1
|
Mounier A, Villotte S, Kacki S, Mora P, Espinasse L, Dempawo JZ, Gerin C, Meunier Q, Oslisly R. Population affinities in pre-colonial West Africa: The case of the burial cave Iroungou (Gabon, 14th-15th century CE). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24997. [PMID: 39073316 DOI: 10.1002/ajpa.24997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Our knowledge of the populations of sub-Saharan Africa in the periods before European colonization is limited. Few archeological sites containing human remains have been identified, and written sources for these periods are rare. The discovery in 2018 of the Iroungou sepulchral cave (Gabon), whose use predates the arrival of the Portuguese (14th-15th centuries CE), is an exceptional source of information: at least 28 individuals associated with numerous metal artifacts were found there. The anthropobiological remains were left in situ, but the eight best preserved crania were digitized. OBJECTIVES This study focuses on the population affinities of these crania, whose morphology was described using 237 landmarks. MATERIALS AND METHODS Geometric morphometric analyses were used to compare the eight Iroungou specimens with 154 individuals representing 12 well-defined African populations. After alignment (Generalized Procrustes Analysis), morphological affinity was assessed using Euclidean and Mahalanobis distances, and posterior probabilities of population membership (discriminant analysis). RESULTS Results indicate that the eight Iroungou crania have, on average, more affinity with Bayaka Pygmy, followed by Central African Bantu. Nevertheless, individually, the Iroungou specimens show an important morphological variation and the eight crania can be separated into different affinity groups: Bayaka and Central African Bantu, KhoeSan, and East-African Bantu. Finally, one individual presents strong affinity with Somalis. CONCLUSION This phenetic mapping of the Iroungou sample raises questions about the profile of the individuals deposited in the cave in a geographical area known for the Loango pre-colonial kingdom, which ruling class seemed to have had privileged relationships with the Pygmy populations.
Collapse
Affiliation(s)
- Aurélien Mounier
- Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Musée de l'Homme, Paris, France
- Turkana Basin Institute, Nairobi, Kenya
- CNRS, UAR 3129 - UMIFRE 11 3 Maison Française d'Oxford, Oxford, UK
| | - Sébastien Villotte
- UMR 7206 Éco-Anthropologie, CNRS, MNHN, Université Paris Cité, Musée de l'Homme, Paris, France
- Quaternary Environments & Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Unité de Recherches Art, Archéologie Patrimoine, Université de Liège, Liège, Belgium
| | - Sacha Kacki
- PACEA, UMR 5199, CNRS, Université de Bordeaux, Ministère de la Culture, Pessac, France
- Department of Archaeology, Durham University, Durham, UK
| | - Pascal Mora
- Archéovision, UMS 3657, Université Bordeaux Montaigne, Pessac, France
| | - Loic Espinasse
- Archéovision, UMS 3657, Université Bordeaux Montaigne, Pessac, France
| | | | | | | | - Richard Oslisly
- Cellule Scientifique, Agence Nationale des Parcs Nationaux, Libreville, Gabon
- UMR 208, IRD, MNHN, Paris Cedex 05, France
| |
Collapse
|
2
|
Hautavoine H, Arnaud J, Balzeau A, Mounier A. Quantifying hominin morphological diversity at the end of the middle Pleistocene: Implications for the origin of Homo sapiens. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24915. [PMID: 38444398 DOI: 10.1002/ajpa.24915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 01/28/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The Middle Pleistocene (MP) saw the emergence of new species of hominins: Homo sapiens in Africa, H. neanderthalensis, and possibly Denisovans in Eurasia, whose most recent common ancestor is thought to have lived in Africa around 600 ka ago. However, hominin remains from this period present a wide range of morphological variation making it difficult to securely determine their taxonomic attribution and their phylogenetic position within the Homo genus. This study proposes to reconsider the phenetic relationships between MP hominin fossils in order to clarify evolutionary trends and contacts between the populations they represent. MATERIALS AND METHODS We used a Geometric Morphometrics approach to quantify the morphological variation of the calvarium of controversial MP specimens from Africa and Eurasia by using a comparative sample that can be divided into 5 groups: H. ergaster, H. erectus, H. neanderthalensis, and H. sapiens, as well as individuals from current modern human populations. We performed a Generalized Procrustes Analysis, a Principal Component Analysis, and Multinomial Principal Component Logistic Regressions to determine the phenetic affinities of the controversial Middle Pleistocene specimens with the other groups. RESULTS MP African and Eurasian specimens represent several populations, some of which show strong affinities with H. neanderthalensis in Europe or H. sapiens in Africa, others presenting multiple affinities. DISCUSSION These MP populations might have contributed to the emergence of these two species in different proportions. This study proposes a new framework for the human evolutionary history during the MP.
Collapse
Affiliation(s)
- Hugo Hautavoine
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
| | - Julie Arnaud
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Dipartimento di Studi Umanistici, Università degli Studi di Ferrara, Ferrara, Italy
| | - Antoine Balzeau
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Département de Zoologie Africaine, Musée Royal de l'Afrique Centrale, Tervuren, Belgium
| | - Aurélien Mounier
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Turkana Basin Institute, Nairobi, Kenya
| |
Collapse
|
3
|
Decaup PH, Garot E, Vanderesse N, Couture C. How geographical origin and dietary habits interact with the shape of cortical mandibular sections? A geometric morphometrics study in an archaeological context. Arch Oral Biol 2024; 161:105938. [PMID: 38430644 DOI: 10.1016/j.archoralbio.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Mandibular shape is strongly influenced by biomechanics, particularly during dietary shifts that often occurred in past populations. The relationship is considered extremely complex as development of the mandible is a multifactorial process. Since cortical bone distribution is purportedly more biomechanically sensitive than external shape, comparison of its distribution in past populations can provide new input to understand this complex relationship. The present study examined the effects of geographical origin and dietary habits on the internal anatomy of the mandibular corpus and symphysis. DESIGN A morphometric analysis was conducted on 72 mandibles from different populations, sampled by their geographical origin and subsistence strategies. Procrustes ANOVAs were performed to test the impact of section-plane location, geographical origin, and dietary habits on the groups' shapes. RESULTS The specimens' geographical origin and dietary habits had a significant effect on the shapes of the sections (Generalized Goodall F-test, F = 3.2745, df = 6, 304: p < 0.001 and F = 3.7007, df = 4, 306: p < 0.001). CONCLUSION Geographical origin and dietary habits influenced the shape of the mandibular sections in our sample. These relationships become more complex when analysed in isolated sections. Indeed, this study revealed that symphysis sections could be predominantly influenced by individual variables, whereas intermediate sections of the corpus could be predominantly influenced by populational variables. Future studies could focus on specific sections to better identify the specific "rules of dependence" in each cross-section.
Collapse
Affiliation(s)
- Pierre-Hadrien Decaup
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France; Université de Bordeaux, UFR des sciences odontologiques, Bordeaux, France.
| | - Elsa Garot
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France; Université de Bordeaux, UFR des sciences odontologiques, Bordeaux, France
| | - Nicolas Vanderesse
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Christine Couture
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| |
Collapse
|
4
|
Xie M, Kaiser M, Gershtein Y, Schnyder D, Deviatiiarov R, Gazizova G, Shagimardanova E, Zikmund T, Kerckhofs G, Ivashkin E, Batkovskyte D, Newton PT, Andersson O, Fried K, Gusev O, Zeberg H, Kaiser J, Adameyko I, Chagin AS. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat Commun 2024; 15:2367. [PMID: 38531868 DOI: 10.1038/s41467-024-46030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Markéta Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Yaakov Gershtein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Schnyder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Evgeny Ivashkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dominyka Batkovskyte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oleg Gusev
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Van Ankum EM, Majcher KB, Dolovich AT, Johnston JD, Flegel KP, Boughner JC. Food texture and vitamin D influence mouse mandible form and molar roots. Anat Rec (Hoboken) 2024; 307:611-632. [PMID: 37702738 DOI: 10.1002/ar.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Industrialization influenced several facets of lifestyle, including softer nutrient-poor diets that contributed to vitamin D deficiency in post-industrzialized populations, with concomitantly increased dental problems. Here we simulated a post-industrialized diet in a mouse model to test the effects of diet texture and vitamin D level on mandible and third molar (M3) forms. Mice were raised on a soft diet with vitamin D (VitD) or without it (NoD), or on a hard diet with vitamin D. We hypothesized that a VitD/hard diet is optimal for normal mandible and tooth root form, as well as for timely M3 initiation. Subsets of adult NoD/soft and VitD/soft groups were bred to produce embryos that were micro-computed tomography (μCT) scanned to stage M3 development. M3 stage did not differ between embryos from mothers fed VitD and NoD diets, indicating that vitamin D does not affect timing of M3 onset. Sacrificed adult mice were μCT-scanned, their mandibles 3D-landmarked and M3 roots were measured. Principal component (PC) analysis described the largest proportion of mandible shape variance (PC1, 30.1%) related to diet texture, and nominal shape variance (PC2, 13.8%) related to vitamin D. Mice fed a soft diet had shorter, relatively narrower, and somewhat differently shaped mandibles that recapitulated findings in human populations. ANOVA and other multivariate tests found significantly wider M3 roots and larger root canals in mice fed a soft diet, with vitamin D having little effect. Altogether our experiments using a mouse model contribute new insights about how a post-industrial diet may influence human craniodental variation.
Collapse
Affiliation(s)
- Elsa M Van Ankum
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Kadin B Majcher
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Allan T Dolovich
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Kennedy P Flegel
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Jung H, Strait D, Rolian C, Baab KL. Evaluating modularity in the hominine skull related to feeding biomechanics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:39-59. [PMID: 37982349 DOI: 10.1002/ajpa.24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Modular architecture of traits in complex organisms can be important for morphological evolution at micro- and sometimes macroevolutionary scales as it may influence the tempo and direction of changes to groups of traits that are essential for particular functions, including food acquisition and processing. We tested several distinct hypotheses about craniofacial modularity in the hominine skull in relation to feeding biomechanics. MATERIALS AND METHODS First, we formulated hypothesized functional modules for craniofacial traits reflecting specific demands of feeding biomechanics (e.g., masseter leverage/gape or tooth crown mechanics) in Homo sapiens, Pan troglodytes, and Gorilla gorilla. Then, the pattern and strength of modular signal was quantified by the covariance ratio coefficient and compared across groups using covariance ratio effect size. Hierarchical clustering analysis was then conducted to examine whether a priori-defined functional modules correspond to empirically recovered clusters. RESULTS There was statistical support for most a priori-defined functional modules in the cranium and half of the functional modules in the mandible. Modularity signal was similar in the cranium and mandible, and across the three taxa. Despite a similar strength of modularity, the empirically recovered clusters do not map perfectly onto our priori functional modules, indicating that further work is needed to refine our hypothesized functional modules. CONCLUSION The results suggest that modular structure of traits in association with feeding biomechanics were mostly shared with humans and the two African apes. Thus, conserved patterns of functional modularity may have facilitated evolutionary changes to the skull during human evolution.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| | - Campbell Rolian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
7
|
Buck LT, Menéndez LP, De Groote I, Hassett BR, Matsumura H, Stock JT. Factors influencing cranial variation between prehistoric Japanese forager populations. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2023; 16:3. [PMID: 38098511 PMCID: PMC10716076 DOI: 10.1007/s12520-023-01901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Understanding the factors shaping human crania has long been a goal of biological anthropology, and climate, diet, and population history are three of the most well-established influences. The effects of these factors are, however, rarely compared within a single, variable population, limiting interpretations of their relative contribution to craniofacial form. Jomon prehistoric foragers inhabited Japan throughout its climatic and ecological range and developed correspondingly varied modes of subsistence. We have previously demonstrated that a large sample of Jomon crania showed no clear climatic pattern; here, we examine variation in Jomon crania in more detail to determine if dietary factors and/or population history influence human intrapopulation variation at this scale. Based on well-established archaeological differences, we divide the Jomon into dietary groups and use geometric morphometric methods to analyse relationships between cranial shape, diet, and population history. We find evidence for diet-related influences on the shape of the neurocranium, particularly in the temporalis region. These shape differences may be interpreted in the context of regional variation in the biomechanical requirements of different diets. More experimental biomechanical and nutritional evidence is needed, however, to move suggested links between dietary content and cranial shape from plausible to well-supported. In contrast with the global scale of human variation, where neutral processes are the strongest influence on cranial shape, we find no pattern of population history amongst individuals from these Jomon sites. The determinants of cranial morphology are complex and the effect of diet is likely mediated by factors including sex, social factors, and chronology. Our results underline the subtlety of the effects of dietary variation beyond the forager/farmer dichotomy on cranial morphology and contribute to our understanding of the complexity of selective pressures shaping human phenotypes on different geographic scales. Supplementary Information The online version contains supplementary material available at 10.1007/s12520-023-01901-6.
Collapse
Affiliation(s)
- L. T. Buck
- Research Centre for Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - L. P. Menéndez
- Department of Anthropology of the Americas, University of Bonn, Oxfordstrasse 15, 53111 Bonn, Germany
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - I. De Groote
- Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
| | - B. R. Hassett
- University of Central Lancashire, Fylde Rd, Preston, PR1 2HE Lancashire UK
- Natural History Museum London, Cromwell Road, London, SW7 5BD UK
| | - H. Matsumura
- School of Health Sciences, Sapporo Medical University, S1W17, Sapporo, 0608556 Japan
| | - J. T. Stock
- Department of Anthropology, Western University, London, ON N6A 3K7 Canada
| |
Collapse
|
8
|
Del Bove A, Menéndez L, Manzi G, Moggi-Cecchi J, Lorenzo C, Profico A. Mapping sexual dimorphism signal in the human cranium. Sci Rep 2023; 13:16847. [PMID: 37803023 PMCID: PMC10558540 DOI: 10.1038/s41598-023-43007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
The study of sexual dimorphism in human crania has important applications in the fields of human evolution and human osteology. Current, the identification of sex from cranial morphology relies on manual visual inspection of identifiable anatomical features, which can lead to bias due to user's expertise. We developed a landmark-based approach to automatically map the sexual dimorphism signal on the human cranium. We used a sex-known sample of 228 individuals from different geographical locations to identify which cranial regions are most sexually dimorphic taking into account shape, form and size. Our results, which align with standard protocols, show that glabellar and supraciliary regions, the mastoid process and the nasal region are the most sexually dimorphic traits (with an accuracy of 73%). The accuracy increased to 77% if they were considered together. Surprisingly the occipital external protuberance resulted to be not sexually dimorphic but mainly related to variations in size. Our approach here applied could be expanded to map other variable signals on skeletal morphology.
Collapse
Affiliation(s)
- Antonietta Del Bove
- Department of History and History of Arts, University Rovira i Virgli, Avinguda de Catalunya 35, 43002, Tarragona, Spain.
- Catalan Institute of Human Paleoecology and Social Evolution (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
| | - Lumila Menéndez
- Department of Anthropology of the Americas, University of Bonn, Oxfordstraße 15, 53111, Bonn, Germany
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
| | - Jacopo Moggi-Cecchi
- Department of Biology, University of Florence, Via del Proconsolo, 12, 50122, Florence, Italy
| | - Carlos Lorenzo
- Department of History and History of Arts, University Rovira i Virgli, Avinguda de Catalunya 35, 43002, Tarragona, Spain
- Catalan Institute of Human Paleoecology and Social Evolution (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain
| | - Antonio Profico
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126, Pisa, Italy
| |
Collapse
|
9
|
Godinho RM, Umbelino C, Valera AC, Carvalho AF, Bicho N, Cascalheira J, Gonçalves C, Smith P. Mandibular morphology and the Mesolithic-Neolithic transition in Westernmost Iberia. Sci Rep 2023; 13:16648. [PMID: 37789074 PMCID: PMC10547775 DOI: 10.1038/s41598-023-42846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Neolithic farming and animal husbandry were first developed in the Near East ~ 10,000 BCE and expanded westwards, reaching westernmost Iberia no later than 5500 BCE. It resulted in major social, cultural, economic and dietary changes. Yet, the impact of this change on human mandibular morphology in Iberia is yet to be assessed, which is regrettable because mandible form is impacted by population history and diet. In this study we used Mesolithic to Chalcolithic Iberian samples to examine the impact of this transition on mandibular morphology. We also compared these samples with a Southern Levantine Chalcolithic population to assess their relationship. Lastly, we assessed dental wear to determine if the morphological differences identified were related to the material properties of the diet. We found differences between samples in mandibular shape but not size, which we attribute to contrasting population histories between Mesolithic and later populations. Some differences in the severity of dental wear were also found between Mesolithic and later Iberian samples, and smaller between the Mesolithic Iberians and southern Levantines. Little relationship was found between wear magnitude and mandibular shape. Altogether, our results show that the Mesolithic-Neolithic Iberian transition resulted in a meaningful change in mandibular morphology, which was likely driven more by population history than by dietary change.
Collapse
Affiliation(s)
- Ricardo Miguel Godinho
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Cláudia Umbelino
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
- Department of Life Sciences, Research Centre for Anthropology and Health, University of Coimbra, Coimbra, Portugal
| | - António Carlos Valera
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
- Era Arqueologia, S.A., Calçada de Santa Catarina, 9C, 1495-705, Cruz Quebrada, Portugal
| | - António Faustino Carvalho
- Centro de Estudos de Arqueologia, Artes e Ciências do Património (CEAACP), F.C.H.S., University of Algarve, Campus de Gambelas, 8000-117, Faro, Portugal
| | - Nuno Bicho
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - João Cascalheira
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Célia Gonçalves
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Faculdade das Ciências Humanas e Sociais, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Patricia Smith
- Faculties of Medicine and Dental Medicine and National Natural History Collections, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Nosetti L, Zaffanello M, De Bernardi di Valserra F, Simoncini D, Beretta G, Guacci P, Piacentini G, Agosti M. Exploring the Intricate Links between Adenotonsillar Hypertrophy, Mouth Breathing, and Craniofacial Development in Children with Sleep-Disordered Breathing: Unraveling the Vicious Cycle. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1426. [PMID: 37628425 PMCID: PMC10453215 DOI: 10.3390/children10081426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Adenotonsillar hypertrophy has been well-acknowledged as the primary instigator of sleep-disordered breathing in the pediatric population. This condition spans a spectrum, from typical age-related growth that the immune system influences to persistent pathological hypertrophy. Reduction in air spaces, metabolic changes, neurobehavioral alterations, and chronic inflammation characterizes the latter form. As the go-to treatment, adenotonsillectomy has proven effective. However, it is not a guarantee for all patients, leaving us without reliable predictors of treatment success. Evidence suggests a connection between adenotonsillar hypertrophy and specific oral breathing patterns resulting from craniofacial development. This finding implies an intricate interdependence between the two, hinting at a self-sustaining vicious cycle that persists without proper intervention. The theories regarding the relationship between craniofacial conformation and sleep-disordered breathing have given rise to intriguing perspectives. In particular, the "gracilization theory" and the "gravitational hypothesis" have provided fascinating insights into the complex interaction between craniofacial conformation and SDB. Further investigation is crucial to unraveling the underlying pathophysiological mechanisms behind this relationship. It is also vital to explore the risk factors linked to adenotonsillectomy failure, study the long-term effects of adenotonsillar hypertrophy on craniofacial growth, and devise innovative diagnostic techniques to detect upper airway compromise early. Moreover, to assess their efficacy, we must delve into novel therapeutic approaches for cases that do not respond to traditional treatment, including positional therapy and orofacial myofunctional therapy. Though complex and unpredictable, these challenges promise to enhance our understanding and treatment of adenotonsillar hypertrophy and its related complications in children. By taking on this task, we can pave the way for more effective and targeted interventions, ultimately improving affected individuals' well-being and quality of life.
Collapse
Affiliation(s)
- Luana Nosetti
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; (L.N.); (D.S.); (G.B.); (P.G.); (G.P.)
| | - Marco Zaffanello
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy
| | - Francesca De Bernardi di Valserra
- Division of Otorhinolaryngology, Department of Biotechnologies and Life Sciences, University of Insubria, Ospedale di Circolo e Fondazione Macchi, 21100 Varese, Italy;
| | - Daniela Simoncini
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; (L.N.); (D.S.); (G.B.); (P.G.); (G.P.)
| | - Giulio Beretta
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; (L.N.); (D.S.); (G.B.); (P.G.); (G.P.)
| | - Pietro Guacci
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; (L.N.); (D.S.); (G.B.); (P.G.); (G.P.)
| | - Giorgio Piacentini
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; (L.N.); (D.S.); (G.B.); (P.G.); (G.P.)
| | - Massimo Agosti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
11
|
Rathmann H, Perretti S, Porcu V, Hanihara T, Scott GR, Irish JD, Reyes-Centeno H, Ghirotto S, Harvati K. Inferring human neutral genetic variation from craniodental phenotypes. PNAS NEXUS 2023; 2:pgad217. [PMID: 37457893 PMCID: PMC10338903 DOI: 10.1093/pnasnexus/pgad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
There is a growing consensus that global patterns of modern human cranial and dental variation are shaped largely by neutral evolutionary processes, suggesting that craniodental features can be used as reliable proxies for inferring population structure and history in bioarchaeological, forensic, and paleoanthropological contexts. However, there is disagreement on whether certain types of data preserve a neutral signature to a greater degree than others. Here, we address this unresolved question and systematically test the relative neutrality of four standard metric and nonmetric craniodental data types employing an extensive computational genotype-phenotype comparison across modern populations from around the world. Our computation draws on the largest existing data sets currently available, while accounting for geographically structured environmental variation, population sampling uncertainty, disparate numbers of phenotypic variables, and stochastic variation inherent to a neutral model of evolution. Our results reveal that the four data types differentially capture neutral genomic variation, with highest signals preserved in dental nonmetric and cranial metric data, followed by cranial nonmetric and dental metric data. Importantly, we demonstrate that combining all four data types together maximizes the neutral genetic signal compared with using them separately, even with a limited number of phenotypic variables. We hypothesize that this reflects a lower level of genetic integration through pleiotropy between, compared to within, the four data types, effectively forming four different modules associated with relatively independent sets of loci. Therefore, we recommend that future craniodental investigations adopt holistic combined data approaches, allowing for more robust inferences about underlying neutral genetic variation.
Collapse
Affiliation(s)
| | - Silvia Perretti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Valentina Porcu
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Tsunehiko Hanihara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - G Richard Scott
- Department of Anthropology, University of Nevada, Reno, NV 89557, USA
| | - Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg WITS 2050, South Africa
| | - Hugo Reyes-Centeno
- Department of Anthropology, University of Kentucky, Lexington, KY 40506, USA
- William S. Webb Museum of Anthropology, University of Kentucky, Lexington, KY 40504, USA
- DFG Center for Advanced Studies ‘Words, Bones, Genes, Tools’, University of Tübingen, Tübingen 72070, Germany
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | | |
Collapse
|
12
|
Yim AD, Cowgill L, Katz DC, Roseman CC. Variation in ontogenetic trajectories of limb dimensions in humans is attributable to both climatic effects and neutral evolution. J Hum Evol 2023; 179:103369. [PMID: 37104893 DOI: 10.1016/j.jhevol.2023.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Previous studies showed that there is variation in ontogenetic trajectories of human limb dimensions and proportions. However, little is known about the evolutionary significance of this variation. This study used a global sample of modern human immature long bone measurements and a multivariate linear mixed-effects model to study 1) whether the variation in ontogenetic trajectories of limb dimensions is consistent with ecogeographic predictions and 2) the effects of different evolutionary forces on the variation in ontogenetic trajectories. We found that genetic relatedness arising from neutral (nonselective) evolution, allometric variation associated with the change in size, and directional effects from climate all contributed to the variation in ontogenetic trajectories of all major long bone dimensions in modern humans. After accounting for the effects of neutral evolution and holding other effects considered in the current study constant, extreme temperatures have weak, positive associations with diaphyseal length and breadth measurements, while mean temperature shows negative associations with diaphyseal dimensions. The association with extreme temperatures fits the expectations of ecogeographic rules, while the association with mean temperature may explain the observed among-group variation in intralimb indices. The association with climate is present throughout ontogeny, suggesting an explanation of adaptation by natural selection as the most likely cause. On the other hand, genetic relatedness among groups, as structured by neutral evolutionary factors, is an important consideration when interpreting skeletal morphology, even for nonadult individuals.
Collapse
Affiliation(s)
- An-Di Yim
- Department of Health and Exercise Sciences, Truman State University, 100 E Normal Ave, Kirksville, MO, USA; Department of Biology, Truman State University, 100 E Normal Ave, Kirksville, MO, USA; Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Ave, Urbana, IL, USA.
| | - Libby Cowgill
- Department of Anthropology, University of Missouri, 112 Swallow Hall, Columbia, MO, USA
| | - David C Katz
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Drive NW, Calgary, Canada
| | - Charles C Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 S Goodwin Ave, Urbana, IL, USA
| |
Collapse
|
13
|
Nowaczewska W, Górka K, Cieślik A. Assessment of the Relationship between the Total Occlusal Area of the Human Permanent Upper First and Second Molars and the Robusticity of the Facial Skeleton in Sex-Different Cranial Samples of Homo Sapiens: A Preliminary Study. BIOLOGY 2023; 12:biology12040566. [PMID: 37106765 PMCID: PMC10136266 DOI: 10.3390/biology12040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
The aim of this study was to establish whether there is a significant relationship between the total occlusal area (TOCA) of two types of permanent upper molars (first-M1 and second-M2) and facial robusticity, as well as which of the examined facial regions indicate a relationship concerning the grade of their massiveness with the TOCA of analyzed molars in different sex adult Homo sapiens cranial samples. To obtain the values of the TOCA of the molars (n = 145), a morphometric method was performed based on the calibrated digital images of their occlusal surface using ImageJ software. The grades of the massiveness of six facial regions were assessed using qualitative scales of their expression, and an index of general facial robusticity was calculated. Two types of analyses were performed concerning standardized and non-standardized traits to the facial size, including Spearman's/or Pearson's correlations and partial rank correlations. The obtained results indicated the presence of a positive relationship between the relative TOCA of M2s and the relative general facial robusticity, as well as between the TOCA of both types of molars and the massiveness of trigone region of the facial skeleton in male crania. However, most of the obtained results were not consistent with the assumptions of the "localized masticatory stress hypothesis".
Collapse
Affiliation(s)
- Wioletta Nowaczewska
- Department of Human Biology, University of Wrocław, S. Przybyszewskiego 63, 51-148 Wroclaw, Poland
| | - Katarzyna Górka
- Department of Anthropology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Podwale 75, 50-449 Wroclaw, Poland
| | - Agata Cieślik
- Department of Anthropology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Podwale 75, 50-449 Wroclaw, Poland
| |
Collapse
|
14
|
Liang Y, Song C, Li J, Li T, Zhang C, Zou Y. Morphometric analysis of the size-adjusted linear dimensions of the skull landmarks revealed craniofacial dysmorphology in Mid1-cKO mice. BMC Genomics 2023; 24:68. [PMID: 36759768 PMCID: PMC9912615 DOI: 10.1186/s12864-023-09162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The early craniofacial development is a highly coordinated process involving neural crest cell migration, proliferation, epithelial apoptosis, and epithelial-mesenchymal transition (EMT). Both genetic defects and environmental factors can affect these processes and result in orofacial clefts. Mutations in MID1 gene cause X-linked Opitz Syndrome (OS), which is a congenital malformation characterized by craniofacial defects including cleft lip/palate (CLP). Previous studies demonstrated impaired neurological structure and function in Mid1 knockout mice, while no CLP was observed. However, given the highly variable severities of the facial manifestations observed in OS patients within the same family carrying identical genetic defects, subtle craniofacial malformations in Mid1 knockout mice could be overlooked in these studies. Therefore, we propose that a detailed morphometric analysis should be necessary to reveal mild craniofacial dysmorphologies that reflect the similar developmental defects seen in OS patients. RESULTS In this research, morphometric study of the P0 male Mid1-cKO mice were performed using Procrustes superimposition as well as EMDA analysis of the size-adjusted three-dimensional coordinates of 105 skull landmarks, which were collected on the bone surface reconstructed using microcomputed tomographic images. Our results revealed the craniofacial deformation such as the increased dimension of the frontal and nasal bone in Mid1-cKO mice, in line with the most prominent facial features such as hypertelorism, prominent forehead, broad and/or high nasal bridge seen in OS patients. CONCLUSION While been extensively used in evolutionary biology and anthropology in the last decades, geometric morphometric analysis was much less used in developmental biology. Given the high interspecies variances in facial anatomy, the work presented in this research suggested the advantages of morphometric analysis in characterizing animal models of craniofacial developmental defects to reveal phenotypic variations and the underlining pathogenesis.
Collapse
Affiliation(s)
- Yaohui Liang
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jieli Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ting Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chunlei Zhang
- grid.258164.c0000 0004 1790 3548First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China. .,Department of Biology, School of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Ferreira-Cardoso S, Claude J, Goswami A, Delsuc F, Hautier L. Flexible conservatism in the skull modularity of convergently evolved myrmecophagous placental mammals. BMC Ecol Evol 2022; 22:87. [PMID: 35773630 PMCID: PMC9248141 DOI: 10.1186/s12862-022-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/06/2022] [Indexed: 12/05/2022] Open
Abstract
Background The skull of placental mammals constitutes one of the best studied systems for phenotypic modularity. Several studies have found strong evidence for the conserved presence of two- and six-module architectures, while the strength of trait correlations (integration) has been associated with major developmental processes such as somatic growth, muscle-bone interactions, and tooth eruption. Among placentals, ant- and termite-eating (myrmecophagy) represents an exemplar case of dietary convergence, accompanied by the selection of several cranial morphofunctional traits such as rostrum elongation, tooth loss, and mastication loss. Despite such drastic functional modifications, the covariance patterns of the skull of convergently evolved myrmecophagous placentals are yet to be studied in order to assess the potential consequences of this dietary shift on cranial modularity. Results Here, we performed a landmark-based morphometric analysis of cranial covariance patterns in 13 species of myrmecophagous placentals. Our analyses reveal that most myrmecophagous species present skulls divided into six to seven modules (depending on the confirmatory method used), with architectures similar to those of non-myrmecophagous placentals (therian six modules). Within-module integration is also similar to what was previously described for other placentals, suggesting that most covariance-generating processes are conserved across the clade. Nevertheless, we show that extreme rostrum elongation and tooth loss in myrmecophagid anteaters have resulted in a shift in intermodule correlations in the proximal region of the rostrum. Namely, the naso-frontal and maxillo-palatine regions are strongly correlated with the oro-nasal module, suggesting an integrated rostrum conserved from pre-natal developmental processes. In contrast, the similarly toothless pangolins show a weaker correlation between the anterior rostral modules, resembling the pattern of toothed placentals. Conclusions These results reveal that despite some integration shifts related to extreme functional and morphological features of myrmecophagous skulls, cranial modular architectures have conserved the typical mammalian scheme. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02030-9.
Collapse
|
16
|
Nguyen A, Caplin J, Avenetti D, Durfee S, Kusnoto B, Sciote JJ, Nicholas CL. A longitudinal assessment of sex differences in the growth of the mandibular retromolar space. Arch Oral Biol 2022; 143:105547. [PMID: 36162340 DOI: 10.1016/j.archoralbio.2022.105547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess longitudinal variation in patterns of retromolar space growth, with regard to sex and cervical vertebrae maturation. DESIGN We utilized serial lateral cephalograms from three craniofacial growth studies (Denver, Iowa, Oregon), measuring retromolar space and cervical vertebrae maturation in 99 subjects (56% male) from 8 to 18 years of age for each subject. Repeated measures ANOVA and a linear mixed effects model were used to assess retromolar space growth through time. RESULTS Our analyses revealed an average increase in retromolar space of 8.73 mm from 8 to 18 years. While t-tests failed to find differences in retromolar space growth between males and females at the measured age points, repeated measures ANOVA and linear mixed effects models revealed modest differences in growth trends between sexes, with females having more growth earlier but a younger age of deceleration of growth (between 12 and 14 years of age). CONCLUSIONS Our results confirm large increases in retromolar space through growth, reaching an average of 1.38 mm/year around puberty. Importantly, we add to the conversation regarding sex differences, showing differences in timing of growth. This highlights the importance of using longitudinal data and analytical approaches to address questions of this nature.
Collapse
Affiliation(s)
- Annie Nguyen
- Craniofacial Orthodontics, Seattle Children's Hospital, Seattle, WA 98105, USA.
| | - Jennifer Caplin
- Department of Preventive, Pediatric, and Community Dentistry, University of New England, Portland, ME, USA.
| | - David Avenetti
- Department of Pediatric Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - Sharon Durfee
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - Budi Kusnoto
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - James J Sciote
- Department of Orthodontics, Temple University, Philadelphia, PA 19122, USA.
| | - Christina L Nicholas
- Department of Orthodontics, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Anthropology, University of Illinois Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Naqvi S, Hoskens H, Wilke F, Weinberg SM, Shaffer JR, Walsh S, Shriver MD, Wysocka J, Claes P. Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial Morphology. Annu Rev Genomics Hum Genet 2022; 23:383-412. [PMID: 35483406 PMCID: PMC9482780 DOI: 10.1146/annurev-genom-120121-102607] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Hanne Hoskens
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Franziska Wilke
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Walsh
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Peter Claes
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Matsumura H, Tanijiri T, Kouchi M, Hanihara T, Friess M, Moiseyev V, Stringer C, Miyahara K. Global patterns of the cranial form of modern human populations described by analysis of a 3D surface homologous model. Sci Rep 2022; 12:13826. [PMID: 35970916 PMCID: PMC9378707 DOI: 10.1038/s41598-022-15883-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
This study assessed the regional diversity of the human cranial form by using geometric homologous models based on scanned data from 148 ethnic groups worldwide. This method adopted a template-fitting technique for a nonrigid transformation via the iterative closest point algorithm to generate the homologous meshes. Through the application of principal component analysis to 342 sampled homologous models, the largest variation was detected in overall size, and small South Asian crania were clearly verified. The next greatest diversity was found in the length/breadth proportion of the neurocranium, which showed the contrast between the elongated crania of Africans and the globular crania of Northeast Asians. Notably, this component was slightly correlated with the facial profile. Well-known facial features, such as the forward projection of the cheek among Northeast Asians and compaction of the European maxilla, were reconfirmed. These facial variations were highly correlated with the calvarial outline, particularly the degree of frontal and occipital inclines. An allometric pattern was detected in facial proportions in relation to overall cranial size; in larger crania, the facial profiles tend to be longer and narrower, as demonstrated among many American natives and Northeast Asians. Although our study did not include data on environmental variables that are likely to affect cranial morphology, such as climate or dietary conditions, the large datasets of homologous cranial models will be usefully available for seeking various attributions to phenotypic skeletal characteristics.
Collapse
Affiliation(s)
- Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | | | - Makiko Kouchi
- National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | | | - Martin Friess
- Département Homme et Environnement, Musée de l'Homme, 75116, Paris, France
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St Petersburg, 199034, Russia
| | - Chris Stringer
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Kengo Miyahara
- Kyoto City Archeological Research Institute, Kyoto, 602-8435, Japan
| |
Collapse
|
19
|
Zollikofer CPE, Bienvenu T, Beyene Y, Suwa G, Asfaw B, White TD, Ponce de León MS. Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia. Proc Natl Acad Sci U S A 2022; 119:e2123553119. [PMID: 35914174 PMCID: PMC9371682 DOI: 10.1073/pnas.2123553119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.
Collapse
Affiliation(s)
| | - Thibault Bienvenu
- Department of Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Yonas Beyene
- French Center for Ethiopian Studies (CFEE), Addis Ababa, Ethiopia
| | - Gen Suwa
- University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Tim D. White
- Human Evolution Research Center, The University of California at Berkeley, Berkeley, CA 94720
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos 09002, Spain
- Department of Integrative Biology, The University of California at Berkeley, Berkeley, CA 94720
| | | |
Collapse
|
20
|
Buikstra JE, DeWitte SN, Agarwal SC, Baker BJ, Bartelink EJ, Berger E, Blevins KE, Bolhofner K, Boutin AT, Brickley MB, Buzon MR, de la Cova C, Goldstein L, Gowland R, Grauer AL, Gregoricka LA, Halcrow SE, Hall SA, Hillson S, Kakaliouras AM, Klaus HD, Knudson KJ, Knüsel CJ, Larsen CS, Martin DL, Milner GR, Novak M, Nystrom KC, Pacheco-Forés SI, Prowse TL, Robbins Schug G, Roberts CA, Rothwell JE, Santos AL, Stojanowski C, Stone AC, Stull KE, Temple DH, Torres CM, Toyne JM, Tung TA, Ullinger J, Wiltschke-Schrotta K, Zakrzewski SR. Twenty-first century bioarchaeology: Taking stock and moving forward. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:54-114. [PMID: 36790761 DOI: 10.1002/ajpa.24494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
This article presents outcomes from a Workshop entitled "Bioarchaeology: Taking Stock and Moving Forward," which was held at Arizona State University (ASU) on March 6-8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions.
Collapse
Affiliation(s)
- Jane E Buikstra
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| | - Brenda J Baker
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Eric J Bartelink
- Department of Anthropology, California State University, Chico, California, USA
| | - Elizabeth Berger
- Department of Anthropology, University of California, Riverside, California, USA
| | | | - Katelyn Bolhofner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Alexis T Boutin
- Department of Anthropology, Sonoma State University, Rohnert Park, California, USA
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Michele R Buzon
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Carlina de la Cova
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Lynne Goldstein
- Department of Anthropology, Michigan State University, East Lansing, Michigan, USA
| | | | - Anne L Grauer
- Department of Anthropology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lesley A Gregoricka
- Department of Sociology, Anthropology, & Social Work, University of South Alabama, Mobile, Alabama, USA
| | - Siân E Halcrow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah A Hall
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| | - Ann M Kakaliouras
- Department of Anthropology, Whittier College, Whittier, California, USA
| | - Haagen D Klaus
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Kelly J Knudson
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher J Knüsel
- Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, University of Bordeaux, CNRS, MC, PACEA, UMR5199, F-33615, Pessac, France
| | | | - Debra L Martin
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - George R Milner
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mario Novak
- Center for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kenneth C Nystrom
- Department of Anthropology, State University of New York at New Paltz, New Paltz, New York, USA
| | | | - Tracy L Prowse
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Gwen Robbins Schug
- Environmental Health Program, University of North Carolina, Greensboro, North Carolina, USA
| | | | - Jessica E Rothwell
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Ana Luisa Santos
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christopher Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kyra E Stull
- Department of Anthropology, University of Nevada, Reno, Reno, Nevada, USA
| | - Daniel H Temple
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Christina M Torres
- Department of Anthropology and Heritage Studies, University of California, Merced, USA, and Instituto de Arqueología y Antropología, Universidad Católica del Norte, Antofagasta, Chile
| | - J Marla Toyne
- Department of Anthropology, University of Central Florida, Orlando, Florida, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaime Ullinger
- Bioanthropology Research Institute, Quinnipiac University, Hamden, Connecticut, USA
| | | | | |
Collapse
|
21
|
Godinho RM, Gonçalves C. Testing the reliability of CT scan-based dental wear magnitude scoring. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:521-527. [PMID: 34297351 DOI: 10.1002/ajpa.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Digital models are now frequently used in biological anthropology (bioanthropology) research. Despite several studies validating this type of research, none has examined if the assessment of dental wear magnitude based on Computerized Tomography (CT) scans is reliable. Thus, this study aims to fill this gap and assess if dental wear magnitude scoring based on CT scans provides results consistent with scoring based on direct observation of the physical specimens. MATERIALS AND METHODS Dental wear magnitude from 412 teeth of 35 mandibles originating from the Portuguese Muge and Sado Mesolithic shell-middens was scored. The mandibles were also CT scanned and visualized using 3D Slicer. CT scan-based scoring of dental wear magnitude was then undertaken. Two scoring rounds were undertaken for each observation method (totaling four scoring rounds) and an intra-observer error test was performed. The averaged results of the two observation methods were compared via boxplots with paired cases. RESULTS Intra-observer error was negligible and non-significant. Scoring results are comparable between the two observation methods. Notwithstanding, some differences were found, in which CT scan assessment generally overestimates dental wear when compared to direct observation. DISCUSSION Our results generally validate the use of CT scans in studies of dental wear magnitude. Notwithstanding several caveats relating to CT scanning and visualization limitations should be considered to avoid over or under-estimation of dental wear.
Collapse
Affiliation(s)
- Ricardo Miguel Godinho
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), Faculdade das Ciências Humanas e Sociais, Universidade do Algarve, Campus Gambelas, Faro, Portugal
| | - Célia Gonçalves
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), Faculdade das Ciências Humanas e Sociais, Universidade do Algarve, Campus Gambelas, Faro, Portugal
| |
Collapse
|
22
|
Bromage TG. The oronasopharyngeal space and renewed formalization of the functional matrix hypothesis. Cranio 2021; 39:275-277. [PMID: 34264168 DOI: 10.1080/08869634.2021.1934779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Timothy G Bromage
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
23
|
Gkantidis N, Tacchi M, Oeschger ES, Halazonetis D, Kanavakis G. Third Molar Agenesis Is Associated with Facial Size. BIOLOGY 2021; 10:biology10070650. [PMID: 34356505 PMCID: PMC8301315 DOI: 10.3390/biology10070650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Missing third molars is a common occurrence in modern humans with a prevalence of approximately 20% in the general population. The absence of those teeth, however, is not found in other human predecessors. Therefore, there is speculation whether the congenital absence of third molars is part of an evolutionary mechanism that leads to smaller jaws, smaller and fewer teeth, or if their absence is associated with more local developmental factors. In this study, we assessed the size of the cranial base, the maxilla, the mandible and the entire craniofacial complex in individuals missing one or more third molars and compared them with a group with no missing teeth. We showed that in cases with one or more missing third molars, there is a significant decrease in the size of the maxilla, the mandible as well as the entire facial configuration. Additionally, the more missing third molars, the smaller the jaws and the face were. These findings suggest that isolated third molar agenesis is part of a developmental mechanism related to craniofacial size reduction. Whether this mechanism is part of an evolutionary process in humans remains to be seen. Abstract Individuals with congenitally missing permanent teeth, other than third molars, present smaller craniofacial configurations compared to normal controls. However, it is not known if agenesis of third molars is part of the same mechanism. Therefore, this study assessed individuals with and without isolated third molar agenesis and tested the relation of this condition to the size of their facial configurations, using geometric morphometric methods. We show that the absence of one or more third molars is associated with a smaller maxilla, smaller mandible and a smaller overall facial configuration. The effect was larger as the number of missing third molars increased. For example, the size of the mandibular centroids in five 16-year-old females with no, one, two, three or four missing third molars showed a size reduction of approximately 2.5 mm per missing third molar. In addition, in cases with third molar agenesis in one jaw only, the effect was also evident on the opposite jaw. Our findings suggest that isolated third molar agenesis is part of a developmental mechanism resulting also in craniofacial size reduction. This might be the effect of an evolutionary process observed in humans, leading to fewer and smaller teeth, as well as smaller facial structures.
Collapse
Affiliation(s)
- Nikolaos Gkantidis
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (E.S.O.)
- Correspondence: (N.G.); (G.K.)
| | - Manuel Tacchi
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (E.S.O.)
| | - Elias S. Oeschger
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (E.S.O.)
| | - Demetrios Halazonetis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, GR-11527 Athens, Greece;
| | - Georgios Kanavakis
- Department of Pediatric Oral Health and Orthodontics, UZB—University School of Dental Medicine, University of Basel, CH-4058 Basel, Switzerland
- Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Correspondence: (N.G.); (G.K.)
| |
Collapse
|
24
|
Bergmann I, Hublin JJ, Gunz P, Freidline SE. How did modern morphology evolve in the human mandible? The relationship between static adult allometry and mandibular variability in Homo sapiens. J Hum Evol 2021; 157:103026. [PMID: 34214909 DOI: 10.1016/j.jhevol.2021.103026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Key to understanding human origins are early Homo sapiens fossils from Jebel Irhoud, as well as from the early Late Pleistocene sites Tabun, Border Cave, Klasies River Mouth, Skhul, and Qafzeh. While their upper facial shape falls within the recent human range of variation, their mandibles display a mosaic morphology. Here we quantify how mandibular shape covaries with mandible size and how static allometry differs between Neanderthals, early H. sapiens, and modern humans from the Upper Paleolithic/Later Stone Age and Holocene (= later H. sapiens). We use 3D (semi)landmark geometric morphometric methods to visualize allometric trends and to explore how gracilization affects the expression of diagnostic shape features. Early H. sapiens were highly variable in mandible size, exhibiting a unique allometric trajectory that explains aspects of their 'archaic' appearance. At the same time, early H. sapiens share a suite of diagnostic features with later H. sapiens that are not related to mandibular sizes, such as an incipient chin and an anteroposteriorly decreasing corpus height. The mandibular morphology, often referred to as 'modern', can partly be explained by gracilization owing to size reduction. Despite distinct static allometric shape changes in each group studied, bicondylar and bigonial breadth represent important structural constraints for the expression of shape features in most Middle to Late Pleistocene hominin mandibles.
Collapse
Affiliation(s)
- Inga Bergmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Sarah E Freidline
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Lacy SA. Evidence of dental agenesis in late pleistocene Homo. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 32:103-110. [PMID: 33524842 DOI: 10.1016/j.ijpp.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Differential diagnosis and tabulation of cases of dental agenesis in Middle and Upper Paleolithic Western Eurasian humans to synthesize this data and to test previous hypotheses about when recent human patterns of third molar agenesis were established. MATERIALS 139 Late Pleistocene human remains and 149 individuals from three Epi-Paleolithic/ Holocene non-agricultural comparative collections. METHODS All remains were visually and radiographically recorded by the author. RESULTS In addition to establishing that third molar agenesis was common during the Late Upper Paleolithic (22,500-10,000 years BP), this study suggests a pattern of increasing prevalence through time. CONCLUSIONS An increase in the prevalence of third molar agenesis in the Late Upper Paleolithic could indicate selection for dental size reduction and orthognathy, but also bio-cultural changes from more intensive food preparation techniques. SIGNIFICANCE Third molar agenesis, a well-known developmental defect, is often reported for recent human skeletal collections, but the prevalence of the condition for Pleistocene hominins had not been previously quantified in order to consider patterns through time. Hypotheses posited for the high prevalence of third molar agenesis, or hypodontia in general, in some recent human groups require an understanding of the prevalence of these traits in the past. LIMITATIONS Paleolithic skeletal remains are incomplete, so these values are under-estimations. Individuals are also separated diachronically and geographically and should not be assumed to represent a single population sample. SUGGESTIONS FOR FURTHER RESEARCH Hypotheses on some of the potential selective forces acting on dental size reduction and subsequent agenesis could be tested in recent humans.
Collapse
Affiliation(s)
- Sarah A Lacy
- California State University Dominguez Hills, Department of Anthropology, 1000 E Victoria St, Carson, CA, 90747, United States.
| |
Collapse
|
26
|
Abstract
Homo erectus is the first hominin species with a truly cosmopolitan distribution and resembles recent humans in its broad spatial distribution. The microevolutionary events associated with dispersal and local adaptation may have produced similar population structure in both species. Understanding the evolutionary population dynamics of H. erectus has larger implications for the emergence of later Homo lineages in the Middle Pleistocene. Quantitative genetics models provide a means of interrogating aspects of long-standing H. erectus population history narratives. For the current study, cranial fossils were sorted into six major palaeodemes from sites across Africa and Asia spanning 1.8-0.1 Ma. Three-dimensional shape data from the occipital and frontal bones were used to compare intraspecific variation and test evolutionary hypotheses. Results indicate that H. erectus had higher individual and group variation than Homo sapiens, probably reflecting different levels of genetic diversity and population history in these spatially disperse species. This study also revealed distinct evolutionary histories for frontal and occipital bone shape in H. erectus, with a larger role for natural selection in the former. One scenario consistent with these findings is climate-driven facial adaptation in H. erectus, which is reflected in the frontal bone through integration with the orbits.
Collapse
Affiliation(s)
- Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
27
|
Mounier A, Heuzé Y, Samsel M, Vasilyev S, Klaric L, Villotte S. Gravettian cranial morphology and human group affinities during the European Upper Palaeolithic. Sci Rep 2020; 10:21931. [PMID: 33318530 PMCID: PMC7736346 DOI: 10.1038/s41598-020-78841-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/23/2020] [Indexed: 11/09/2022] Open
Abstract
Archaeologically defined Upper Palaeolithic (UP, 45,000-10,000 years ago) "cultures" are often used as proxies to designate fossil populations. While recent genomic studies have partly clarified the complex relationship between European UP "cultures" and past population dynamics, they leave open numerous questions regarding the biological characterization of these human groups, especially regarding the Mid-UP period (MUP, 33,000-24,000 years ago), which encompasses a pan-European cultural mosaic (Gravettian) with several regional facies. Here, we analyse a large database of well-dated and well-preserved UP crania, including MUP specimens from South-West France (SWF) and Moravia, using 3D geometric morphometrics to test for human group affinities. Our results show that the Gravettian makers from these two regions form a remarkably phenetically homogeneous sample which is different from, and more homogeneous than, the Late UP sample. Those results are congruent with genomic studies indicating a genetic continuity within the Gravettian manufacturers and a discontinuity marked by the Last Glacial Maximum (LGM). Moreover, our study expands the geographical range of the MUP phenetic continuity to SWF, for which aDNA data are scarce, and clarifies the post-LGM European population structure in SWF, with a possible dual ancestry stemming from different LGM refugia.
Collapse
Affiliation(s)
- Aurélien Mounier
- Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Musée de l'Homme, 17 place du Trocadéro et du 11 novembre, 75016, Paris, France. .,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge, CB2 1QH, United Kingdom.
| | - Yann Heuzé
- UMR 5199 PACEA, CNRS-Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, Pessac, 33615, France
| | - Mathilde Samsel
- UMR 5199 PACEA, CNRS-Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, Pessac, 33615, France
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology RAS, Leninsky pr. 32a, Moscow, Russian Federation, 119991
| | - Laurent Klaric
- CNRS, UMR-7055 PréTech, MSH Mondes, 21 allée de l'Université, 92023, Nanterre, France
| | - Sébastien Villotte
- UMR 5199 PACEA, CNRS-Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, Pessac, 33615, France.
| |
Collapse
|
28
|
Kahn S, Ehrlich P, Feldman M, Sapolsky R, Wong S. The Jaw Epidemic: Recognition, Origins, Cures, and Prevention. Bioscience 2020; 70:759-771. [PMID: 32973408 PMCID: PMC7498344 DOI: 10.1093/biosci/biaa073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Contemporary humans are living very different lives from those of their ancestors, and some of the changes have had serious consequences for health. Multiple chronic "diseases of civilization," such as cardiovascular problems, cancers, ADHD, and dementias are prevalent, increasing morbidity rates. Stress, including the disruption of traditional sleep patterns by modern lifestyles, plays a prominent role in the etiology of these diseases, including obstructive sleep apnea. Surprisingly, jaw shrinkage since the agricultural revolution, leading to an epidemic of crooked teeth, a lack of adequate space for the last molars (wisdom teeth), and constricted airways, is a major cause of sleep-related stress. Despite claims that the cause of this jaw epidemic is somehow genetic, the speed with which human jaws have changed, especially in the last few centuries, is much too fast to be evolutionary. Correlation in time and space strongly suggests the symptoms are phenotypic responses to a vast natural experiment-rapid and dramatic modifications of human physical and cultural environments. The agricultural and industrial revolutions have produced smaller jaws and less-toned muscles of the face and oropharynx, which contribute to the serious health problems mentioned above. The mechanism of change, research and clinical trials suggest, lies in orofacial posture, the way people now hold their jaws when not voluntarily moving them in speaking or eating and especially when sleeping. The critical resting oral posture has been disrupted in societies no longer hunting and gathering. Virtually all aspects of how modern people function and rest are radically different from those of our ancestors. We also briefly discuss treatment of jaw symptoms and possible clinical cures for individuals, as well as changes in society that might lead to better care and, ultimately, prevention.
Collapse
|
29
|
Godinho RM, O'Higgins P, Gonçalves C. Assessing the reliability of virtual reconstruction of mandibles. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:723-734. [DOI: 10.1002/ajpa.24095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/02/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Ricardo Miguel Godinho
- Faculdade das Ciências Humanas e SociaisInterdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve Faro Portugal
| | - Paul O'Higgins
- PalaeoHub, Department of Archaeology and Hull York Medical SchoolUniversity of York York UK
- Center for Forensic AnthropologyThe University of Western Australia Australia
| | - Célia Gonçalves
- Faculdade das Ciências Humanas e SociaisInterdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve Faro Portugal
| |
Collapse
|
30
|
Katz DC, Aponte JD, Liu W, Green RM, Mayeux JM, Pollard KM, Pomp D, Munger SC, Murray SA, Roseman CC, Percival CJ, Cheverud J, Marcucio RS, Hallgrímsson B. Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One 2020; 15:e0233377. [PMID: 32502155 PMCID: PMC7274373 DOI: 10.1371/journal.pone.0233377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.
Collapse
Affiliation(s)
- David C. Katz
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - J. David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Rebecca M. Green
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Daniel Pomp
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Charles C. Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States of America
| | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
31
|
The Occasional Perils of Reflection (Across the Midline; in Geometric Morphometrics). Evol Biol 2020. [DOI: 10.1007/s11692-020-09501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wells JCK, Stock JT. Life History Transitions at the Origins of Agriculture: A Model for Understanding How Niche Construction Impacts Human Growth, Demography and Health. Front Endocrinol (Lausanne) 2020; 11:325. [PMID: 32508752 PMCID: PMC7253633 DOI: 10.3389/fendo.2020.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Over recent millennia, human populations have regularly reconstructed their subsistence niches, changing both how they obtain food and the conditions in which they live. For example, over the last 12,000 years the vast majority of human populations shifted from foraging to practicing different forms of agriculture. The shift to farming is widely understood to have impacted several aspects of human demography and biology, including mortality risk, population growth, adult body size, and physical markers of health. However, these trends have not been integrated within an over-arching conceptual framework, and there is poor understanding of why populations tended to increase in population size during periods when markers of health deteriorated. Here, we offer a novel conceptual approach based on evolutionary life history theory. This theory assumes that energy availability is finite and must be allocated in competition between the functions of maintenance, growth, reproduction, and defence. In any given environment, and at any given stage during the life-course, natural selection favours energy allocation strategies that maximise fitness. We argue that the origins of agriculture involved profound transformations in human life history strategies, impacting both the availability of energy and the way that it was allocated between life history functions in the body. Although overall energy supply increased, the diet composition changed, while sedentary populations were challenged by new infectious burdens. We propose that this composite new ecological niche favoured increased energy allocation to defence (immune function) and reproduction, thus reducing the allocation to growth and maintenance. We review evidence in support of this hypothesis and highlight how further work could address both heterogeneity and specific aspects of the origins of agriculture in more detail. Our approach can be applied to many other transformations of the human subsistence niche, and can shed new light on the way that health, height, life expectancy, and fertility patterns are changing in association with globalization and nutrition transition.
Collapse
Affiliation(s)
- Jonathan C. K. Wells
- Childhood Nutrition Research Centre, Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- *Correspondence: Jonathan C. K. Wells
| | - Jay T. Stock
- Department of Anthropology, University of Western Ontario, London, ON, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
33
|
Eyquem AP, Kuzminsky SC, Aguilera J, Astudillo W, Toro-Ibacache V. Normal and altered masticatory load impact on the range of craniofacial shape variation: An analysis of pre-Hispanic and modern populations of the American Southern Cone. PLoS One 2019; 14:e0225369. [PMID: 31826020 PMCID: PMC6905515 DOI: 10.1371/journal.pone.0225369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023] Open
Abstract
The reduction of masticatory load intensity resulting from dietary changes in human evolution has been proposed as an important factor that alters craniofacial shape in past and current populations. However, its impact on craniofacial variation and on the perceived differences among populations is unclear. The maxillomandibular relationship, which alters masticatory force direction, is a factor often neglected but it can contribute to variation in craniofacial morphology, particularly among modern/urban populations where the prevalence of dental malocclusions is greater than in prehistoric populations. This study investigates the influence of masticatory load intensity and maxillomandibular relationship as a proxy for force direction on the human craniofacial skeleton. By using 3D imaging and geometric morphometrics, we analyzed craniofacial shape variation among 186 individuals from pre-Hispanic and modern Chilean and Argentinean populations that differ in diet consistency (a proxy for masticatory load intensity) and maxillomandibular relationship. We predicted that masticatory load would have a subtle effect on the upper craniofacial bones and that this would be more marked in the maxilla. Our results showed no clear influence of masticatory load on craniofacial shape, particularly in modern/urban populations. Allometry, on the contrary, shows a stronger effect. The degree of integration between the upper craniofacial bones and the load-bearing maxilla depends on masticatory load intensity, decreasing from high to low but showing a conservative pattern of covariation among the groups. The degree of variation in the shape of the maxilla is greater than the upper craniofacial bones. These results suggest that masticatory load has a limited effect in determining differences in craniofacial morphology among populations. This effect is slightly greater for the maxillary region of the face. We propose that the reduction of functional constraints is key to greater shape variation found in modern/urban populations.
Collapse
Affiliation(s)
- Andrea P. Eyquem
- Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Susan C. Kuzminsky
- Department of Anthropology and Applied Archaeology, Eastern New Mexico University, Portales, New Mexico, United States of America
- Anthropology Department, University of California, Santa Cruz, California, United States of America
| | - José Aguilera
- Facultad de Medicina and Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Williams Astudillo
- Facultad de Medicina and Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: ,
| |
Collapse
|
34
|
Larsen CS. Bioarchaeology in perspective: From classifications of the dead to conditions of the living. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 165:865-878. [PMID: 29574846 DOI: 10.1002/ajpa.23322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 01/03/2023]
|
35
|
Blasi DE, Moran S, Moisik SR, Widmer P, Dediu D, Bickel B. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science 2019; 363:363/6432/eaav3218. [PMID: 30872490 DOI: 10.1126/science.aav3218] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Linguistic diversity, now and in the past, is widely regarded to be independent of biological changes that took place after the emergence of Homo sapiens We show converging evidence from paleoanthropology, speech biomechanics, ethnography, and historical linguistics that labiodental sounds (such as "f" and "v") were innovated after the Neolithic. Changes in diet attributable to food-processing technologies modified the human bite from an edge-to-edge configuration to one that preserves adolescent overbite and overjet into adulthood. This change favored the emergence and maintenance of labiodentals. Our findings suggest that language is shaped not only by the contingencies of its history, but also by culturally induced changes in human biology.
Collapse
Affiliation(s)
- D E Blasi
- Department of Comparative Linguistics, University of Zurich, 8032 Zurich, Switzerland. .,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland.,Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Human Relations Area Files, Yale University, New Haven, CT 06511, USA.,Laboratory of Quantitative Linguistics, Kazan Federal University, 420000 Kazan, Russia
| | - S Moran
- Department of Comparative Linguistics, University of Zurich, 8032 Zurich, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| | - S R Moisik
- Division of Linguistics and Multilingual Studies, Nanyang Technological University, 637332 Singapore
| | - P Widmer
- Department of Comparative Linguistics, University of Zurich, 8032 Zurich, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| | - D Dediu
- Laboratoire Dynamique Du Langage UMR 5596, Université Lumière Lyon 2, 69363 Lyon Cedex 07, France.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - B Bickel
- Department of Comparative Linguistics, University of Zurich, 8032 Zurich, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
36
|
Pokhojaev A, Avni H, Sella-Tunis T, Sarig R, May H. Changes in human mandibular shape during the Terminal Pleistocene-Holocene Levant. Sci Rep 2019; 9:8799. [PMID: 31217474 PMCID: PMC6584575 DOI: 10.1038/s41598-019-45279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
The transition to food production, exploitation of 'secondary' products (e.g., milk), and advances in cookware technology have affected all aspects of human life. The aim of the present study was to follow changes in mandibular form and shape throughout the terminal Pleistocene-Holocene Levant. The hemimandibles of four populations were included in this study: Natufian hunter-gatherers (n = 10), Pre-pottery Neolithic early farmers (n = 6), Chalcolithic farmers (n = 9), Roman-Byzantine (n = 16), and modern (n = 63) populations. A surface mesh of each mandible was reconstructed from CT or surface scans. Changes in mandibular form and shape were studied using the Procrustes-based geometric morphometrics method. Univariate and multivariate analyses were carried out to examine differences in size and shape between the studied populations. Our results reveal considerable temporal changes in mandibular shape throughout the Holocene Levant, mainly between the pre-agricultural population (the Natufian) and the succeeding ones, and between the post-industrial (the Modern) and the pre-industrial populations. A tendency for a reduction in mandibular size was identified between the pre-agricultural population and the farmers. Most regions of the mandible underwent shape changes. In conclusion, substantial changes in mandibular shape occurred throughout the Holocene Levant, especially following the agricultural revolution. These changes can be explained by the "masticatory-functional hypothesis".
Collapse
Affiliation(s)
- Ariel Pokhojaev
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Hadas Avni
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Tatiana Sella-Tunis
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Rachel Sarig
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.
| |
Collapse
|
37
|
The Masticatory Apparatus of Humans (Homo sapiens): Evolution and Comparative Functional Morphology. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-13739-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
38
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
39
|
von Cramon-Taubadel N. Multivariate morphometrics, quantitative genetics, and neutral theory: Developing a "modern synthesis" for primate evolutionary morphology. Evol Anthropol 2019; 28:21-33. [PMID: 30652384 DOI: 10.1002/evan.21761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023]
Abstract
Anthropologists are increasingly turning to explicit model-bound evolutionary approaches for understanding the morphological diversification of humans and other primate lineages. Such evolutionary morphological analyses rely on three interconnected conceptual frameworks; multivariate morphometrics for quantifying similarity and differences among taxa, quantitative genetics for modeling the inheritance and evolution of morphology, and neutral theory for assessing the likelihood that taxon diversification is due to stochastic processes such as genetic drift. Importantly, neutral theory provides a framework for testing more parsimonious explanations for observed morphological differences before considering more complex adaptive scenarios. However, the consistency with which these concepts are applied varies considerably, which mirrors some of the theoretical obstacles faced during the "modern synthesis" of classical population genetics in the early 20th century. Here, each framework is reviewed and some potential stumbling blocks to the full conceptual integration of multivariate morphometrics, quantitative genetics, and neutral theory are considered.
Collapse
Affiliation(s)
- Noreen von Cramon-Taubadel
- Department of Anthropology, Buffalo Human Evolutionary Morphology Lab, University at Buffalo, SUNY, Buffalo, New York
| |
Collapse
|
40
|
Toro-Ibacache V, Ugarte F, Morales C, Eyquem A, Aguilera J, Astudillo W. Dental malocclusions are not just about small and weak bones: assessing the morphology of the mandible with cross-section analysis and geometric morphometrics. Clin Oral Investig 2019; 23:3479-3490. [PMID: 30604093 DOI: 10.1007/s00784-018-2766-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Dental malocclusions in modern populations would be the result of small and weak jaws developing under low masticatory loads. We assess the validity of this by characterising the external and internal morphology of mandibles affected by class II and III malocclusions and comparing them with those from individuals with different masticatory load patterns. MATERIALS AND METHODS CTs from up to 118 individuals exerting intensive, medium and low masticatory loads with harmonic occlusion, and from class II and III individuals, were used to compare their external shape using geometric morphometrics, as well as their internal amount and distribution of cortical bone. RESULTS The low-load groups (harmonic, class II and III occlusion) are externally more gracile than the intense and medium load groups. But more relevant in shape variation is a marked allometric pattern, which differentiates class II (small) and III (large) mandibles. Despite gracility, the relative amount of cortical bone in the low-load groups is larger than in the remaining groups. CONCLUSIONS There is no evidence that the modern mandible, including class II and III individuals, is intrinsically small and weak. Instead, there is a rather large degree of morphological variation, which could be linked to a lack of constraints derived from low masticatory loads. Thus, the effect of other factors such as genetics, but also basal metabolism, should be looked in more depth. CLINICAL RELEVANCE Dental malocclusions are a common disorder whose aetiology has not been unravelled, and several to be considered in the prevention and therapy of malocclusion.
Collapse
Affiliation(s)
- Viviana Toro-Ibacache
- Centro de Análisis Cuantitativo en Antropología Dental and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Olivos 943, Independencia, Santiago, Chile. .,Department of Human Evolution, Mac Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Francisco Ugarte
- Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cristina Morales
- Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Andrea Eyquem
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Aguilera
- Facultad de Medicina and Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Williams Astudillo
- Facultad de Medicina and Hospital Clínico, Universidad de Chile, Santiago, Chile
| |
Collapse
|
41
|
Baab KL. Evolvability and craniofacial diversification in genus
Homo. Evolution 2018; 72:2781-2791. [DOI: 10.1111/evo.13637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Karen L. Baab
- Department of Anatomical Sciences Midwestern University Glendale Arizona 85308
| |
Collapse
|
42
|
Milella M, Betz BJ, Knüsel CJ, Larsen CS, Dori I. Population density and developmental stress in the Neolithic: A diachronic study of dental fluctuating asymmetry at Çatalhöyük (Turkey, 7,100-5,950 BC). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:737-749. [DOI: 10.1002/ajpa.23700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Milella
- Department of Anthropology; University of Zurich; Zurich Switzerland
| | - Barbara J. Betz
- Department of Anthropology, 4034 Smith Laboratory; The Ohio State University; Columbus Ohio
| | | | - Clark Spencer Larsen
- Department of Anthropology, 4034 Smith Laboratory; The Ohio State University; Columbus Ohio
| | - Irene Dori
- UMR 5199 PACEA, Université de Bordeaux; Pessac France
- Department of Biology; Laboratory of Anthropology, University of Florence; Florence Italy
| |
Collapse
|
43
|
Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis. J Hum Evol 2018; 121:55-71. [DOI: 10.1016/j.jhevol.2018.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/29/2023]
|
44
|
Harris M, Brantley T, Hammond D, Kalamchi S. Demographic features of patients with concomitant facial fractures and closed head injuries in Maricopa, Arizona. Oral Surg Oral Med Oral Pathol Oral Radiol 2018. [DOI: 10.1016/j.oooo.2017.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Who were the Nataruk people? Mandibular morphology among late Pleistocene and early Holocene fisher-forager populations of West Turkana (Kenya). J Hum Evol 2018; 121:235-253. [PMID: 29857967 DOI: 10.1016/j.jhevol.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/27/2023]
Abstract
Africa is the birthplace of the species Homo sapiens, and Africans today are genetically more diverse than other populations of the world. However, the processes that underpinned the evolution of African populations remain largely obscure. Only a handful of late Pleistocene African fossils (∼50-12 Ka) are known, while the more numerous sites with human fossils of early Holocene age are patchily distributed. In particular, late Pleistocene and early Holocene human diversity in Eastern Africa remains little studied, precluding any analysis of the potential factors that shaped human diversity in the region, and more broadly throughout the continent. These periods include the Last Glacial Maximum (LGM), a moment of extreme aridity in Africa that caused the fragmentation of population ranges and localised extinctions, as well as the 'African Humid Period', a moment of abrupt climate change and enhanced connectivity throughout Africa. East Africa, with its range of environments, may have acted as a refugium during the LGM, and may have played a critical biogeographic role during the heterogene`ous environmental recovery that followed. This environmental context raises a number of questions about the relationships among early Holocene African populations, and about the role played by East Africa in shaping late hunter-gatherer biological diversity. Here, we describe eight mandibles from Nataruk, an early Holocene site (∼10 Ka) in West Turkana, offering the opportunity of exploring population diversity in Africa at the height of the 'African Humid Period'. We use 3D geometric morphometric techniques to analyze the phenotypic variation of a large mandibular sample. Our results show that (i) the Nataruk mandibles are most similar to other African hunter-fisher-gatherer populations, especially to the fossils from Lothagam, another West Turkana locality, and to other early Holocene fossils from the Central Rift Valley (Kenya); and (ii) a phylogenetic connection may have existed between these Eastern African populations and some Nile Valley and Maghrebian groups, who lived at a time when a Green Sahara may have allowed substantial contact, and potential gene flow, across a vast expanse of Northern and Eastern Africa.
Collapse
|
46
|
Roosenboom J, Lee MK, Hecht JT, Heike CL, Wehby GL, Christensen K, Feingold E, Marazita ML, Maga AM, Shaffer JR, Weinberg SM. Mapping genetic variants for cranial vault shape in humans. PLoS One 2018; 13:e0196148. [PMID: 29698431 PMCID: PMC5919379 DOI: 10.1371/journal.pone.0196148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/07/2018] [Indexed: 01/17/2023] Open
Abstract
The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10−8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10−9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology.
Collapse
Affiliation(s)
- Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, United States of America
| | - Carrie L. Heike
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, WA, United States of America
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, United States of America
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - A. Murat Maga
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, WA, United States of America
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute Seattle, WA, United States of America
| | - John R. Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
47
|
Human mandibular shape is associated with masticatory muscle force. Sci Rep 2018; 8:6042. [PMID: 29662127 PMCID: PMC5902585 DOI: 10.1038/s41598-018-24293-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding how and to what extent forces applied to the mandible by the masticatory muscles influence its form, is of considerable importance from clinical, anthropological and evolutionary perspectives. This study investigates these questions. Head CT scans of 382 adults were utilized to measure masseter and temporalis muscle cross-sectional areas (CSA) as a surrogate for muscle force, and 17 mandibular anthropometric measurements. Sixty-two mandibles of young individuals (20–40 years) whose scans were without artefacts (e.g., due to tooth filling) were segmented and landmarked for geometric morphometric analysis. The association between shape and muscle CSA (controlled for size) was assessed using two-block partial least squares analysis. Correlations were computed between mandibular variables and muscle CSAs (all controlled for size). A significant association was found between mandibular shape and muscle CSAs, i.e. larger CSAs are associated with a wider more trapezoidal ramus, more massive coronoid, more rectangular body and a more curved basal arch. Linear measurements yielded low correlations with muscle CSAs. In conclusion, this study demonstrates an association between mandibular muscle force and mandibular shape, which is not as readily identified from linear measurements. Retrodiction of masticatory muscle force and so of mandibular loading is therefore best based on overall mandibular shape.
Collapse
|
48
|
Abstract
The cavity system of the inner ear—the so-called bony labyrinth—houses the senses of balance and hearing. This structure is embedded in dense petrous bone, fully formed by birth and generally well preserved in human skeletal remains, thus providing a rich source of morphological information about past populations. Here we show that labyrinthine morphology tracks genetic distances and geography in an isolation-by-distance model with dispersal from Africa. Because petrous bones have become prime targets of ancient DNA recovery, we propose that all destructive studies first acquire high-resolution 3D computed-tomography data prior to any invasive sampling. Such data will constitute an important archive of morphological variation in past and present populations, and will permit individual-based genotype–phenotype comparisons. The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype–phenotype comparisons.
Collapse
|
49
|
Paula Menéndez L. Moderate climate signature in cranial anatomy of late holocene human populations from Southern South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:309-326. [PMID: 29115678 DOI: 10.1002/ajpa.23355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study is to analyze the association between cranial variation and climate in order to discuss their role during the diversification of southern South American populations. Therefore, the specific objectives are: (1) to explore the spatial pattern of cranial variation with regard to the climatic diversity of the region, and (2) to evaluate the differential impact that the climatic factors may have had on the shape and size of the diverse cranial structures studied. MATERIALS AND METHODS The variation in shape and size of 361 crania was studied, registering 62 3D landmarks that capture shape and size variation in the face, cranial vault, and base. Mean, minimum, and maximum annual temperature, as well as mean annual precipitation, but also diet and altitude, were matched for each population sample. A PCA, as well as spatial statistical techniques, including kriging, regression, and multimodel inference were employed. RESULTS The facial skeleton size presents a latitudinal pattern which is partially associated with temperature diversity. Both diet and altitude are the variables that mainly explain the skull shape variation, although mean annual temperature also plays a role. The association between climate factors and cranial variation is low to moderate, mean annual temperature explains almost 40% of the entire skull, facial skeleton and cranial vault shape variation, while annual precipitation and minimum annual temperature only contribute to the morphological variation when considered together with maximum annual temperature. The cranial base is the structure less associated with climate diversity. CONCLUSION These results suggest that climate factors may have had a partial impact on the facial and vault shape, and therefore contributed moderately to the diversification of southern South American populations, while diet and altitude might have had a stronger impact. Therefore, cranial variation at the southern cone has been shaped both by random and nonrandom factors. Particularly, the influence of climate on skull shape has probably been the result of directional selection. This study supports that, although cranial vault is the cranial structure more associated to mean annual temperature, the impact of climate signature on morphology decreases when populations from extreme cold environments are excluded from the analysis. Additionally, it shows that the extent of the geographical scales analyzed, as well as differential sampling may lead to different results regarding the role of ecological factors and evolutionary processes on cranial morphology.
Collapse
Affiliation(s)
- Lumila Paula Menéndez
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Rümelinstraße 23, Tübingen 72070, Germany.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
50
|
Measuring the effects of farming on human skull morphology. Proc Natl Acad Sci U S A 2017; 114:8917-8919. [PMID: 28811377 DOI: 10.1073/pnas.1711475114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|