1
|
Qi G, Yang D, Messore F, Bast A, Yáñez F, Oberlaender M, Feldmeyer D. FOXP2-immunoreactive corticothalamic neurons in neocortical layers 6a and 6b are tightly regulated by neuromodulatory systems. iScience 2025; 28:111646. [PMID: 39868047 PMCID: PMC11758397 DOI: 10.1016/j.isci.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
The FOXP2/Foxp2 gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei. Synaptic connections established by both L6a and L6b FOXP2+ PCs have low release probabilities and respond strongly to acetylcholine (ACh), triggering action potential (AP) trains. Notably, L6b FOXP2- PCs are more sensitive to ACh than L6a, and L6b FOXP2+ PCs also react robustly to dopamine. Thus, FOXP2 labels L6a and L6b CT PCs, which are precisely regulated by neuromodulators, highlighting their roles as potent modulators of thalamic activity.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
| | - Danqing Yang
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
| | - Fernando Messore
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Arco Bast
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Felipe Yáñez
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Intelligent Systems, 72076 Tübingen, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 Amsterdam, the Netherlands
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
- Jülich-Aachen-Research Alliance ‘Brain’ - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
2
|
Lee KS, Loutit AJ, de Thomas Wagner D, Sanders M, Prsa M, Huber D. Transformation of neural coding for vibrotactile stimuli along the ascending somatosensory pathway. Neuron 2024; 112:3343-3353.e7. [PMID: 39111305 DOI: 10.1016/j.neuron.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 10/12/2024]
Abstract
In mammals, action potentials fired by rapidly adapting mechanosensitive afferents are known to reliably time lock to the cycles of a vibration. How and where along the ascending neuraxis is the peripheral afferent temporal code transformed into a rate code are currently not clear. Here, we probed the encoding of vibrotactile stimuli with electrophysiological recordings along major stages of the ascending somatosensory pathway in mice. We discovered the main transformation step was identified at the level of the thalamus, and parvalbumin-positive interneurons in thalamic reticular nucleus participate in sharpening frequency selectivity and in disrupting the precise spike timing. When frequency-specific microstimulation was applied within the brainstem, it generated frequency selectivity reminiscent of real vibration responses in the somatosensory cortex and could provide informative and robust signals for learning in behaving mice. Taken together, these findings could guide biomimetic stimulus strategies to activate specific nuclei along the ascending somatosensory pathway for neural prostheses.
Collapse
Affiliation(s)
- Kuo-Sheng Lee
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Institute of Biomedical Sciences, Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Alastair J Loutit
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Mark Sanders
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
4
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
5
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Sehatpour P, Javitt DC. Advanced Methodology for Neurophysiological Analysis and Biomarker Development: Time-Frequency and Source-Localization Approaches. ADVANCES IN NEUROBIOLOGY 2024; 40:119-141. [PMID: 39562443 DOI: 10.1007/978-3-031-69491-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of new treatments for neuropsychiatric disorders requires the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Neurophysiological measures, especially event-related potentials (ERP), provide effective physiological read-outs of the flow of information from primary sensory through higher-order associative brain regions and thus can be used to investigate mechanisms underlying cognitive impairments across neuropsychiatric disorders. Traditional "time-domain" event-related potentials (ERP) such as auditory P300 and mismatch negativity or visual P1 and face N170 are increasingly being used in clinical studies for patient stratification, outcome prediction, or target engagement. Nevertheless, time-domain approaches use only a small portion of the information inherent within the event-related EEG signal. Newer, time-frequency (TF-ERP) approaches provide additional information along with improved translational utility and may be especially useful in differentiating activity related to thalamocortical driver versus modulatory inputs, as well as detecting event-related modulations of ongoing EEG power. The utility of the TF-ERP approach may be further enhanced by using source-space analytic approaches, including newer Beamformer approaches which are sensitive to both power within identified brain regions and coherence between brain regions. In addition to supporting the development of novel pharmacological agents, such methods may be guiding personalized, high-definition neuro-modulatory intervention approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Division of Experimental Therapeutics, Columbia University Medical Center, New York, NY, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
7
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
8
|
Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep. Cell Rep 2023; 42:112200. [PMID: 36867532 PMCID: PMC10066598 DOI: 10.1016/j.celrep.2023.112200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.
Collapse
|
9
|
Carroll BJ, Sampathkumar V, Kasthuri N, Sherman SM. Layer 5 of cortex innervates the thalamic reticular nucleus in mice. Proc Natl Acad Sci U S A 2022; 119:e2205209119. [PMID: 36095204 PMCID: PMC9499584 DOI: 10.1073/pnas.2205209119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neurons in the thalamic reticular nucleus (TRN) are a primary source of inhibition to the dorsal thalamus and, as they are innervated in part by the cortex, are a means of corticothalamic regulation. Previously, cortical inputs to the TRN were thought to originate solely from layer 6 (L6), but we recently reported the presence of putative synaptic terminals from layer 5 (L5) neurons in multiple cortical areas in the TRN [J. A. Prasad, B. J. Carroll, S. M. Sherman, J. Neurosci. 40, 5785-5796 (2020)]. Here, we demonstrate with electron microscopy that L5 terminals from multiple cortical regions make bona fide synapses in the TRN. We further use light microscopy to localize these synapses relative to recently described TRN subdivisions and show that L5 terminals target the edges of the somatosensory TRN, where neurons reciprocally connect to higher-order thalamus, and that L5 terminals are scarce in the core of the TRN, where neurons reciprocally connect to first-order thalamus. In contrast, L6 terminals densely innervate both edge and core subregions and are smaller than those from L5. These data suggest that a sparse but potent input from L5 neurons of multiple cortical regions to the TRN may yield transreticular inhibition targeted to higher-order thalamus.
Collapse
Affiliation(s)
- Briana J. Carroll
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
- Argonne National Laboratory, Lemont, IL, 60439
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
- Argonne National Laboratory, Lemont, IL, 60439
| | - S. Murray Sherman
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
10
|
Conserved patterns of functional organization between cortex and thalamus in mice. Proc Natl Acad Sci U S A 2022; 119:e2201481119. [PMID: 35588455 DOI: 10.1073/pnas.2201481119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceNeuroanatomical tracing provides just a partial picture of information flow in the brain, because excitatory synapses are not all equal. Some strongly drive postsynaptic targets to transfer information, whereas others weakly modulate their responsiveness. Here, we show conserved patterns of synaptic function across somatosensory and visual thalamocortical circuits in mice involving higher-order thalamic nuclei. These nuclei serve as hubs in transthalamic or cortico-thalamo-cortical pathways. We report that feedforward transthalamic circuits in the somatosensory and visual systems operate to efficiently transmit information, whereas feedback transthalamic circuits act to modulate their target areas. These patterns may generalize to other brain systems and show how methods of synapse physiology and molecular biology can inform the exploration of brain circuitry and information processing.
Collapse
|
11
|
|
12
|
Ye Q, Zhang X. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect disinhibition from zona incerta. J Physiol 2021; 599:4883-4900. [PMID: 34510418 DOI: 10.1113/jp282088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Paraventricular thalamus (PVT) is a midline thalamic area that receives dense GABA projections from zona incerta (ZI) for the regulation of feeding behaviours. Activation of central serotonin (5-HT) signalling is known to inhibit food intake. Although previous studies have reported both 5-HT fibres and receptors in the PVT, it remains unknown how 5-HT regulates PVT neurons and whether PVT 5-HT signalling is involved in the control of food intake. Using slice patch-clamp recordings in combination with optogenetics, we found that 5-HT not only directly excited PVT neurons by activating 5-HT7 receptors to modulate hyperpolarization-activated cyclic nucleotide-gated (HCN) channels but also disinhibited these neurons by acting on presynaptic 5-HT1A receptors to reduce GABA inhibition. Specifically, 5-HT depressed photostimulation-evoked inhibitory postsynaptic currents (eIPSCs) in PVT neurons innervated by channelrhodopsin-2-positive GABA axons from ZI. Using paired-pulse photostimulation, we found 5-HT increased paired-pulse ratios of eIPSCs, suggesting 5-HT decreases ZI-PVT GABA release. Furthermore, we found that exposure to a high-fat-high-sucrose diet for 2 weeks impaired both 5-HT inhibition of ZI-PVT GABA transmission and 5-HT excitation of PVT neurons. Using retrograde tracer in combination with immunocytochemistry and slice electrophysiology, we found that PVT-projecting dorsal raphe neurons expressed 5-HT and were inhibited by food deprivation. Together, our study reveals the mechanism by which 5-HT activates PVT neurons through both direct excitation and indirect disinhibition from the ZI. The downregulation in 5-HT excitation and disinhibition of PVT neurons may contribute to the development of overeating and obesity after chronic high-fat diet. KEY POINTS: Serotonin (5-HT) depolarizes and excites paraventricular thalamus (PVT) neurons. 5-HT7 receptors are responsible for 5-HT excitation of PVT neurons and the coupling of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels to 5-HT receptors in part mediates the excitatory effect of 5-HT. 5-HT depresses the frequency of spontaneous inhibitory but not excitatory postsynaptic currents in PVT neurons. 5-HT1A receptors contribute to the depressive effect of 5-HT on inhibitory transmissions. 5-HT inhibits GABA release from zona incerta (ZI) GABA terminals in PVT. Chronic high-fat diet not only impairs 5-HT inhibition of the ZI-PVT GABA transmission but also downregulates 5-HT excitation of PVT neurons. PVT-projecting dorsal raphe neurons express 5-HT and are inhibited by food deprivation.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
13
|
Sampathkumar V, Miller-Hansen A, Sherman SM, Kasthuri N. Integration of signals from different cortical areas in higher order thalamic neurons. Proc Natl Acad Sci U S A 2021; 118:e2104137118. [PMID: 34282018 PMCID: PMC8325356 DOI: 10.1073/pnas.2104137118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy "connectomics" in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439
| | | | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637;
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637;
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
14
|
Burada AP, Vinnakota R, Lambolez B, Tricoire L, Kumar J. Structural biology of ionotropic glutamate delta receptors and their crosstalk with metabotropic glutamate receptors. Neuropharmacology 2021; 196:108683. [PMID: 34181979 DOI: 10.1016/j.neuropharm.2021.108683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Enigmatic orphan glutamate delta receptors (GluD) are one of the four classes of the ionotropic glutamate receptors (iGluRs) that play key roles in synaptic transmission and plasticity. While members of other iGluR families viz AMPA, NMDA, and kainate receptors are gated by glutamate, the GluD receptors neither bind glutamate nor evoke ligand-induced currents upon binding of glycine and D-serine. Thus, the GluD receptors were considered to function as structural proteins that facilitate the formation, maturation, and maintenance of synapses in the hippocampus and cerebellum. Recent work has revealed that GluD receptors have extensive crosstalk with metabotropic glutamate receptors (mGlus) and are also gated by their activation. The latest development of a novel optopharamcological tool and the cryoEM structures of GluD receptors would help define the molecular and chemical basis of the GluD receptor's role in synaptic physiology. This article is part of the special Issue on "Glutamate Receptors - Orphan iGluRs".
Collapse
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
15
|
Yamawaki N, Raineri Tapies MG, Stults A, Smith GA, Shepherd GMG. Circuit organization of the excitatory sensorimotor loop through hand/forelimb S1 and M1. eLife 2021; 10:e66836. [PMID: 33851917 PMCID: PMC8046433 DOI: 10.7554/elife.66836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Austin Stults
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gregory A Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gordon MG Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
16
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
17
|
Distinct functional developments of surviving and eliminated presynaptic terminals. Proc Natl Acad Sci U S A 2021; 118:2022423118. [PMID: 33688051 DOI: 10.1073/pnas.2022423118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For neuronal circuits in the brain to mature, necessary synapses must be maintained and redundant synapses eliminated through experience-dependent mechanisms. However, the functional differentiation of these synapse types during the refinement process remains elusive. Here, we addressed this issue by distinct labeling and direct recordings of presynaptic terminals fated for survival and for elimination in the somatosensory thalamus. At surviving terminals, the number of total releasable vesicles was first enlarged, and then calcium channels and fast-releasing synaptic vesicles were tightly coupled in an experience-dependent manner. By contrast, transmitter release mechanisms did not mature at terminals fated for elimination, irrespective of sensory experience. Nonetheless, terminals fated for survival and for elimination both exhibited developmental shortening of action potential waveforms that was experience independent. Thus, we dissected experience-dependent and -independent developmental maturation processes of surviving and eliminated presynaptic terminals during neuronal circuit refinement.
Collapse
|
18
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Andrew DLE, May PJ, Warren S. Morphologic Characterization of Trigeminothalamic Terminal Arbors Arising From the Principal Nucleus in the Macaque. Front Neuroanat 2020; 14:562673. [PMID: 33041774 PMCID: PMC7525072 DOI: 10.3389/fnana.2020.562673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023] Open
Abstract
The ventral posterior medial nucleus (VPM) is amandatory relay for orofacial sensory information targeting the primary somatosensory cortex. We characterized the morphology of VPM axons arising in the principal trigeminal sensory nucleus (pV) through injections of biotinylated dextran amine (BDA) placed in pV of Macaca fascicularis and mulatta monkeys. Labeled terminals formed a patchy bilateral distribution. Within contralateral VPM, patches were found primarily, but not exclusively, within the laterally located, vertical segment, and in ipsilateral VPM, primarily, but not exclusively, in the medially located, horizontal segment. Two fiber types were labeled: thin and thick. Thin fibers were poorly branched and diffusely distributed. They were studded with small en passant boutons. Most labeled fibers were thick and they branched extensively to form distinctive terminal arbors decorated with numerous boutons that varied in size and shape. Quantitative analysis of thick fiber arbor features showed little difference between the sides, although contralateral boutons were significantly larger than ipsilateral ones. Bouton distribution with respect to counterstained somata suggests that proximal dendrites are their main target. Indeed, ultrastructural examination demonstrated that they provide large diameter dendrites with numerous contacts. Direct comparison of thick fiber terminal arbors to cytochrome oxidase (CO) staining revealed that these arbors are much smaller than individual CO-rich patches believed to designate rods containing discrete body area representations. Thus, each terminal arbor appears to heavily innervate a small number of VPM neurons within a rod. This relationship would serve to maintain relatively small receptive fields within the topographic representation of the face.
Collapse
Affiliation(s)
- Dona Lee E. Andrew
- Department of Occupational Therapy, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Paul J. May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
20
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
21
|
Posterior Thalamic Nucleus Mediates Facial Histaminergic Itch. Neuroscience 2020; 444:54-63. [PMID: 32750381 DOI: 10.1016/j.neuroscience.2020.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022]
Abstract
Itch induces a desire to scratch and leads to skin damage in some severe conditions. Much progress has been made in the peripheral and spinal level, and recent findings suggested that we need to focus on the central circuitry mechanism. However, the functional role of the thalamus in itch signal processing remains largely unknown. We showed that the posterior thalamic nucleus (Po) played a vital role in modulating facial histaminergic itch signal processing. We found that the calcium signal of Po neurons was increased during the histaminergic itch-induced scratching behavior in the cheek model, and pharmacogenetic suppression of Po neurons reduced the scratching behaviors. Retrograde mapping results suggested that the Po receives information from the somatosensory cortex, motor cortex, parabrachial nucleus (PBN), the principal sensory trigeminal nucleus (PrV) and the spinal trigeminal nucleus (SpV), which participate in itch signal transmission from head and body. Thus, our study indicates that the Po is critical in modulating facial histaminergic itch signal processing.
Collapse
|
22
|
Ansorge J, Humanes‐Valera D, Pauzin FP, Schwarz MK, Krieger P. Cortical layer 6 control of sensory responses in higher‐order thalamus. J Physiol 2020; 598:3973-4001. [DOI: 10.1113/jp279915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Josephine Ansorge
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - Desire Humanes‐Valera
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - François P. Pauzin
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - Martin K. Schwarz
- Institute of Experimental Epileptology and Cognition Research University of Bonn Medical School Bonn Germany
| | - Patrik Krieger
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| |
Collapse
|
23
|
A repeated molecular architecture across thalamic pathways. Nat Neurosci 2019; 22:1925-1935. [PMID: 31527803 PMCID: PMC6819258 DOI: 10.1038/s41593-019-0483-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.
Collapse
|
24
|
Mo C, Sherman SM. A Sensorimotor Pathway via Higher-Order Thalamus. J Neurosci 2019; 39:692-704. [PMID: 30504278 PMCID: PMC6343647 DOI: 10.1523/jneurosci.1467-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/02/2018] [Accepted: 11/24/2018] [Indexed: 11/21/2022] Open
Abstract
We now know that sensory processing in cortex occurs not only via direct communication between primary to secondary areas, but also via their parallel cortico-thalamo-cortical (i.e., trans-thalamic) pathways. Both corticocortical and trans-thalamic pathways mainly signal through glutamatergic class 1 (driver) synapses, which have robust and efficient synaptic dynamics suited for the transfer of information such as receptive field properties, suggesting the importance of class 1 synapses in feedforward, hierarchical processing. However, such a parallel arrangement has only been identified in sensory cortical areas: visual, somatosensory, and auditory. To test the generality of trans-thalamic pathways, we sought to establish its presence beyond purely sensory cortices to determine whether there is a trans-thalamic pathway parallel to the established primary somatosensory (S1) to primary motor (M1) pathway. We used trans-synaptic viral tracing, optogenetics in slice preparations, and bouton size analysis in the mouse (both sexes) to document that a circuit exists from layer 5 of S1 through the posterior medial nucleus of the thalamus to M1 with glutamatergic class 1 properties. This represents a hitherto unknown, robust sensorimotor linkage and suggests that the arrangement of parallel direct and trans-thalamic corticocortical circuits may be present as a general feature of cortical functioning.SIGNIFICANCE STATEMENT During sensory processing, feedforward pathways carry information such as receptive field properties via glutamatergic class 1 synapses, which have robust and efficient synaptic dynamics. As expected, class 1 synapses subserve the feedforward projection from primary to secondary sensory cortex, but also a route through specific higher-order thalamic nuclei, creating a parallel feedforward trans-thalamic pathway. We now extend the concept of cortical areas being connected via parallel, direct, and trans-thalamic circuits from purely sensory cortices to a sensorimotor cortical circuit (i.e., primary sensory cortex to primary motor cortex). This suggests a generalized arrangement for corticocortical communication.
Collapse
Affiliation(s)
- Christina Mo
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
25
|
Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix. Neuroimage 2018; 172:562-574. [DOI: 10.1016/j.neuroimage.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
|
26
|
Abstract
My active collaboration with Ray Guillery started in 1968, when he was a Full Professor at the University of Wisconsin and I was a graduate student at the University of Pennsylvania. The collaboration lasted almost 50 years with virtually no breaks. Among the ideas we proposed are that glutamatergic pathways in thalamus and cortex can be classified into drivers and modulators; that many thalamic nuclei could be classified as higher order, meaning that they receive driving input from layer 5 of cortex and participate in cortico-thalamocortical circuits; and that much of the information relayed by thalamus serves as an efference copy for motor commands initiated by cortex.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|