1
|
Wu SG, Ho CC, Yang JCH, Yu SH, Lin YF, Lin SC, Liao BC, Yang CY, Lin YT, Yu CJ, Chuang YT, Liao WY, Yap KY, Kou WS, Shih JY. Atezolizumab, bevacizumab, pemetrexed and platinum for EGFR-mutant NSCLC patients after EGFR TKI failure: A phase II study with immune cell profile analysis. Clin Transl Med 2025; 15:e70149. [PMID: 39715697 DOI: 10.1002/ctm2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) remains a significant hurdle for patients with EGFR-mutated non-small cell lung cancer (NSCLC), particularly those lacking the EGFRT790M. IMpower 150 study demonstrated promising efficacy for a combination of immune-chemotherapy and bevacizumab in patients with EGFR-mutated NSCLC. METHODS This open-label, single-arm, phase II trial evaluated the efficacy and immune cell profile of the modified regimen combining atezolizumab, bevacizumab (7.5 mg/kg) and chemotherapy in patients with EGFR-mutated NSCLC following TKI failure. The primary endpoint was objective response rate (ORR). The re-biopsy tissue specimens and serial peripheral blood samples were collected to analyse the immune cell profile and tumour microenvironments. RRESULTS 22 EGFR-mutant NSCLC patients participated in this study. The ORR was 42.9%, with a disease control rate (DCR) of 100%. Median progression-free survival (PFS) was 6.3 months. Patients with programmed death-ligand 1 (PD-L1) expression ≥1% exhibited significantly higher ORR (75 vs. 23.1%; p = .032) and longer PFS (14.0 vs. 6.1 months; p = .022) compared with those with PD-L1 expression < 1%. Grade ≥ 3 adverse events occurred in 40.9% of patients. Higher peritumour nature killer (NK) cell infiltration and lower peripheral helper T cell counts before treatment were associated with favourable ORR and longer PFS, respectively. After disease progression, the proportion of S100A9+ myelod-derived suppressor cells (MDSCs) increased, while regulatory T cells decreased. CONCLUSION This modified combination regimen may be a promising therapeutic option for EGFR-mutant NSCLC patients with TKI resistance, especially those with PD-L1-positive tumours. Furthermore, immune cell profiling may aid in identifying patients who may benefit from this approach. KEY POINTS The combination regimen yielded promising efficacy in NSCLC patients after EGFR-TKI resistance, particularly those with PD-L1-positive tumours. Higher peritumour NK cell and lower peripheral helper T cell were associated with favourable ORR and longer PFS, respectively. After disease progression, the proportion of S100A9+ MDSC increased, but Treg cells decreased.
Collapse
Affiliation(s)
- Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, Cancer Research Center, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Bin-Chi Liao
- Department of Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ting Lin
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ya-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Yu Liao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Lin F, Yin S, Zhang Z, Yu Y, Fang H, Liang Z, Zhu R, Zhou H, Li J, Cao K, Guo W, Qin S, Zhang Y, Lu C, Li H, Liu S, Zhang H, Ye B, Lin J, Li Y, Kang X, Xi JJ, Chen PR. Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment. Cell 2024; 187:7470-7491.e32. [PMID: 39504957 DOI: 10.1016/j.cell.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Although immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME. We developed the triple orthogonal linker (T-Linker) technology to integrate various therapeutic small molecules and biomolecules as multimodal targeting chimeras (Multi-TACs). The EGFR-CD3-PDL1 Multi-TAC facilitated T-dendritic cell co-engagement to target solid tumors with excellent efficacy, as demonstrated in vitro, in several humanized mouse models and in patient-derived tumor models. Furthermore, Multi-TACs were constructed to coordinate T cells with other immune cell types. The highly modular and programmable feature of our Multi-TACs may find broad applications in immunotherapy and beyond.
Collapse
Affiliation(s)
- Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Shenyi Yin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zijian Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Ying Yu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Haoming Fang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Rujie Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haitao Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kunxia Cao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Buqing Ye
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| | - Yan Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China; National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China.
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Patel AK, Trageser K, Kim H, Lim W, Adler C, Porter B, Ni M, Wei Y, Atwal GS, Bigdelou P, Kulshreshtha V, Ajithdoss D, Zhong J, Tu N, Macdonald L, Murphy A, Frleta D. Peripheral human red blood cell development in human immune system mouse model with heme oxygenase-1 deficiency. Blood Adv 2024; 8:5975-5987. [PMID: 39348688 PMCID: PMC11629214 DOI: 10.1182/bloodadvances.2023011754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
ABSTRACT A challenge for human immune system (HIS) mouse models has been the lack of human red blood cell (hRBC) survival after engraftment of these immune-deficient mice with human CD34+ hematopoietic stem cells (HSCs). This limits the use of HIS models for preclinical testing of targets directed at hRBC-related diseases. Although human white blood cells can develop in the peripheral blood of mice engrafted with human HSCs, peripheral hRBCs are quickly phagocytosed by murine macrophages upon egress from the bone marrow. Genetic ablation of murine myeloid cells results in severe pathology in resulting mice, rendering such an approach to increase hRBC survival in HIS mice impractical. Heme oxygenase-1 (HMOX-1)-deficient mice have reduced macrophages due to toxic buildup of intracellular heme upon engulfment of RBCs, but do not have an overall loss of myeloid cells. We took advantage of this observation and generated HMOX-1-/- mice on a humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- background. These mice have reduced murine macrophages but comparable levels of murine myeloid cells to HMOX-1+/+ control mice in the same background. Injected hRBCs survive longer in HMOX-1-/- mice than in HMOX-1+/+ controls. Additionally, upon human HSC engraftment, hRBCs can be observed in the peripheral blood of HMOX-1-/- humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- mice, and hRBC levels can be increased by treatment with human erythropoietin. Given that hRBC are present in the peripheral blood of engrafted HMOX-1-/- mice, these mice have the potential to be used for hematologic disease modeling, and for testing therapeutic treatments for hRBC diseases in vivo.
Collapse
Affiliation(s)
| | | | - Hyunjin Kim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Weikeat Lim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | - Jun Zhong
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Naxin Tu
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | |
Collapse
|
4
|
Liu WN, Harden SL, Tan SLW, Tan RJR, Fong SY, Tan SY, Liu M, Karnik I, Shuen TWH, Toh HC, Fan Y, Lim SG, Chan JKY, Chen Q. Single-cell RNA sequencing reveals anti-tumor potency of CD56 + NK cells and CD8 + T cells in humanized mice via PD-1 and TIGIT co-targeting. Mol Ther 2024; 32:3895-3914. [PMID: 39318093 PMCID: PMC11573594 DOI: 10.1016/j.ymthe.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
In solid tumors, the exhaustion of natural killer (NK) cells and cytotoxic T cells in the immunosuppressive tumor microenvironment poses challenges for effective tumor control. Conventional humanized mouse models of hepatocellular carcinoma patient-derived xenografts (HCC-PDX) encounter limitations in NK cell infiltration, hindering studies on NK cell immunobiology. Here, we introduce an improved humanized mouse model with restored NK cell reconstitution and infiltration in HCC-PDX, coupled with single-cell RNA sequencing (scRNA-seq) to identify potential anti-HCC treatments. A single administration of adeno-associated virus carrying human interleukin-15 reinstated persistent NK cell reconstitution and infiltration in HCC-PDX in humanized mice. scRNA-seq revealed NK cell and T cell subpopulations with heightened PDCD1 and TIGIT levels. Notably, combination therapy with anti-PD-1 and anti-TIGIT antibodies alleviated HCC burden in humanized mice, demonstrating NK cell-dependent efficacy. Bulk-RNA sequencing analysis also revealed significant alterations in the tumor transcriptome that may contribute to further resistance after combination therapy, warranting further investigations. As an emerging strategy, ongoing clinical trials with anti-PD-1 and anti-TIGIT antibodies provide limited data. The improved humanized mouse HCC-PDX model not only sheds light on the pivotal role of NK cells but also serves as a robust platform for evaluating safety and anti-tumor efficacy of combination therapies and other potential regimens, complementing clinical insights.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Mice
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- CD56 Antigen/metabolism
- CD56 Antigen/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Xenograft Model Antitumor Assays
- Single-Cell Analysis/methods
- Tumor Microenvironment/immunology
- Disease Models, Animal
- Cell Line, Tumor
- Sequence Analysis, RNA/methods
- Dependovirus/genetics
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sarah L Harden
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shawn Lu Wen Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Rachel Jun Rou Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Isha Karnik
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Timothy Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Republic of Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Republic of Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore.
| |
Collapse
|
5
|
Yu CI, Maser R, Marches F, Banchereau J, Palucka K. Protocol to construct humanized mice with adult CD34 + hematopoietic stem and progenitor cells. STAR Protoc 2024; 5:103155. [PMID: 38935509 PMCID: PMC11260840 DOI: 10.1016/j.xpro.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Humanized mice, defined as mice with human immune systems, have become an emerging model to study human hematopoiesis, infectious disease, and cancer. Here, we describe the techniques to generate humanized NSGF6 mice using adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We describe steps for constructing and monitoring the engraftment of humanized mice. We then detail procedures for tissue processing and immunophenotyping by flow cytometry to evaluate the multilineage hematopoietic differentiation. For complete details on the use and execution of this protocol, please refer to Yu et al.1.
Collapse
Affiliation(s)
- Chun I Yu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Rick Maser
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | | | | | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
6
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
7
|
Daneels W, Van Parys A, Huyghe L, Rogge E, De Rouck S, Christiaen R, Zabeau L, Taveirne S, Van Dorpe J, Kley N, Cauwels A, Depla E, Tavernier J, Offner F. High efficacy of huCD20-targeted AcTaferon in humanized patient derived xenograft models of aggressive B cell lymphoma. Exp Hematol Oncol 2024; 13:59. [PMID: 38831452 PMCID: PMC11145843 DOI: 10.1186/s40164-024-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.
Collapse
Affiliation(s)
- Willem Daneels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
| | - Alexander Van Parys
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Elke Rogge
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Steffi De Rouck
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | | | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences BV, Ghent, Belgium
| | - Anje Cauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | - Jan Tavernier
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Fritz Offner
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Zhou J, Liu C, Amornphimoltham P, Cheong SC, Gutkind JS, Chen Q, Wang Z. Mouse Models for Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:585-595. [PMID: 38722077 DOI: 10.1177/00220345241240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The prognosis and survival rate of head and neck squamous cell carcinoma (HNSCC) have remained unchanged for years, and the pathogenesis of HNSCC is still not fully understood, necessitating further research. An ideal animal model that accurately replicates the complex microenvironment of HNSCC is urgently needed. Among all the animal models for preclinical cancer research, tumor-bearing mouse models are the best known and widely used due to their high similarity to humans. Currently, mouse models for HNSCC can be broadly categorized into chemical-induced models, genetically engineered mouse models (GEMMs), and transplanted mouse models, each with its distinct advantages and limitations. In chemical-induced models, the carcinogen spontaneously initiates tumor formation through a multistep process. The resemblance of this model to human carcinogenesis renders it an ideal preclinical platform for studying HNSCC initiation and progression from precancerous lesions. The major drawback is that these models are time-consuming and, like human cancer, unpredictable in terms of timing, location, and number of lesions. GEMMs involve transgenic and knockout mice with gene modifications, leading to malignant transformation within a tumor microenvironment that recapitulates tumorigenesis in vivo, including their interaction with the immune system. However, most HNSCC GEMMs exhibit low tumor incidence and limited prognostic significance when translated to clinical studies. Transplanted mouse models are the most widely used in cancer research due to their consistency, availability, and efficiency. Based on the donor and recipient species matching, transplanted mouse models can be divided into xenografts and syngeneic models. In the latter, transplanted cells and host are from the same strain, making syngeneic models relevant to study functional immune system. In this review, we provide a comprehensive summary of the characteristics, establishment methods, and potential applications of these different HNSCC mouse models, aiming to assist researchers in choosing suitable animal models for their research.
Collapse
Affiliation(s)
- J Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - C Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - P Amornphimoltham
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - S C Cheong
- Translational Cancer Biology, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - J S Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Q Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Z Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Hasler MF, Speck RF, Kadzioch NP. Humanized mice for studying HIV latency and potentially its eradication. Curr Opin HIV AIDS 2024; 19:157-167. [PMID: 38547338 DOI: 10.1097/coh.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF THE REVIEW The quest for an HIV cure faces a formidable challenge: the persistent presence of latent viral infections within the cells and tissues of infected individuals. This review provides a thorough examination of discussions surrounding HIV latency, the use of humanized mouse models, and strategies aimed at eliminating the latent HIV reservoir. It explores the hurdles and advancements in understanding HIV pathogenesis, mainly focusing on establishing latent reservoirs in CD4 + T cells and macrophages. Introducing the concepts of functional and sterile cures, the review underscores the indispensable role of humanized mouse models in HIV research, offering crucial insights into the efficacy of cART and the ongoing pursuit of an HIV cure. RECENT FINDINGS Here, we highlight studies investigating molecular mechanisms and pathogenesis related to HIV latency in humanized mice and discuss novel strategies for eradicating latent HIV. Emphasizing the importance of analytical cART interruption in humanized mouse studies to gauge its impact on the latent reservoir accurately, the review underlines the ongoing progress and challenges in harnessing humanized mouse models for HIV research. SUMMARY This review suggests that humanized mice models provide valuable insights into HIV latency and potential eradication strategies, contributing significantly to the quest for an HIV cure.
Collapse
Affiliation(s)
- Moa F Hasler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
10
|
Luo Y, de Gruijl FR, Vermeer MH, Tensen CP. "Next top" mouse models advancing CTCL research. Front Cell Dev Biol 2024; 12:1372881. [PMID: 38665428 PMCID: PMC11044687 DOI: 10.3389/fcell.2024.1372881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review systematically describes the application of in vivo mouse models in studying cutaneous T-cell lymphoma (CTCL), a complex hematological neoplasm. It highlights the diverse research approaches essential for understanding CTCL's intricate pathogenesis and evaluating potential treatments. The review categorizes various mouse models, including xenograft, syngeneic transplantation, and genetically engineered mouse models (GEMMs), emphasizing their contributions to understanding tumor-host interactions, gene functions, and studies on drug efficacy in CTCL. It acknowledges the limitations of these models, particularly in fully replicating human immune responses and early stages of CTCL. The review also highlights novel developments focusing on the potential of skin-targeted GEMMs in studying natural skin lymphoma progression and interactions with the immune system from onset. In conclusion, a balanced understanding of these models' strengths and weaknesses are essential for accelerating the deciphering of CTCL pathogenesis and developing treatment methods. The GEMMs engineered to target specifically skin-homing CD4+ T cells can be the next top mouse models that pave the way for exploring the effects of CTCL-related genes.
Collapse
Affiliation(s)
| | | | | | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
12
|
Board NL, Yuan Z, Wu F, Moskovljevic M, Ravi M, Sengupta S, Mun SS, Simonetti FR, Lai J, Tebas P, Lynn K, Hoh R, Deeks SG, Siliciano JD, Montaner LJ, Siliciano RF. Bispecific antibodies promote natural killer cell-mediated elimination of HIV-1 reservoir cells. Nat Immunol 2024; 25:462-470. [PMID: 38278966 PMCID: PMC10907297 DOI: 10.1038/s41590-023-01741-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, PA, USA
| | - Fengting Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meghana Ravi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung Soo Mun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo Tebas
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Kenneth Lynn
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Robert F Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
13
|
Martinez-Ruiz L, López-Rodríguez A, Florido J, Rodríguez-Santana C, Rodríguez Ferrer JM, Acuña-Castroviejo D, Escames G. Patient-derived tumor models in cancer research: Evaluation of the oncostatic effects of melatonin. Biomed Pharmacother 2023; 167:115581. [PMID: 37748411 DOI: 10.1016/j.biopha.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models. In this context, there are different patient-derived models, which have emerged as a powerful oncological tool: patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived cells (PDCs). Although all these models are widely applied, PDXs, which are created by engraftment of patient tumor tissues into mice, is considered more reliable. In fundamental research, the PDX model is used to evaluate drug-sensitive markers and, in clinical practice, to select a personalized therapeutic strategy. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. However, the literature regarding the oncostatic effect of melatonin in patient-derived tumor models is scant. This review aims to describe the important role of patient-derived models in the development of anticancer treatments, focusing, in particular, on PDX models, as well as their use in cancer research. This review also summarizes the existing literature on the anti-tumoral effect of melatonin in patient-derived models in order to propose future anti-neoplastic clinical applications.
Collapse
Affiliation(s)
- Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Cesar Rodríguez-Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - José M Rodríguez Ferrer
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain.
| |
Collapse
|
14
|
Gao J, Ren S, Choonoo G, Chen G, Frleta D, Zhong J, Gupta N, Sharma P, Oyejide A, Atwal GS, Macdonald L, Murphy A, Kuhnert F. Microenvironment-dependent growth of Sezary cells in humanized IL-15 mice. Dis Model Mech 2023; 16:dmm050190. [PMID: 37718909 PMCID: PMC10581384 DOI: 10.1242/dmm.050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Sezary syndrome (SS) is a rare, aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) that lacks adequate therapeutic options and representative small-animal models. Here, we demonstrate that IL-15 is a critical CTCL growth factor. Importantly, an immunodeficient knock-in mouse model genetically engineered to express human IL-15 uniquely supported the growth of SS patient samples relative to conventional immunodeficient mouse strains. SS patient-derived xenograft (PDX) models recapacitated key pathological features of the human disease, including skin infiltration and spread of leukemic cells to the periphery, and maintained the dependence on human IL-15 upon serial in vivo passaging. Detailed molecular characterization of the engrafted cells by single-cell transcriptomic analysis revealed congruent neoplastic gene expression signatures but distinct clonal engraftment patterns. Overall, we document an important dependence of Sezary cell survival and proliferation on IL-15 signaling and the utility of immunodeficient humanized IL-15 mice as hosts for SS - and potentially other T and NK cell-derived hematologic malignancies - PDX model generation. Furthermore, these studies advocate the thorough molecular understanding of the resultant PDX models to maximize their translational impact.
Collapse
Affiliation(s)
- Jie Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shumei Ren
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Namita Gupta
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Prachi Sharma
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
15
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
18
|
Saikumar Lakshmi P, Oduor CI, Forconi CS, M'Bana V, Bly C, Gerstein RM, Otieno JA, Ong'echa JM, Münz C, Luftig MA, Brehm MA, Bailey JA, Moormann AM. Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies. Life Sci Alliance 2023; 6:e202101355. [PMID: 36878637 PMCID: PMC9990458 DOI: 10.26508/lsa.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.
Collapse
Affiliation(s)
- Priya Saikumar Lakshmi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff I Oduor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Viriato M'Bana
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Courtney Bly
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rachel M Gerstein
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services, Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
19
|
Zhang Y, Tan W, Sultonova RD, Nguyen DH, Zheng JH, You SH, Rhee JH, Kim SY, Khim K, Hong Y, Min JJ. Synergistic cancer immunotherapy utilizing programmed Salmonella typhimurium secreting heterologous flagellin B conjugated to interleukin-15 proteins. Biomaterials 2023; 298:122135. [PMID: 37148758 DOI: 10.1016/j.biomaterials.2023.122135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The use of appropriately designed immunotherapeutic bacteria is an appealing approach to tumor therapy because the bacteria specifically target tumor tissue and deliver therapeutic payloads. The present study describes the engineering of an attenuated strain of Salmonella typhimurium deficient in ppGpp biosynthesis (SAM) that could secrete Vibrio vulnificus flagellin B (FlaB) conjugated to human (hIL15/FlaB) and mouse (mIL15/FlaB) interleukin-15 proteins in the presence of L-arabinose (L-ara). These strains, named SAMphIF and SAMpmIF, respectively, secreted fusion proteins that retained bioactivity of both FlaB and IL15. SAMphIF and SAMpmIF inhibited the growth of MC38 and CT26 subcutaneous (sc) tumors in mice and increased mouse survival rate more efficiently than SAM expressing FlaB alone (SAMpFlaB) or IL15 alone (SAMpmIL15 and SAMphIL15), although SAMpmIF had slightly greater antitumor activity than SAMphIF. The mice treated with these bacteria showed enhanced macrophage phenotype shift, from M2-like to M1-like, as well as greater proliferation and activation of CD4+ T, CD8+ T, NK, and NKT cells in tumor tissues. After tumor eradication by these bacteria, ≥50% of the mice show no evidence of tumor recurrence upon rechallenge with the same tumor cells, indicating that they had acquired long-term immune memory. Treatment of mice of 4T1 and B16F10 highly malignant sc tumors with a combination of these bacteria and an immune checkpoint inhibitor, anti-PD-L1 antibody, significantly suppressed tumor metastasis and increased mouse survival rate. Taken together, these findings suggest that SAM secreting IL15/FlaB is a novel therapeutic candidate for bacterial-mediated cancer immunotherapy and that its antitumor activity is enhanced by combination with anti-PD-L1 antibody.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Rukhsora D Sultonova
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | | | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Koemchhoy Khim
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
20
|
Lin W, Singh V, Springer R, Choonoo G, Gupta N, Patel A, Frleta D, Zhong J, Owczarek T, Decker C, Macdonald L, Murphy A, Thurston G, Mohrs M, Ioffe E, Lu YF. Human CD4 cytotoxic T lymphocytes mediate potent tumor control in humanized immune system mice. Commun Biol 2023; 6:447. [PMID: 37185301 PMCID: PMC10130128 DOI: 10.1038/s42003-023-04812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Efficacy of immune checkpoint inhibitors in cancers can be limited by CD8 T cell dysfunction or HLA-I down-regulation. Tumor control mechanisms independent of CD8/HLA-I axis would overcome these limitations. Here, we report potent CD4 T cell-mediated tumor regression and memory responses in humanized immune system (HIS) mice implanted with HT-29 colorectal tumors. The regressing tumors showed increased CD4 cytotoxic T lymphocyte (CTL) infiltration and enhanced tumor HLA-II expression compared to progressing tumors. The intratumoral CD4 T cell subset associated with tumor regression expressed multiple cytotoxic markers and exhibited clonal expansion. Notably, tumor control was abrogated by depletion of CD4 but not CD8 T cells. CD4 T cells derived from tumor-regressing mice exhibited HLA-II-dependent and tumor-specific killing ex vivo. Taken together, our study demonstrates a critical role of human CD4 CTLs in mediating tumor clearance independent of CD8 T cells and provides a platform to study human anti-tumor immunity in vivo.
Collapse
Affiliation(s)
- Wen Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Varan Singh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Raynel Springer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gabrielle Choonoo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Namita Gupta
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Aditi Patel
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corinne Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Markus Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Ella Ioffe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi-Fen Lu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
21
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
22
|
Patel AK, Dhanik A, Lim WK, Adler C, Ni M, Wei Y, Zhong M, Nguyen C, Zhong J, Lu YF, Thurston G, Macdonald L, Murphy A, Gurer C, Frleta D. Spontaneous tumor regression mediated by human T cells in a humanized immune system mouse model. Commun Biol 2023; 6:444. [PMID: 37087494 PMCID: PMC10122651 DOI: 10.1038/s42003-023-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Immunodeficient mice reconstituted with a human immune system (HIS mice) give rise to human T cells, which make them an attractive system to study human immune responses to tumors. However, such HIS mice typically exhibit sub-optimal responses to immune challenges as well as fail to develop antigen-specific B or T cell memory. Here we report HIS mice mediate spontaneous regression of human B cell lymphoma Raji. Tumor regression was dependent on CD4+ and CD8+ T cell responses and resulted in T cell memory. The T cell memory elicited was mainly Raji-specific, however some level of cross-protection was also elicited to a related B cell lymphoma cell line Ramos. Single-cell RNAseq analysis indicated activation of CD8+ T cells in regressing Raji tumors as well as clonal expansion of specific T cell receptors (TCRs). Cloning of TCRs from Raji-infiltrating T cells into a Jurkat reporter cell line showed reactivity specific for Raji tumor cells. Overall, we report a platform for studying in vivo human T cell tumor immunity by highlighting spontaneous Raji tumor regression, clonal TCR expansion, and T cell memory in HIS mice.
Collapse
Affiliation(s)
- A K Patel
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Ankur Dhanik
- Gritstone Bio, 40 Erie St., Cambridge, MA, 02139, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Maggie Zhong
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Cindy Nguyen
- Eli Lilly and Company, 450 E 29th St., New York, NY, 10016, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Yi-Fen Lu
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Cagan Gurer
- TScan Therapuetics, 830 Winter St., Waltham, MA, 02451, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA.
| |
Collapse
|
23
|
Flahou C, Morishima T, Higashi N, Hayashi Y, Xu H, Wang B, Zhang C, Ninomiya A, Qiu WY, Yuzuriha A, Suzuki D, Nakamura S, Manz M, Kaneko S, Hotta A, Takizawa H, Eto K, Sugimoto N. Humanized mouse models with endogenously developed human natural killer cells for in vivo immunogenicity testing of HLA class I-edited iPSC-derived cells. Biochem Biophys Res Commun 2023; 662:76-83. [PMID: 37099813 DOI: 10.1016/j.bbrc.2023.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) genetically depleted of human leucocyte antigen (HLA) class I expression can bypass T cell alloimmunity and thus serve as a one-for-all source for cell therapies. However, these same therapies may elicit rejection by natural killer (NK) cells, since HLA class I molecules serve as inhibitory ligands of NK cells. Here, we focused on testing the capacity of endogenously developed human NK cells in humanized mice (hu-mice) using MTSRG and NSG-SGM3 strains to assay the tolerance of HLA-edited iPSC-derived cells. High NK cell reconstitution was achieved with the engraftment of cord blood-derived human hematopoietic stem cells (hHSCs) followed by the administration of human interleukin-15 (hIL-15) and IL-15 receptor alpha (hIL-15Rα). Such "hu-NK mice" rejected HLA class I-null hiPSC-derived hematopoietic progenitor cells (HPCs), megakaryocytes and T cells, but not HLA-A/B-knockout, HLA-C expressing HPCs. To our knowledge, this study is the first to recapitulate the potent endogenous NK cell response to non-tumor HLA class I-downregulated cells in vivo. Our hu-NK mouse models are suitable for the non-clinical evaluation of HLA-edited cells and will contribute to the development of universal off-the-shelf regenerative medicine.
Collapse
Affiliation(s)
- Charlotte Flahou
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, Kumamoto University, Kumamoto, Japan; Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Natsumi Higashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yoshikazu Hayashi
- Laboratory of Stem Cell Stress, Kumamoto University, Kumamoto, Japan; Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Huaigeng Xu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Chaoqi Zhang
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Atsushi Ninomiya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Wei-Yin Qiu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akinori Yuzuriha
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Suzuki
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Markus Manz
- Department of Hematology, University and University Hospital Zurich, 8091, Switzerland
| | - Shin Kaneko
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Clark KM, Kim JG, Wang Q, Gao H, Presti RM, Shan L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat Chem Biol 2023; 19:431-439. [PMID: 36357533 PMCID: PMC10065922 DOI: 10.1038/s41589-022-01182-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce pyroptosis of HIV-1-infected CD4+ T cells through induction of intracellular HIV-1 protease activity, which activates the CARD8 inflammasome. Because high concentrations of NNRTIs are required for efficient elimination of HIV-1-infected cells, it is important to elucidate ways to sensitize the CARD8 inflammasome to NNRTI-induced activation. We show that this sensitization can be achieved through chemical inhibition of the CARD8 negative regulator DPP9. The DPP9 inhibitor Val-boroPro (VbP) can kill HIV-1-infected cells without the presence of NNRTIs and act synergistically with NNRTIs to promote clearance of HIV-1-infected cells in vitro and in humanized mice. More importantly, VbP is able to enhance clearance of residual HIV-1 in CD4+ T cells isolated from people living with HIV (PLWH). We also show that VbP can partially overcome NNRTI resistance. This offers a promising strategy for enhancing NNRTI efficacy in the elimination of HIV-1 reservoirs in PLWH.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
25
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
27
|
Grimaldi C, Ibraghimov A, Kiessling A, Rattel B, Ji C, Fuller CL, Brennan FR, Regenass-Lechner F, Shenton J, Price KD, Piché MS, Steeves MA, Prell R, Dudal S, Kronenberg S, Freebern W, Blanset D. Current nonclinical approaches for immune assessments of immuno-oncology biotherapeutics. Drug Discov Today 2023; 28:103440. [PMID: 36375739 DOI: 10.1016/j.drudis.2022.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Harnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities. Challenges and limitations of knowledge and models are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sherri Dudal
- Roche Pharmaceutical Research and Early Development, United States
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, United States
| | | | - Diann Blanset
- Boehringer Ingelheim Pharmaceuticals, Inc., United States.
| |
Collapse
|
28
|
Gerace D, Zhou Q, Kenty JHR, Veres A, Sintov E, Wang X, Boulanger KR, Li H, Melton DA. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep Med 2023; 4:100879. [PMID: 36599351 PMCID: PMC9873825 DOI: 10.1016/j.xcrm.2022.100879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Immunological protection of transplanted stem cell-derived islet (SC-islet) cells is yet to be achieved without chronic immunosuppression or encapsulation. Existing genetic engineering approaches to produce immune-evasive SC-islet cells have so far shown variable results. Here, we show that targeting human leukocyte antigens (HLAs) and PD-L1 alone does not sufficiently protect SC-islet cells from xenograft (xeno)- or allograft (allo)-rejection. As an addition to these approaches, we genetically engineer SC-islet cells to secrete the cytokines interleukin-10 (IL-10), transforming growth factor β (TGF-β), and modified IL-2 such that they promote a tolerogenic local microenvironment by recruiting regulatory T cells (Tregs) to the islet grafts. Cytokine-secreting human SC-β cells resist xeno-rejection and correct diabetes for up to 8 weeks post-transplantation in non-obese diabetic (NOD) mice. Thus, genetically engineering human embryonic SCs (hESCs) to induce a tolerogenic local microenvironment represents a promising approach to provide SC-islet cells as a cell replacement therapy for diabetes without the requirement for encapsulation or immunosuppression.
Collapse
Affiliation(s)
- Dario Gerace
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Quan Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Jennifer Hyoje-Ryu Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Adrian Veres
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Xi Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Kyle R Boulanger
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Hongfei Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Kim JT, Zack JA. A humanized mouse model to study NK cell biology during HIV infection. J Clin Invest 2022; 132:e165620. [PMID: 36519544 PMCID: PMC9753985 DOI: 10.1172/jci165620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NK cells are an important subset of innate immune effectors with antiviral activity. However, NK cell development and immune responses in different tissues during acute and chronic HIV infection in vivo have been difficult to study due to the impaired development and function of NK cells in conventional humanized mouse models. In this issue of the JCI, Sangur et al. report on a transgenic MISTRG-6-15 mouse model with human IL-6 and IL-15 knocked into the previously constructed MISTRG mice. The predecessor model was deficient in Rag2 and γ chain (γc) with knock-in expression of human M-CSF, IL-3, GM-CSF, and TPO, and transgenic expression of human SIRPα. The researchers studied tissue-specific NK cell immune responses during HIV infection and clearly show that the endogenous human NK cells in the humanized mouse model suppressed HIV-1 replication in vivo. These findings provide insight into harnessing the innate immune response for clinical antiviral therapies.
Collapse
Affiliation(s)
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, and
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
30
|
Sungur CM, Wang Q, Ozantürk AN, Gao H, Schmitz AJ, Cella M, Yokoyama WM, Shan L. Human NK cells confer protection against HIV-1 infection in humanized mice. J Clin Invest 2022; 132:e162694. [PMID: 36282589 PMCID: PMC9753998 DOI: 10.1172/jci162694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection, improved functional development of human NK cells in these hosts is needed. Here, we report the humanized MISTRG-6-15 mouse model, in which NK cells were quick to expand and exhibit degranulation, cytotoxicity, and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells, antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover, a broadly neutralizing antibody, PGT121, enhanced NK cell function in vivo, consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall, our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
Collapse
Affiliation(s)
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine
| | | | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
31
|
Prévost J, Anand SP, Rajashekar JK, Zhu L, Richard J, Goyette G, Medjahed H, Gendron-Lepage G, Chen HC, Chen Y, Horwitz JA, Grunst MW, Zolla-Pazner S, Haynes BF, Burton DR, Flavell RA, Kirchhoff F, Hahn BH, Smith AB, Pazgier M, Nussenzweig MC, Kumar P, Finzi A. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. Cell Rep 2022; 41:111624. [PMID: 36351384 PMCID: PMC9703018 DOI: 10.1016/j.celrep.2022.111624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jyothi Krishnaswamy Rajashekar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Yaozong Chen
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael W Grunst
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), Duke University, Durham, NC 27710, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
32
|
Fraker S, Atkinson B, Heredia A. Humanized mouse models for preclinical evaluation of HIV cure strategies. AIDS Rev 2022; 24:139-151. [PMID: 35622983 PMCID: PMC9643647 DOI: 10.24875/aidsrev.22000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Although the world is currently focused on the COVID-19 pandemic, HIV/AIDS remains a significant threat to public health. To date, the HIV/AIDS pandemic has claimed the lives of over 36 million people, while nearly 38 million people are currently living with the virus. Despite the undeniable success of antiretroviral therapy (ART) in controlling HIV, the medications are not curative. Soon after initial infection, HIV integrates into the genome of infected cells as a provirus, primarily, within CD4+ T lymphocytes and tissue macrophages. When not actively transcribed, the provirus is referred to as a latent reservoir because it is hidden to the immune system and ART. Following ART discontinuation, HIV may emerge from the replication-competent proviruses and resumes the infection of healthy cells. Thus, these latent reservoirs are a major obstacle to an HIV cure, and their removal remains a priority. A vital aspect in the development of curative therapies is the demonstration of efficacy in an animal model, such as the humanized mouse model. Therefore, optimization, standardization, and validation of the humanized mouse model are a priority. The purpose of this review article is to provide an update on existing humanized mouse models, highlighting the advantages and disadvantages of each as they pertain to HIV cure studies and to review the approaches to curative therapies that are under investigation.
Collapse
Affiliation(s)
- Sally Fraker
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Benjamin Atkinson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
33
|
Tavaré R, Danton M, Giurleo JT, Makonnen S, Hickey C, Arnold TC, Kelly MP, Fredriksson F, Bruestle K, Hermann A, Ullman E, Edelmann KH, Potocky T, Dudgeon D, Bhatt NB, Doubrovin M, Barry T, Kyratsous CA, Gurer C, Tu N, Gartner H, Murphy A, Macdonald LE, Popke J, Mintz A, Griesemer A, Olson WC, Thurston G, Ma D, Kirshner JR. Immuno-PET Monitoring of Lymphocytes Using the CD8-Specific Antibody REGN5054. Cancer Immunol Res 2022; 10:1190-1209. [PMID: 35895745 PMCID: PMC9541172 DOI: 10.1158/2326-6066.cir-21-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Assessment of immune-cell subsets within the tumor immune microenvironment is a powerful approach to better understand cancer immunotherapy responses. However, the use of biopsies to assess the tumor immune microenvironment poses challenges, including the potential for sampling error, restricted sampling over time, and inaccessibility of some tissues/organs, as well as the fact that single biopsy analyses do not reflect discordance across multiple intrapatient tumor lesions. Immuno-positron emission tomography (PET) presents a promising translational imaging approach to address the limitations and assess changes in the tumor microenvironment. We have developed 89Zr-DFO-REGN5054, a fully human CD8A-specific antibody conjugate, to assess CD8+ tumor-infiltrating lymphocytes (TIL) pre- and posttherapy. We used multiple assays, including in vitro T-cell activation, proliferation, and cytokine production, and in vivo viral clearance and CD8 receptor occupancy, to demonstrate that REGN5054 has minimal impact on T-cell activity. Preclinical immuno-PET studies demonstrated that 89Zr-DFO-REGN5054 specifically detected CD8+ T cells in lymphoid tissues of CD8-genetically humanized immunocompetent mice (VelociT mice) and discerned therapy-induced changes in CD8+ TILs in two models of response to a CD20xCD3 T-cell activating bispecific antibody (REGN1979, odronextamab). Toxicology studies in cynomolgus monkeys showed no overt toxicity, and immuno-PET imaging in cynomolgus monkeys demonstrated dose-dependent clearance and specific targeting to lymphoid tissues. This work supports the clinical investigation of 89Zr-DFO-REGN5054 to monitor T-cell responses in patients undergoing cancer immunotherapy.
Collapse
Affiliation(s)
- Richard Tavaré
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | | | | | | | - Carlos Hickey
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Tomas C Arnold
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Marcus P Kelly
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Fanny Fredriksson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
- Department of Surgery, Columbia University Medical Center, New York, 10032, USA
| | - Karina Bruestle
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
- Department of Surgery, Columbia University Medical Center, New York, 10032, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | | | - Terra Potocky
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Nikunj B Bhatt
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mikhail Doubrovin
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas Barry
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | | | - Cagan Gurer
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Naxin Tu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Hans Gartner
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | | | - Jon Popke
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Akiva Mintz
- Columbia University PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
- Department of Surgery, Columbia University Medical Center, New York, 10032, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Dangshe Ma
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | | |
Collapse
|
34
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
35
|
Aouad P, Zhang Y, De Martino F, Stibolt C, Ali S, Ambrosini G, Mani SA, Maggs K, Quinn HM, Sflomos G, Brisken C. Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nat Commun 2022; 13:4975. [PMID: 36008376 PMCID: PMC9411634 DOI: 10.1038/s41467-022-32523-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER+). A clinical challenge of ER+ BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models. We compare intraductal xenografts of ER+ and triple-negative (TN) BC cells and demonstrate that disseminated TNBC cells proliferate similarly as TNBC cells at the primary site whereas disseminated ER+ BC cells proliferate slower, they decrease CDH1 and increase ZEB1,2 expressions, and exhibit characteristics of epithelial-mesenchymal plasticity (EMP) and dormancy. Forced E-cadherin expression overcomes ER+ BC dormancy. Cytokine signalings are enriched in more active versus inactive disseminated tumour cells, suggesting microenvironmental triggers for awakening. We conclude that intraductal xenografts model ER + BC dormancy and reveal that EMP is essential for the generation of a dormant cell state and that targeting exit from EMP has therapeutic potential.
Collapse
Affiliation(s)
- Patrick Aouad
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Yueyun Zhang
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Fabio De Martino
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Céline Stibolt
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Giovanna Ambrosini
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly Maggs
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, CH-1015, Lausanne, Switzerland
| | - Hazel M Quinn
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - George Sflomos
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
36
|
Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022; 12:976065. [PMID: 36033445 PMCID: PMC9413077 DOI: 10.3389/fonc.2022.976065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Molecularly targeted treatments and immunotherapy are cornerstones in oncology, with demonstrated efficacy across different tumor types. Nevertheless, the overwhelming majority metastatic disease is incurable due to the onset of drug resistance. Preclinical models including genetically engineered mouse models, patient-derived xenografts and two- and three-dimensional cell cultures have emerged as a useful resource to study mechanisms of cancer progression and predict efficacy of anticancer drugs. However, variables including tumor heterogeneity and the complexities of the microenvironment can impair the faithfulness of these platforms. Here, we will discuss advantages and limitations of these preclinical models, their applicability for drug testing and in co-clinical trials and potential strategies to increase their reliability in predicting responsiveness to anticancer medications.
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Kleinmanns K, Gullaksen SE, Bredholt G, Davidson B, Torkildsen CF, Grindheim S, Bjørge L, McCormack E. Humanized Ovarian Cancer Patient-Derived Xenografts for Improved Preclinical Evaluation of Immunotherapies. Cancers (Basel) 2022; 14:3092. [PMID: 35804867 PMCID: PMC9265069 DOI: 10.3390/cancers14133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) has poor prognosis and new treatment modalities are needed. Immunotherapy, with checkpoint inhibitors, have demonstrated limited impact. To evaluate the suitability for immunotherapeutics, contextualized preclinical models are required to secure meaningful clinical translation. Therefore, we developed and characterized humanized patient-derived xenograft (hu PDX) murine models of HGSOC, which were established by orthotopic implantation of tumor cell suspensions and intravenous injection of CD34+ cells isolated from umbilical cord blood samples. The developing human immune system in NSG and NSGS mice was followed longitudinally by flow cytometry and characterized by mass cytometry with a panel of 34 surface markers. Molecular imaging of tumor burden, survival analysis, and characterization of tumor-infiltrating immune cells was performed to assess the treatment response to anti-PD-1 (nivolumab) monotherapy. Successful generation of hu PDX models was achieved. Mice treated with nivolumab showed a decrease in tumor burden, however no significant survival benefit was identified when compared to untreated controls. No correlation was seen between PD-L1 expression and CD8 T cell infiltration and response parameters. As the characterization showed an immune infiltration of predominantly myeloid cells, similar to what is observed in HGSOC patients, the models may have the potential to evaluate the importance of myeloid cell immunomodulation as well.
Collapse
Affiliation(s)
- Katrin Kleinmanns
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Stein-Erik Gullaksen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Geir Bredholt
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway;
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Cecilie Fredvik Torkildsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Sindre Grindheim
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Line Bjørge
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Vivarium, Department of Clinical Science, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| |
Collapse
|
38
|
Tan S, Fang M, Fan W, Wang Z, Lv Y, Zou J, Wang X, Liu B, Yang YG, Hu Z. Improvement of human myeloid and natural killer cell development in humanized mice via hydrodynamic injection of transposon plasmids containing multiple human cytokine genes. Immunol Cell Biol 2022; 100:624-635. [PMID: 35662247 DOI: 10.1111/imcb.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/12/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
Humanized mice reconstituted with a functional human immune system (HIS) are instrumental in studying human immunity and immune disorders in vivo. The poor or lack of cross-reactivity between mouse cytokines and human cells limits the development and/or function of human immune cell subsets including human myeloid, natural killer and B cells. Here we explored the potential to achieve long-term production of human cytokines in immunodeficient mice using a transposon-plasmid-based hydrodynamic injection approach. We constructed a transposon-plasmid carrying five human cytokine coding sequences (named PB-5F), and observed that four of the cytokines (granulocyte-macrophage colony-stimulating factor, interleukin (IL)-15, IL-6 and IL-3) were detectable in sera and three (granulocyte-macrophage colony-stimulating factor, IL-15 and IL-6) showed long-term production in immunodeficient mice that received a single hydrodynamic injection of PB-5F plus the transposase plasmid (Super PB). Furthermore, a single injection of PB-5F/Super PB markedly enhanced the reconstitution of human myeloid cells and natural killer cells, and promoted human B-cell maturation in HIS mice. Taken together, our data revealed that hydrodynamic injection of the PB-5F/Super PB vectors may serve as a convenient and efficacious means to promote human immune function in HIS mice.
Collapse
Affiliation(s)
- Shulian Tan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Minghui Fang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wei Fan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaowei Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanan Lv
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, Wei Y, Zhao L. Patient-Derived Xenograft: A More Standard "Avatar" Model in Preclinical Studies of Gastric Cancer. Front Oncol 2022; 12:898563. [PMID: 35664756 PMCID: PMC9161630 DOI: 10.3389/fonc.2022.898563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains the third most common cause of cancer-related death in humans. The establishment of relevant animal models of gastric cancer is critical for further research. Due to the complexity of the tumor microenvironment and the genetic heterogeneity of gastric cancer, the commonly used preclinical animal models fail to adequately represent clinically relevant models of gastric cancer. However, patient-derived models are able to replicate as much of the original inter-tumoral and intra-tumoral heterogeneity of gastric cancer as possible, reflecting the cellular interactions of the tumor microenvironment. In addition to implanting patient tissues or primary cells into immunodeficient mouse hosts for culture, the advent of alternative hosts such as humanized mouse hosts, zebrafish hosts, and in vitro culture modalities has also facilitated the advancement of gastric cancer research. This review highlights the current status, characteristics, interfering factors, and applications of patient-derived models that have emerged as more valuable preclinical tools for studying the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yonggen Zou
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing, China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: Pre-clinical updates. Oncotarget 2022; 13:553-575. [PMID: 35359749 PMCID: PMC8959092 DOI: 10.18632/oncotarget.28220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in understanding of ovarian cancer biology, the progress in translation of research findings into new therapies is still slow. It is associated in part with limitations of commonly used cancer models such as cell lines and genetically engineered mouse models that lack proper representation of diversity and complexity of actual human tumors. In addition, the development of de novo anticancer drugs is a lengthy and expensive process. A promising alternative to new drug development is repurposing existing FDA-approved drugs without primary oncological purpose. These approved agents have known pharmacokinetics, pharmacodynamics, and toxicology and could be approved as anticancer drugs quicker and at lower cost. To successfully translate repurposed drugs to clinical application, an intermediate step of pre-clinical animal studies is required. To address challenges associated with reliability of tumor models for pre-clinical studies, there has been an increase in development of patient-derived xenografts (PDXs), which retain key characteristics of the original patient’s tumor, including histologic, biologic, and genetic features. The expansion and utilization of clinically and molecularly annotated PDX models derived from different ovarian cancer subtypes could substantially aid development of new therapies or rapid approval of repurposed drugs to improve treatment options for ovarian cancer patients.
Collapse
|
41
|
Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int J Mol Sci 2022; 23:ijms23063154. [PMID: 35328572 PMCID: PMC8955360 DOI: 10.3390/ijms23063154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.
Collapse
|
42
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
43
|
Ju C, Liang J, Zhang M, Zhao J, Li L, Chen S, Zhao J, Gao X. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022; 33:143-156. [PMID: 35138443 DOI: 10.1007/s00335-021-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Mouse models are essential for dissecting disease mechanisms and defining potential drug targets. There are more than 18,500 mouse strains available for research communities in National Resource Center for Mutant Mice (NRCMM) of China, affiliated with Model Animal Research Center of Nanjing University and Gempharmatech Company. In 2019, Gempharmatech launched the Knockout All Project (KOAP) aiming to generate null mutants and gene floxed strains for all protein-coding genes in mouse genome within 5 years. So far, KOAP has generated 8,004 floxed strains and 9,769 KO (knockout) strains (updated to Oct, 2021). NRCMM also created hundreds of Cre transgenic lines, mutant knock-in models, immuno-deficient models, and humanized mouse models. As a member of the international mouse phenotyping consortium (IMPC), NRCMM provides comprehensive phenotyping services for mouse models. In summary, NRCMM will continue to support biomedical community with new mouse models as well as related services.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Chen
- Model Animal Research Center of Nanjing University, Nanjing, China.,Nanjing Biomedical Research Institute of Nanjing University, Nanjing, China
| | - Jing Zhao
- GemPharmatech Co., Ltd, Nanjing, China.
| | - Xiang Gao
- National Resource Center for Mutant Mice, Nanjing, China. .,GemPharmatech Co., Ltd, Nanjing, China. .,Model Animal Research Center of Nanjing University, Nanjing, China.
| |
Collapse
|
44
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Moquin-Beaudry G, Benabdallah B, Maggiorani D, Le O, Li Y, Colas C, Raggi C, Ellezam B, M'Callum MA, Dal Soglio D, Guimond JV, Paganelli M, Haddad E, Beauséjour C. Autologous humanized mouse models of iPSC-derived tumors enable characterization and modulation of cancer-immune cell interactions. CELL REPORTS METHODS 2022; 2:100153. [PMID: 35474871 PMCID: PMC9017190 DOI: 10.1016/j.crmeth.2021.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 01/21/2023]
Abstract
Modeling the tumor-immune cell interactions in humanized mice is complex and limits drug development. Here, we generated easily accessible tumor models by transforming either primary skin fibroblasts or induced pluripotent stem cell-derived cell lines injected in immune-deficient mice reconstituted with human autologous immune cells. Our results showed that fibroblastic, hepatic, or neural tumors were all efficiently infiltrated and partially or totally rejected by autologous immune cells in humanized mice. Characterization of tumor-immune infiltrates revealed high expression levels of the dysfunction markers Tim3 and PD-1 in T cells and an enrichment in regulatory T cells, suggesting rapid establishment of immunomodulatory phenotypes. Inhibition of PD-1 by Nivolumab in humanized mice resulted in increased immune cell infiltration and a slight decrease in tumor growth. We expect that these versatile and accessible cancer models will facilitate preclinical studies and the evaluation of autologous cancer immunotherapies across a range of different tumor cell types.
Collapse
Affiliation(s)
- Gaël Moquin-Beaudry
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pharmacologie et Physiologie, Montréal, QC, Canada
| | - Basma Benabdallah
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Damien Maggiorani
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Oanh Le
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Yuanyi Li
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Chloé Colas
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Microbiologie, Immunologie et Infectiologie, Montréal, QC, Canada
| | - Claudia Raggi
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Benjamin Ellezam
- Département de Neurosciences, Montréal, QC, Canada
- Département de Pathologie, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Marie-Agnès M'Callum
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Biologie Moléculaire, Montréal, QC, Canada
| | - Dorothée Dal Soglio
- Département de Pathologie et Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Jean V. Guimond
- CIUSSS du Centre-Sud-de-l’Ile-de-Montréal, Montréal, QC, Canada
| | - Massimiliano Paganelli
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Biologie Moléculaire, Montréal, QC, Canada
- Division of Gastroenterology, Hepatology and Nutrition and Pediatric Liver Transplantation Program at CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
- Département de Pédiatrie, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Microbiologie, Immunologie et Infectiologie, Montréal, QC, Canada
- Département de Pédiatrie, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pharmacologie et Physiologie, Montréal, QC, Canada
| |
Collapse
|
46
|
Shan L, Flavell RA, Herndler-Brandstetter D. Development of Humanized Mouse Models for Studying Human NK Cells in Health and Disease. Methods Mol Biol 2022; 2463:53-66. [PMID: 35344167 PMCID: PMC9116980 DOI: 10.1007/978-1-0716-2160-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Humanized mice, which we define as immunodeficient mice that have been reconstituted with a human immune system, represent promising preclinical models for translational research and precision medicine as they allow modeling and therapy of human diseases in vivo. The first generation of humanized mice showed insufficient development, diversity and function of human immune cells, in particular human natural killer (NK) cells and type 1 innate lymphoid cells (ILC1). This limited the applicability of humanized mice for studying ILC1 and NK cells in the context of human cancers and immunotherapeutic manipulation. However, since 2014, several next-generation humanized mouse models have been developed that express human IL-15 either as a transgene or knock-in (NOG-IL15, NSG-IL15, NSG-IL7-IL15, SRG-15) or show improved development of human myeloid cells, which express human IL-15 and thereby promote human NK cell development (NSG-SGM3, MISTRG, BRGSF). Here we compare the various next-generation humanized mouse models and describe the methodological procedures for creating mice with a functioning human immune system and how they can be used to study and manipulate human NK cells in health and disease.
Collapse
Affiliation(s)
- Liang Shan
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| | - Dietmar Herndler-Brandstetter
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Tourret M, Talvard-Balland N, Lambert M, Ben Youssef G, Chevalier MF, Bohineust A, Yvorra T, Morin F, Azarnoush S, Lantz O, Dalle JH, Caillat-Zucman S. Human MAIT cells are devoid of alloreactive potential: prompting their use as universal cells for adoptive immune therapy. J Immunother Cancer 2021; 9:jitc-2021-003123. [PMID: 34615705 PMCID: PMC8496386 DOI: 10.1136/jitc-2021-003123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells that recognize microbial antigens presented by the highly conserved MR1 molecule. MAIT cells are predominantly localized in the liver and barrier tissues and are potent effectors of antimicrobial defense. MAIT cells are very few at birth and accumulate gradually over a period of about 6 years during the infancy. The cytotoxic potential of MAIT cells, as well as their newly described regulatory and tissue repair functions, open the possibility of exploiting their properties in adoptive therapy. A prerequisite for their use as ‘universal’ cells would be a lack of alloreactive potential, which remains to be demonstrated. Methods We used ex vivo, in vitro and in vivo models to determine if human MAIT cells contribute to allogeneic responses. Results We show that recovery of MAIT cells after allogeneic hematopoietic stem cell transplantation recapitulates their slow physiological expansion in early childhood, independent of recovery of non-MAIT T cells. In vitro, signals provided by allogeneic cells and cytokines do not induce sustained MAIT cell proliferation. In vivo, human MAIT cells do not expand nor accumulate in tissues in a model of T-cell-mediated xenogeneic graft-versus-host disease in immunodeficient mice. Conclusions Altogether, these results provide evidence that MAIT cells are devoid of alloreactive potential and pave the way for harnessing their translational potential in universal adoptive therapy overcoming barriers of HLA disparity. Trial registration number ClinicalTrials.gov number NCT02403089.
Collapse
Affiliation(s)
- Marie Tourret
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Nana Talvard-Balland
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Marion Lambert
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Ghada Ben Youssef
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Mathieu F Chevalier
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Armelle Bohineust
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France
| | - Thomas Yvorra
- INSERM UMR3666/U1143, Université PSL, Institut Curie, Paris, France
| | - Florence Morin
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Saba Azarnoush
- Département d'Immuno-Hématologie, Hôpital Robert Debré, AP-HP, Université de Paris, Paris, France
| | - Olivier Lantz
- INSERM U932, Université PSL, Institut Curie, Paris, France.,Laboratoire d'immunologie clinique & Centre d'investigation Clinique en Biothérapie (CIC-BT1428), Institut Curie, Paris, France
| | - Jean-Hugues Dalle
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France.,Département d'Immuno-Hématologie, Hôpital Robert Debré, AP-HP, Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR976, Human Immunology, Pathophysiology and Immunotherapy, Université de Paris, Paris, France .,Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| |
Collapse
|
48
|
Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet 2021; 30:R274-R284. [PMID: 34089057 PMCID: PMC8490014 DOI: 10.1093/hmg/ddab153] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023] Open
Abstract
The mouse is the pre-eminent model organism for studies of mammalian gene function and has provided an extraordinarily rich range of insights into basic genetic mechanisms and biological systems. Over several decades, the characterization of mouse mutants has illuminated the relationship between gene and phenotype, providing transformational insights into the genetic bases of disease. However, if we are to deliver the promise of genomic and precision medicine, we must develop a comprehensive catalogue of mammalian gene function that uncovers the dark genome and elucidates pleiotropy. Advances in large-scale mouse mutagenesis programmes allied to high-throughput mouse phenomics are now addressing this challenge and systematically revealing novel gene function and multi-morbidities. Alongside the development of these pan-genomic mutational resources, mouse genetics is employing a range of diversity resources to delineate gene-gene and gene-environment interactions and to explore genetic context. Critically, mouse genetics is a powerful tool for assessing the functional impact of human genetic variation and determining the causal relationship between variant and disease. Together these approaches provide unique opportunities to dissect in vivo mechanisms and systems to understand pathophysiology and disease. Moreover, the provision and utility of mouse models of disease has flourished and engages cumulatively at numerous points across the translational spectrum from basic mechanistic studies to pre-clinical studies, target discovery and therapeutic development.
Collapse
|
49
|
Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D'Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021; 11:14397. [PMID: 34257348 PMCID: PMC8277787 DOI: 10.1038/s41598-021-93842-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.
Collapse
Affiliation(s)
- Lauric Haber
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA.
| | - Kara Olson
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Marcus P Kelly
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Richard Tavaré
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Shu Mao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Lauren Canova
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Arpita Pawashe
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ryan McKay
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Sahar Rizvi
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | | | - Priyanka Ram
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Jenny Xiao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Cody Arnold
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Jason Giurleo
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ya Ping Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Tammy Huang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Frank Delfino
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Marc W Retter
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gang Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Samuel Davis
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| |
Collapse
|
50
|
Le DT, Huynh TR, Burt B, Van Buren G, Abeynaike SA, Zalfa C, Nikzad R, Kheradmand F, Tyner JJ, Paust S. Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft. JCI Insight 2021; 6:e140116. [PMID: 34081628 PMCID: PMC8410059 DOI: 10.1172/jci.insight.140116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Existing patient-derived xenograft (PDX) mouse models of solid tumors lack a fully tumor donor-matched, syngeneic, and functional immune system. We developed a model that overcomes these limitations by engrafting lymphopenic recipient mice with a fresh, undisrupted piece of solid tumor, whereby tumor-infiltrating lymphocytes (TILs) persisted in the recipient mice for several weeks. Successful tumor engraftment was achieved in 83% to 89% of TIL-PDX mice, and these were seen to harbor exhausted immuno-effector as well as functional immunoregulatory cells persisting for at least 6 months postengraftment. Combined treatment with interleukin-15 stimulation and immune checkpoint inhibition resulted in complete or partial tumor response in this model. Further, depletion of cytotoxic T lymphocytes and/or natural killer cells before combined immunotherapy revealed that both cell types were required for maximal tumor regression. Our TIL-PDX model provides a valuable resource for powerful mechanistic and therapeutic studies in solid tumors.
Collapse
Affiliation(s)
- Duy Tri Le
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Tridu R Huynh
- Scripps Research Translational Institute, La Jolla, California, USA.,Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, California, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Bryan Burt
- Division of General Thoracic Surgery and
| | - George Van Buren
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shawn A Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Farrah Kheradmand
- Margaret M. and Albert B. Alkek Department of Medicine, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, US Department of Veterans Affairs, Houston, Texas, USA
| | - John J Tyner
- Division of Cardiovascular/Thoracic Surgery, Scripps Clinic, La Jolla, California, USA
| | - Silke Paust
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|