. Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes. Mol Pharm 2021; 18:1792-1805. [PMID: 33739838 PMCID: PMC8041379 DOI: 10.1021/acs.molpharmaceut.1c00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.
Collapse
Affiliation(s)
- Christine Wegler
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Pär Matsson
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
| | - Veronica Krogstad
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Jozef Urdzik
- Department
of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Hege Christensen
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Tommy B. Andersson
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Per Artursson
- Department
of Pharmacy and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
26
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
27
|
Liposome Click Membrane Permeability Assay for Identifying Permeable Peptides. Pharm Res 2021; 38:843-850. [PMID: 33723794 DOI: 10.1007/s11095-021-03005-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen. METHOD DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering. RESULTS The permeable peptides representing energy independent mechanism of permeability showed higher biotinylation in LCMPA. Individual peptide permeability results from LCMPA correlated well with shifts in potency in cellular versus biochemical assays (i.e., cellular/ biochemical ratio) demonstrating quantitative correlation to intracellular barrier in intact cells. CONCLUSION The study provides a novel membrane permeability assay that has potential to evaluate energy independent transport of diverse peptides.
Collapse
|
28
|
Nowak RP, Jones LH. Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS DISCOVERY 2020; 26:474-483. [PMID: 33334221 DOI: 10.1177/2472555220979584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional compounds that recruit the E3 ubiquitin ligase machinery to proteins of interest, resulting in their ubiquitination and subsequent proteasomal degradation. Targeted protein degradation has generated considerable interest in drug discovery because inhibition of one particular function of a protein often does not deliver the therapeutic efficacy that results from whole-protein depletion. However, the physicochemistry and intrinsically complex pharmacology of PROTACs present challenges, particularly for the development of orally bioavailable drugs. Here we describe the application of a translational pharmacology framework (called the four pillars) to expedite PROTAC development by informing pharmacokinetic-pharmacodynamic (PKPD) understanding and helping elucidate structure-activity relationships. Experimental methods are reviewed that help illuminate exposure of the drug or probe at the site of action (pillar 1) and engagement of its target(s) (pillar 2) that drive functional pharmacological effects (pillar 3) resulting in modulation of a relevant phenotype (pillar 4). We hope the guidance will be useful to those developing targeted protein degraders and help establish PROTAC molecules as robust target validation chemical probes.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
29
|
Hann MM. Lessons in Transcellular Membrane Transport Re-Learned. J Pharm Sci 2020; 110:548-551. [PMID: 33144234 DOI: 10.1016/j.xphs.2020.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
A brief note on the studies we have conducted on total and free drug concentration of thousands of drug discovery compounds in HeLa cells as measured by an approach inspired by the work of Professor Per Arturrsson. We conclude that the familiar QSAR equations of Corwin Hansch which were modelled as a bell shape by using logP and -logP2 terms can be similarly seen in our results and this can be interpreted with the aid of chromatographic Immobilised Artificial Membrane measurements. We also point out the differences between our measurements and those widely used based on Artificial Membrane Permeability Assays.
Collapse
Affiliation(s)
- Michael M Hann
- Medicinal Sciences and Technologies, GSK Medicine's Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| |
Collapse
|
30
|
Matsson P, Baranczewski P, Giacomini KM, Andersson TB, Palm J, Palm K, Charman WN, Bergström CAS. A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research. J Pharm Sci 2020; 110:2-11. [PMID: 33096136 DOI: 10.1016/j.xphs.2020.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022]
Abstract
This issue of the Journal of Pharmaceutical Sciences is dedicated to Professor Per Artursson and the groundbreaking contributions he has made and continues to make in the Pharmaceutical Sciences. Per is one of the most cited researchers in his field, with more than 30,000 citations and an h-index of 95 as of September 2020. Importantly, these citations are distributed over the numerous fields he has explored, clearly showing the high impact the research has had on the discipline. We provide a short portrait of Per, with emphasis on his personality, driving forces and the inspirational sources that shaped his career as a world-leading scientist in the field. He is a curious scientist who deftly moves between disciplines and has continued to innovate, expand boundaries, and profoundly impact the pharmaceutical sciences throughout his career. He has developed new tools and provided insights that have significantly contributed to today's molecular and mechanistic approaches to research in the fields of intestinal absorption, cellular disposition, and exposure-efficacy relationships of pharmaceutical drugs. We want to celebrate these important contributions in this special issue of the Journal of Pharmaceutical Sciences in Per's honor.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pawel Baranczewski
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Retired)
| | - Johan Palm
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Katrin Palm
- Early Product Development and Manufacture, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - William N Charman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | | |
Collapse
|
31
|
Klein VG, Townsend CE, Testa A, Zengerle M, Maniaci C, Hughes SJ, Chan KH, Ciulli A, Lokey RS. Understanding and Improving the Membrane Permeability of VH032-Based PROTACs. ACS Med Chem Lett 2020; 11:1732-1738. [PMID: 32939229 PMCID: PMC7488288 DOI: 10.1021/acsmedchemlett.0c00265] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
![]()
Proteolysis targeting
chimeras (PROTACs) are catalytic heterobifunctional
molecules that can selectively degrade a protein of interest by recruiting
a ubiquitin E3 ligase to the target, leading to its ubiquitylation
and degradation by the proteasome. Most degraders lie outside the
chemical space associated with most membrane-permeable drugs. Although
many PROTACs have been described with potent activity in cells, our
understanding of the relationship between structure and permeability
in these compounds remains limited. Here, we describe a label-free
method for assessing the permeability of several VH032-based PROTACs
and their components by combining a parallel artificial membrane permeability
assay (PAMPA) and a lipophilic permeability efficiency (LPE) metric.
Our results show that the combination of these two cell-free membrane
permeability assays provides new insight into PROTAC structure–permeability
relationships and offers a conceptual framework for predicting the
physicochemical properties of PROTACs in order to better inform the
design of more permeable and more effective degraders.
Collapse
Affiliation(s)
- Victoria G. Klein
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Chad E. Townsend
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Michael Zengerle
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Scott J. Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Kwok-Ho Chan
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
32
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
33
|
The effect of prolyl oligopeptidase inhibitors on alpha-synuclein aggregation and autophagy cannot be predicted by their inhibitory efficacy. Biomed Pharmacother 2020; 128:110253. [DOI: 10.1016/j.biopha.2020.110253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
|
34
|
Pyaram A, Rampilla M, Deore J, Sengupta P. Challenges and Strategies for Quantification of Drugs in the Brain: Current Scenario and Future Advancement. Crit Rev Anal Chem 2020; 52:93-105. [PMID: 32687414 DOI: 10.1080/10408347.2020.1791041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The site of action of centrally acting drugs lies inside the brain and therefore, needs to reach the brain to exert their therapeutic efficacy. Discovery and development process of such types of drugs demands their quantification in brain to establish the dose, study pharmacokinetics, pharmacodynamics, and optimize the overall efficacy. Moreover, some drugs of other categories also have potential to cross blood-brain barrier resulting in various adverse events by acting centrally. However, the collection of a matrix to analyze the amount of drugs present in brain is highly challenging. In this review, we have summarized different bioanalytical strategies to quantitate drugs inside the brain. A detailed discussion on various in vivo and in vitro techniques for monitoring drugs inside the brain has been incorporated. In addition, various sampling techniques have been discussed in brief with case studies. Therefore, this review can guide the researcher to choose appropriate bioanalytical techniques for analyzing drugs in brain depending upon the specific need and quantification threshold considering the commonly associated difficulties of the methods.
Collapse
Affiliation(s)
- Akhila Pyaram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Madhuri Rampilla
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Jayshri Deore
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| |
Collapse
|
35
|
Inde Z, Forcina GC, Denton K, Dixon SJ. Kinetic Heterogeneity of Cancer Cell Fractional Killing. Cell Rep 2020; 32:107845. [PMID: 32640215 PMCID: PMC7409774 DOI: 10.1016/j.celrep.2020.107845] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
Lethal drugs can induce incomplete cell death in a population of cancer cells, a phenomenon referred to as fractional killing. Here, we show that high-throughput population-level time-lapse imaging can be used to quantify fractional killing in response to hundreds of different drug treatments in parallel. We find that stable intermediate levels of fractional killing are uncommon, with many drug treatments resulting in complete or near-complete eradication of all cells, if given enough time. The kinetics of fractional killing over time vary substantially as a function of drug, drug dose, and genetic background. At the molecular level, the antiapoptotic protein MCL1 is an important determinant of the kinetics of fractional killing in response to MAPK pathway inhibitors but not other lethal stimuli. These studies suggest that fractional killing is governed by diverse lethal stimulus-specific mechanisms.
Collapse
Affiliation(s)
- Zintis Inde
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyle Denton
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Gorman BL, Brunet MA, Pham SN, Kraft ML. Measurement of Absolute Concentration at the Subcellular Scale. ACS NANO 2020; 14:6414-6419. [PMID: 32510923 DOI: 10.1021/acsnano.0c04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The concentration of a pharmaceutical drug or bioactive metabolite within the target organelle influences the effects elicited by the drug or metabolite. Although the relative concentrations of many compounds of interest within subcellular compartments have been measured, measurements of absolute concentrations in the organelle remain elusive. In this Perspective, we discuss a significant advance in using nano secondary ion mass spectrometry (nanoSIMS) to measure the absolute concentration of a 13C-labeled metabolite within secretory vesicles, as reported by Thomen et al. in the April issue of ACS Nano.
Collapse
|
37
|
Clegg MA, Bamborough P, Chung CW, Craggs PD, Gordon L, Grandi P, Leveridge M, Lindon M, Liwicki GM, Michon AM, Molnar J, Rioja I, Soden PE, Theodoulou NH, Werner T, Tomkinson NCO, Prinjha RK, Humphreys PG. Application of Atypical Acetyl-lysine Methyl Mimetics in the Development of Selective Inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains. J Med Chem 2020; 63:5816-5840. [PMID: 32410449 DOI: 10.1021/acs.jmedchem.0c00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-molecule ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) methyl mimetics to take advantage of the differential stability of conserved water molecules in the bromodomain binding site. Discovery of the n-butyl group as an atypical KAc methyl mimetic allowed generation of 31 (GSK6776) as a soluble, permeable, and selective BRD7/9 inhibitor from a pyridazinone template. The n-butyl group was then used to enhance the bromodomain selectivity of an existing BRD9 inhibitor and to transform pan-bromodomain inhibitors into BRD7/9 selective compounds. Finally, a solvent-exposed vector was defined from the pyridazinone template to enable bifunctional molecule synthesis, and affinity enrichment chemoproteomic experiments were used to confirm several of the endogenous protein partners of BRD7 and BRD9, which form part of the chromatin remodeling PBAF and BAF complexes, respectively.
Collapse
Affiliation(s)
- Michael A Clegg
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Paul Bamborough
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Peter D Craggs
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Laurie Gordon
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Paola Grandi
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Melanie Leveridge
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Matthew Lindon
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Gemma M Liwicki
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Anne-Marie Michon
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Judit Molnar
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Inmaculada Rioja
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Peter E Soden
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - Natalie H Theodoulou
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Thilo Werner
- Cellzome GmbH, R&D MST GlaxoSmithKline, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K Prinjha
- GlaxoSmithKline R&D, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | | |
Collapse
|
38
|
Trünkle C, Lechner C, Korr D, Bouché L, Barak N, Fernández-Montalván A, Süssmuth RD, Reichel A. Concentration Dependence of the Unbound Partition Coefficient Kpuu and Its Application to Correct for Exposure-Related Discrepancies between Biochemical and Cellular Potency of KAT6A Inhibitors. Drug Metab Dispos 2020; 48:553-562. [DOI: 10.1124/dmd.120.090563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
|
39
|
Thomen A, Najafinobar N, Penen F, Kay E, Upadhyay PP, Li X, Phan NTN, Malmberg P, Klarqvist M, Andersson S, Kurczy ME, Ewing AG. Subcellular Mass Spectrometry Imaging and Absolute Quantitative Analysis across Organelles. ACS NANO 2020; 14:4316-4325. [PMID: 32239916 PMCID: PMC7199216 DOI: 10.1021/acsnano.9b09804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 05/22/2023]
Abstract
Mass spectrometry imaging is a field that promises to become a mainstream bioanalysis technology by allowing the combination of single-cell imaging and subcellular quantitative analysis. The frontier of single-cell imaging has advanced to the point where it is now possible to compare the chemical contents of individual organelles in terms of raw or normalized ion signal. However, to realize the full potential of this technology, it is necessary to move beyond this concept of relative quantification. Here we present a nanoSIMS imaging method that directly measures the absolute concentration of an organelle-associated, isotopically labeled, pro-drug directly from a mass spectrometry image. This is validated with a recently developed nanoelectrochemistry method for single organelles. We establish a limit of detection based on the number of isotopic labels used and the volume of the organelle of interest, also offering this calculation as a web application. This approach allows subcellular quantification of drugs and metabolites, an overarching and previously unmet goal in cell science and pharmaceutical development.
Collapse
Affiliation(s)
- Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Neda Najafinobar
- Medicinal
Chemistry, Research and Early Development, Respiratory, Inflammation,
and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Florent Penen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Emma Kay
- Bioscience,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Pratik P. Upadhyay
- Pharmaceutical
Technolgy and Development, AstraZeneca R&D, Gothenburg, 430 52, Sweden
| | - Xianchan Li
- Center
for Imaging and Systems Biology, College of Life and Environmental
Sciences, Minzu University of China, Beijing, 100081, China
| | - Nhu T. N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Magnus Klarqvist
- Early
Product Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, 431 50, Sweden
| | - Shalini Andersson
- New Modalities,
Discovery Sciences, R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| |
Collapse
|
40
|
Brulet JW, Borne AL, Yuan K, Libby AH, Hsu KL. Liganding Functional Tyrosine Sites on Proteins Using Sulfur-Triazole Exchange Chemistry. J Am Chem Soc 2020; 142:8270-8280. [PMID: 32329615 DOI: 10.1021/jacs.0c00648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tuning reactivity of sulfur electrophiles is key for advancing click chemistry and chemical probe discovery. To date, activation of the sulfur electrophile for protein modification has been ascribed principally to stabilization of a fluoride leaving group (LG) in covalent reactions of sulfonyl fluorides and arylfluorosulfates. We recently introduced sulfur-triazole exchange (SuTEx) chemistry to demonstrate the triazole as an effective LG for activating nucleophilic substitution reactions on tyrosine sites of proteins. Here, we probed tunability of SuTEx for fragment-based ligand discovery by modifying the adduct group (AG) and LG with functional groups of differing electron-donating and -withdrawing properties. We discovered the sulfur electrophile is highly sensitive to the position of modification (AG versus LG), which enabled both coarse and fine adjustments in solution and proteome activity. We applied these reactivity principles to identify a large fraction of tyrosine sites (∼30%) on proteins (∼44%) that can be liganded across >1500 probe-modified sites quantified by chemical proteomics. Our proteomic studies identified noncatalytic tyrosine and phosphotyrosine sites that can be liganded by SuTEx fragments with site specificity in lysates and live cells to disrupt protein function. Collectively, we describe SuTEx as a versatile covalent chemistry with broad applications for chemical proteomics and protein ligand discovery.
Collapse
Affiliation(s)
- Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Kun Yuan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
41
|
Ryu Y, Hong CA, Song Y, Beak J, Seo BA, Lee JJ, Kim HS. Modular protein-DNA hybrid nanostructures as a drug delivery platform. NANOSCALE 2020; 12:4975-4981. [PMID: 32057052 DOI: 10.1039/c9nr08519j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing number of identified intracellular drug targets, cytosolic drug delivery has gained much attention. Despite advances in synthetic drug carriers, however, construction of homogeneous and biocompatible nanostructures in a controllable manner still remains a challenge in a translational medicine. Herein, we present the modular design and assembly of functional DNA nanostructures through sequence-specific interactions between zinc-finger proteins (ZnFs) and DNA as a cytosolic drug delivery platform. Three kinds of DNA-binding ZnF domains were genetically fused to various proteins with different biological roles, including targeting moiety, molecular probe, and therapeutic cargo. The engineered ZnFs were employed as distinct functional modules, and incorporated into a designed ZnF-binding sequence of a Y-shaped DNA origami (Y-DNA). The resulting functional Y-DNA nanostructures (FYDN) showed self-assembled superstructures with homogeneous morphology, strong resistance to exonuclease activity and multi-modality. We demonstrated the general utility of our approach by showing efficient cytosolic delivery of PTEN tumour suppressor protein to rescue unregulated kinase signaling in cancer cells with negligible nonspecific cytotoxicity.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Cheol Am Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Yunjin Song
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Jonghwi Beak
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Bo Am Seo
- Biomedical Science & Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
42
|
Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs. Bioorg Med Chem 2020; 28:115326. [PMID: 32001089 DOI: 10.1016/j.bmc.2020.115326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
PROTACs have recently emerged as a novel paradigm in drug discovery. They can hijack existing biological machinery to selectively degrade proteins of interest, in a catalytic fashion. Here we describe the design, optimisation and biological activity of a set of novel PROTACs targeting the Janus kinase family (JAK1, JAK2, JAK3 and TYK2) of proximal membrane-bound proteins. The JAK family proteins display membrane localisation by virtue of their association with cytoplasmic tails of cytokine receptors, and there are no reports of a successful PROTAC strategy being deployed against this class of proteins. JAK PROTACs from two distinct JAK chemotypes were designed, optimising the physicochemical properties for each template to enhance cell permeation. These PROTACs are capable of inducing JAK1 and JAK2 degradation, demonstrating an extension of the PROTAC methodology to an unprecedented class of protein targets. A number of known ligase binders were explored, and it was found that PROTACs bearing an inhibitor of apoptosis protein (IAP) ligand induced significantly more JAK degradation over Von Hippel-Lindau (VHL) and Cereblon (CRBN) PROTACs. In addition, the mechanism of action of the JAK PROTACs was elucidated, and it was confirmed that JAK degradation was both IAP- and proteasome-dependent.
Collapse
|
43
|
Foley CA, Potjewyd F, Lamb KN, James LI, Frye SV. Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay. ACS Chem Biol 2020; 15:290-295. [PMID: 31846298 DOI: 10.1021/acschembio.9b00972] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bivalent chemical degraders provide a catalytic route to selectively degrade disease-associated proteins. By linking target-specific ligands with E3 ubiquitin ligase recruiting ligands, these compounds facilitate targeted protein ubiquitination and degradation by the proteasome. Due to the complexity of this multistep mechanism, the development of effective degrader molecules remains a difficult, lengthy, and unpredictable process. Since degraders are large heterobifunctional molecules, the efficacy of these compounds may be limited by poor cell permeability, and an efficient and reliable method to quantify the cell permeability of these compounds is lacking. Herein, we demonstrate that by the addition of a chloroalkane tag on the BRD4 specific degrader, MZ1, cell permeability can be quantified via the chloroalkane penetration assay. By extending this analysis to individual components of the degrader molecule, we have obtained structure-permeability relationships that will be informative for future degrader development, particularly as degraders move into the clinic as potential therapeutics.
Collapse
Affiliation(s)
- Caroline A. Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frances Potjewyd
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol 2020; 273:121-150. [PMID: 33258066 DOI: 10.1007/164_2020_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
45
|
Jin HY, Tudor Y, Choi K, Shao Z, Sparling BA, McGivern JG, Symons A. High-Throughput Implementation of the NanoBRET Target Engagement Intracellular Kinase Assay to Reveal Differential Compound Engagement by SIK2/3 Isoforms. SLAS DISCOVERY 2019; 25:215-222. [PMID: 31849250 DOI: 10.1177/2472555219893277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The real-time quantification of target engagement (TE) by small-molecule ligands in living cells remains technically challenging. Systematic quantification of such interactions in a high-throughput setting holds promise for identification of target-specific, potent small molecules within a pathophysiological and biologically relevant cellular context. The salt-inducible kinases (SIKs) belong to a subfamily of the AMP-activated protein kinase (AMPK) family and are composed of three isoforms in humans (SIK1, SIK2, and SIK3). They modulate the production of pro- and anti-inflammatory cytokines in immune cells. Although pan-SIK inhibitors are sufficient to reverse SIK-dependent inflammatory responses, the apparent toxicity associated with SIK3 inhibition suggests that isoform-specific inhibition is required to realize therapeutic benefit with acceptable safety margins. Here, we used the NanoBRET TE intracellular kinase assay, a sensitive energy transfer technique, to directly measure molecular proximity and quantify TE in HEK293T cells overexpressing SIK2 or SIK3. Our 384-well high-throughput screening of 530 compounds demonstrates that the NanoBRET TE intracellular kinase assay was sensitive and robust enough to reveal differential engagement of candidate compounds with the two SIK isoforms and further highlights the feasibility of high-throughput implementation of NanoBRET TE intracellular kinase assays for target-driven small-molecule screening.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Yanyan Tudor
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Kaylee Choi
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Zhifei Shao
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Brian A Sparling
- Department of Medicinal Chemistry, Amgen Research, Amgen Inc., Cambridge, MA, USA
| | - Joseph G McGivern
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Antony Symons
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA.,23andMe Therapeutics, South San Francisco, CA, USA
| |
Collapse
|
46
|
Cromm PM, Adihou H, Kapoor S, Vazquez-Chantada M, Davey P, Longmire D, Hennes E, Hofer W, Küchler P, Chiarparin E, Waldmann H, Grossmann TN. Lipidated Stapled Peptides Targeting the Acyl Binding Protein UNC119. Chembiochem 2019; 20:2987-2990. [PMID: 31680402 PMCID: PMC6973269 DOI: 10.1002/cbic.201900615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 01/09/2023]
Abstract
The acyl-binding UNC119 proteins mediate the activation and transport of various N-myristoylated proteins. In particular, UNC119a plays a crucial role in the completion of cytokinesis. Herein, we report the use of a lipidated peptide originating from the UNC119 binding partner Gnat1 as the basis for the design of lipidated, stabilized α-helical peptides that target UNC119a. By using the hydrocarbon peptide-stapling approach, cell-permeable binders of UNC119a were generated that induced the accumulation of cytokinetic and binucleated cells; this suggests UNC119a as a potential target for the inhibition of cytokinesis.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.,Present address: Research and Development, Pharmaceuticals, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Hélène Adihou
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Early CVRM Medicinal Chemistry, R&D BioPharmaceuticals, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Shobhna Kapoor
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Mercedes Vazquez-Chantada
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Paul Davey
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - David Longmire
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Elisabeth Hennes
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Walter Hofer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Philipp Küchler
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Elisabetta Chiarparin
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Tom N Grossmann
- Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Fonkui TY, Ikhile MI, Njobeh PB, Ndinteh DT. Benzimidazole Schiff base derivatives: synthesis, characterization and antimicrobial activity. BMC Chem 2019; 13:127. [PMID: 31728454 PMCID: PMC6842205 DOI: 10.1186/s13065-019-0642-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2019] [Indexed: 12/26/2022] Open
Abstract
A series of Schiff bases (3.a–f) bearing benzimidazole moiety was successfully synthesized in ethanol by refluxing Oct-2-ynoic acid (1,3-dihydrobenzimidazole-2-ylidene)amide with substituted amines. Fourier transform infrared (FTIR), ultra violet light (UV–VIS), elemental analysis, proton (1H) and carbon (13C) nuclear magnetic resonance spectroscopy were used to characterize the newly synthesized Schiff bases. Micro dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the Schiff bases, against 14 human pathogenic bacteria (8 Gram negative and 6 Gram positive) and against 7 fungal strains (5 Aspergillus and 2 Fusarium) representatives. Antimalarial activity against Plasmodium falciparum and antitrypanosomal property against Trypanosoma brucei was studied in vitro at a single dose concentration of the Schiff bases. Cytotoxicity of the Schiff bases was assessed against human cervix adenocarcinoma (HeLa) cells. Results obtained show that the newly synthesized Schiff bases are very potent antimicrobial agents. Gram negative bacteria Klebsiella pneumonia and Escherichia coli were more affected on exposure to Compounds 3.c–f (MIC 7.8 µg/mL) which in turn exhibited more antibacterial potency than nalidixic acid reference drug that displayed MICs between 64 and 512 µg/mL against K. pneumonia and E. coli respectively. The test compounds also demonstrated high cytotoxic effect against Aspergillus flavus and Aspergillus carbonarius as they displayed MFC 7.8 and 15.6 µg/mL. Compound 3.c exhibited the highest fungicidal property from this series with MFC alternating between 7.8 and 15.6 µg/mL against the investigated strains. The malarial activity revealed Compounds 3.c and 3.d as the more potent antiplasmodial compounds in this group exhibiting 95% and 85% growth inhibition respectively. The IC50 of Compounds 3.c and 3.d were determined and found to be IC50 26.96 and 28.31 µg/mL respectively. Compound 3.a was the most cytotoxic agent against HeLa cells in this group with 48% cell growth inhibition. Compounds 3.c, 3.d and 3.f were biocompatible with HeLa cells and displayed low toxicity. With a very low cytotoxic effect against HeLa, compound 3.c stands out to be a very good antiparasitic agent and consideration to further evaluate the candidate drug against others cell lines is necessary.
Collapse
Affiliation(s)
- Thierry Youmbi Fonkui
- 1Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028 South Africa
| | - Monisola Itohan Ikhile
- 2Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028 South Africa
| | - Patrick Berka Njobeh
- 1Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028 South Africa
| | - Derek Tantoh Ndinteh
- 2Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028 South Africa
| |
Collapse
|
48
|
Validation of Cell-Based Assay for Quantification of Sesamol Uptake and Its Application for Measuring Target Exposure. Molecules 2019; 24:molecules24193522. [PMID: 31569436 PMCID: PMC6803937 DOI: 10.3390/molecules24193522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The intracellular drug concentration is needed for determination of target exposure at the site of action regarding its pharmacological action and adverse effects. Sesamol is an antiproliferative molecule from Sesamum indicum with promising health benefits. We present a method for measuring the intracellular sesamol content using reverse-phase HPLC with a UV diode array in melanoma cells. Sesamol was completely resolved by isocratic elution (4.152 ± 0.008 min) with methanol/water (70%, v/v) through a 30 °C, 5-µm C-18 column and detection at 297 nm. The present assay offers high sensitivity, fast elution, and an accurate and linear nominal concentration range of 10–1000 ng/mL (R2 = 0.9972). The % accuracy of the sesamol quality control sample was −3.36% to 1.50% (bias) with a 0.84% to 5.28% relative standard deviation (RSD), representing high repeatability and high reproducibility. The % recovery was 94.80% to 99.29%, which determined that there was no loss of sesamol content during the sample preparation. The validated method was applied to monitor intracellular sesamol concentration after treatment from 5 min to 24 h. The remaining intracellular sesamol content was correlated with its antiproliferative effect (R2 = 0.9483). In conclusion, this assay demonstrated low manipulation, quick elution, and high sensitivity, precision, accuracy, and recovery, and it was successfully applied to the quantification of sesamol in target cells.
Collapse
|
49
|
Chen M, Neul C, Schaeffeler E, Frisch F, Winter S, Schwab M, Koepsell H, Hu S, Laufer S, Baker SD, Sparreboom A, Nies AT. Sorafenib Activity and Disposition in Liver Cancer Does Not Depend on Organic Cation Transporter 1. Clin Pharmacol Ther 2019; 107:227-237. [PMID: 31350763 DOI: 10.1002/cpt.1588] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022]
Abstract
Systemic therapy of advanced hepatocellular carcinoma (HCC) with the small-molecule multikinase inhibitor sorafenib is associated with large interindividual pharmacokinetic variability and unpredictable side effects potentially requiring dose reduction or treatment termination. Organic cation transporter (OCT1; gene SLC22A1) has been proposed as a clinical biomarker of HCC response. Because proof is lacking that OCT1 transports sorafenib, we used a combinatorial approach to define how OCT1 contributes to sorafenib transport. Overexpression of functional OCT1 protein in Xenopus laevis oocytes and mammalian cell lines did not facilitate sorafenib transport. Otherwise, sorafenib considerably accumulated in liver cancer cell lines despite negligible OCT1 mRNA and protein levels. Sorafenib pharmacokinetics was independent of OCT1 genotype in mice. Finally, SLC22A1 mRNA expression was significantly reduced by DNA methylation in The Cancer Genome Atlas HCC cohort. These results clearly demonstrate OCT1-independent cellular sorafenib uptake indicating that OCT1 is apparently not a valid biomarker of sorafenib response in HCC.
Collapse
Affiliation(s)
- Mingqing Chen
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Franziska Frisch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Departments of Clinical Pharmacology, Pharmacy, and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Laufer
- Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, University of Tübingen, Tübingen, Germany
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Abstract
Bioavailability is an ancient but effective terminology by which the entire therapeutic efficacy of a drug directly or indirectly relays. Despite considering general plasma bioavailability, specific organ/tissue bioavailability will pave the path to broad spectrum dose calculation. Clear knowledge and calculative vision on bioavailability can improve the research and organ-targeting phenomenon. This article comprises a detailed introduction on bioavailability along with regulatory aspects, kinetic data and novel bioformulative approaches to achieve improved organ specific bioavailability, which may not be readily related to blood plasma bioavailability.
Collapse
|