1
|
Shi H, Fu M, Zhang T, Zhang X, Yao L, Xue C, Tang C. Rational Design of Formate Dehydrogenase for Enhanced Thermal Stability and Catalytic Activity in Bioelectrocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23333-23344. [PMID: 39382168 DOI: 10.1021/acs.jafc.4c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Formate dehydrogenase can be utilized as a biocatalyst in the bioelectrocatalysis of converting CO2 into formic acid. However, its industrial application has been hindered by limited thermal stability. This study successfully obtained a mutant (D533S/E684I) with enhanced thermal stability and catalytic activity through the rational design of flexible regions. The mutant exhibited a half-life (t1/2) 1.5 times longer than the wild type (WT) at 35 °C, along with a specific enzyme activity 7.46 times higher than that of the WT. Additionally, the catalytic efficiency (kcat/Km value) of the mutant toward the substrate was 2.72 s-1·mM-1, representing a 19.4-fold increase compared to the WT (0.14 s-1·mM-1). Formic acid production reached 53.4 mM through bioelectrocatalysis after 10 h, utilizing the mutant as the biocatalyst. Molecular dynamics simulations and structural analysis were employed to investigate the molecular mechanisms behind the enhanced thermal stability and activity. The displacement of a highly flexible region in the mutant may counteract the stability-activity trade-off. This study proposed a method for improving both thermal stability and activity in enzyme evolution.
Collapse
Affiliation(s)
- Hongling Shi
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People's Republic of China
| | - Muran Fu
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Tingting Zhang
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Xichuan Zhang
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Lunguang Yao
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People's Republic of China
| | - Cunduo Tang
- Henan Provincial Engineering Research Center of Insect Bio-reactor, College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| |
Collapse
|
2
|
Sarkar S, Dhibar S, Jana B. Modulation of the conformational landscape of the PDZ3 domain by perturbation on a distal non-canonical α3 helix: decoding the microscopic mechanism of allostery in the PDZ3 domain. Phys Chem Chem Phys 2024; 26:21249-21259. [PMID: 39076021 DOI: 10.1039/d4cp01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
While allosteric signal transduction is crucial for protein signaling and regulation, the dynamic process of allosteric communication remains poorly understood. The third PDZ domain (PDZ stands for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1)) serves as a classic example of a single-domain allosteric protein, demonstrating a long-range coupling between the C-terminal α helix (known as the α3 helix) and ligand binding. A molecular level understanding of how the α3 helix modulates the ligand binding affinity of the PDZ3 domain is still lacking. In this study, extensive molecular dynamics simulations corroborated with principal component analysis (PCA), ligand binding free energy calculations, energetic frustration analysis and Markov state model analysis are employed to uncover such molecular details. We demonstrate the definite presence of a binding competent closed-like state in the conformational landscape of wild-type PDZ3. The population modulations of this closed state and other binding incompetent states in the landscape due to α3-truncation/mutation of PDZ3 are explored. A correlation between the closed state population and calculated binding free energy is established, which supports the conformation selection mechanism. Covariance analysis identified the presence of correlated motion between two distant loops (β1-β2 and β2-β3) in the wild-type PDZ3 system, which weakened due to truncation/mutation in the distant α3 helix. It has also been observed that whenever the α3 helix was perturbed, the β2-β3 loop got further away from the binding groove and it is found to be correlated with the binding free energy values. Energetic frustration analysis of the PDZ3 domain also showed that the β2-β3 loop is highly frustrated. Finally, MSM analysis revealed a relevant timescale (closed to open state transition), which is similar to the observed experimental signal transduction timescale for the system. These observations led to the conclusion that the distantly located α3 helix plays a pivotal role in regulating the conformational landscape of the PDZ3 domain, determining the ligand binding affinity and resulting in allosteric behavior of the domain.
Collapse
Affiliation(s)
- Subhajit Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Saikat Dhibar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
3
|
Chakraborty A, Samant D, Sarkar R, Sangeet S, Prusty S, Roy S. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events. J Phys Chem Lett 2024; 15:6115-6125. [PMID: 38830201 DOI: 10.1021/acs.jpclett.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Dibyamanjaree Samant
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
4
|
Sinha K, Basu I, Shah Z, Shah S, Chakrabarty S. Leveraging Bidirectional Nature of Allostery To Inhibit Protein-Protein Interactions (PPIs): A Case Study of PCSK9-LDLR Interaction. J Chem Inf Model 2024; 64:3923-3932. [PMID: 38615325 DOI: 10.1021/acs.jcim.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Ipsita Basu
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Zacharia Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Salim Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| |
Collapse
|
5
|
Sinha K, Kumawat A, Jang H, Nussinov R, Chakrabarty S. Molecular mechanism of regulation of RhoA GTPase by phosphorylation of RhoGDI. Biophys J 2024; 123:57-67. [PMID: 37978802 PMCID: PMC10808049 DOI: 10.1016/j.bpj.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Amit Kumawat
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
| |
Collapse
|
6
|
Gupta AK, Singh K, Patidar Y, Sharma R, Sardesai AA, Reddy G, Gopal B. Allosteric Determinants in High Temperature Requirement A Enzymes Are Conserved and Regulate the Population of Active Conformations. ACS Chem Biol 2023; 18:1487-1499. [PMID: 37319329 DOI: 10.1021/acschembio.2c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature requirement A (HtrA) are allosterically regulated enzymes wherein effector binding to the PDZ domain triggers proteolytic activity. Yet, it remains unclear if the inter-residue network governing allostery is conserved across HtrA enzymes. Here, we investigated and identified the inter-residue interaction networks by molecular dynamics simulations on representative HtrA proteases, Escherichia coli DegS and Mycobacterium tuberculosis PepD, in effector-bound and free forms. This information was used to engineer mutations that could potentially perturb allostery and conformational sampling in a different homologue, M. tuberculosis HtrA. Mutations in HtrA perturbed allosteric regulation─a finding consistent with the hypothesis that the inter-residue interaction network is conserved across HtrA enzymes. Electron density from data collected on cryo-protected HtrA crystals revealed that mutations altered the topology of the active site. Ensemble models fitted into electron density calculated from room-temperature diffraction data showed that only a fraction of these models had a catalytically competent active site conformation alongside a functional oxyanion hole thus providing experimental evidence that these mutations influenced conformational sampling. Mutations at analogous positions in the catalytic domain of DegS perturbed the coupling between effector binding and proteolytic activity, thus confirming the role of these residues in the allosteric response. The finding that a perturbation in the conserved inter-residue network alters conformational sampling and the allosteric response suggests that an ensemble allosteric model best describes regulated proteolysis in HtrA enzymes.
Collapse
Affiliation(s)
- Arvind Kumar Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yogesh Patidar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ravish Sharma
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
7
|
Gianni S, Jemth P. Allostery Frustrates the Experimentalist. J Mol Biol 2023; 435:167934. [PMID: 36586463 DOI: 10.1016/j.jmb.2022.167934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Proteins interact with other proteins, with nucleic acids, lipids, carbohydrates and various small molecules in the living cell. These interactions have been quantified and structurally characterized in numerous studies such that we today have a comprehensive picture of protein structure and function. However, proteins are dynamic and even folded proteins are likely more heterogeneous than they appear in most descriptions. One property of proteins that relies on dynamics and heterogeneity is allostery, the ability of a protein to change structure and function upon ligand binding to an allosteric site. Over the last decades the concept of allostery was broadened to embrace all types of long-range interactions across a protein including purely entropic changes without a conformational change in single protein domains. But with this re-definition came a problem: How do we measure allostery? In this opinion, we discuss some caveats arising from the quantitative description of single-domain allostery from an experimental perspective and how the limitations cannot be separated from the definition of allostery per se. Furthermore, we attempt to tie together allostery with the concept of frustration in an effort to investigate the links between these two complex, and yet general, properties of proteins. We arrive at the conclusion that the sensitivity to perturbation of allosteric networks in single protein domains is too large for the networks to be of significant biological relevance.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
8
|
Cowan B, Beveridge DL, Thayer KM. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J Phys Chem B 2023; 127:623-633. [PMID: 36626697 PMCID: PMC9884075 DOI: 10.1021/acs.jpcb.2c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Collapse
Affiliation(s)
- Benjamin
S. Cowan
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| | - David L. Beveridge
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
9
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
10
|
Ali AAAI, Gulzar A, Wolf S, Stock G. Nonequilibrium Modeling of the Elementary Step in PDZ3 Allosteric Communication. J Phys Chem Lett 2022; 13:9862-9868. [PMID: 36251493 DOI: 10.1021/acs.jpclett.2c02821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. The PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α3-helix and ligand binding. In an intriguing experiment, Hamm and co-workers employed photoswitching of the α3-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured time scales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α3-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α3-ligand contacts, this cooperative transition is considered as the elementary step in the propagation of conformational change.
Collapse
Affiliation(s)
- Ahmed A A I Ali
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Adnan Gulzar
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
11
|
Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery. J Biol Chem 2022; 298:102399. [PMID: 35988639 PMCID: PMC9556785 DOI: 10.1016/j.jbc.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The NtrC family of proteins senses external stimuli and accordingly stimulates stress and virulence pathways via activation of associated σ54-dependent RNA polymerases. However, the structural determinants that mediate this activation are not well understood. Here, we establish using computational, structural, biochemical, and biophysical studies that MopR, an NtrC protein, harbors a dynamic bidirectional electrostatic network that connects the phenol pocket to two distal regions, namely the “G-hinge” and the “allosteric linker.” While the G-hinge influences the entry of phenol into the pocket, the allosteric linker passes the signal to the downstream ATPase domain. We show that phenol binding induces a rewiring of the electrostatic connections by eliciting dynamic allostery and demonstrates that perturbation of the core relay residues results in a complete loss of ATPase stimulation. Furthermore, we found a mutation of the G-hinge, ∼20 Å from the phenol pocket, promotes altered flexibility by shifting the pattern of conformational states accessed, leading to a protein with 7-fold enhanced phenol binding ability and enhanced transcriptional activation. Finally, we conducted a global analysis that illustrates that dynamic allostery-driven conserved community networks are universal and evolutionarily conserved across species. Taken together, these results provide insights into the mechanisms of dynamic allostery-mediated conformational changes in NtrC sensor proteins.
Collapse
|
12
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
13
|
Domino effect in allosteric signaling of peptide binding. J Mol Biol 2022; 434:167661. [DOI: 10.1016/j.jmb.2022.167661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
|
14
|
Sánta A, Czajlik A, Batta G, Péterfia B, Gáspári Z. Resonance assignment of the Shank1 PDZ domain. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:121-127. [PMID: 35083656 PMCID: PMC9068651 DOI: 10.1007/s12104-022-10069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Shank proteins are among the most abundant and well-studied postsynaptic scaffold proteins. Their PDZ domain has unique characteristics as one of its loop regions flanking the ligand-binding site is uniquely long and has also been implicated in the formation of PDZ dimers. Here we report the initial characterization of the Shank1 PDZ domain by solution NMR spectroscopy. The assigned chemical shifts are largely consistent with the common features of PDZ domains in general and the available Shank PDZ crystal structures in particular. Our analysis suggests that under the conditions investigated, the domain is monomeric and the unique loop harbors a short helical segment, observed in only one of the known X-ray structures so far. Our work stresses the importance of solution-state investigations to fully decipher the functional relevance of the structural and dynamical features unique to Shank PDZ domains.
Collapse
Affiliation(s)
- Anna Sánta
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
| | - András Czajlik
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
| | - Gyula Batta
- Faculty of Science and Technology, Institute of Chemistry, Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
| |
Collapse
|
15
|
Lawal MM, Vaissier Welborn V. Structural dynamics support electrostatic interactions in the active site of Adenylate Kinase. Chembiochem 2022; 23:e202200097. [PMID: 35303385 DOI: 10.1002/cbic.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Abstract
Electrostatic preorganization as well as structural and dynamic heterogeneity are often used to rationalize the remarkable catalytic efficiency of enzymes. However, they are often presented as incompatible because the generation of permanent electrostatic effects implies that the protein structure remains rigid. Here, we use a metric, electric fields, that can treat electrostatic contributions and dynamics effects on equal footing, for a unique perspective on enzymatic catalysis. We find that the residues that contribute the most to electrostatic interactions with the substrate in the active site of Adenylate Kinase (our working example) are also the most flexible residues. Further, entropy-tuning mutations raise flexibility at the picosecond timescale where more conformations can be visited on short time periods, thereby softening the sharp heterogeneity normally visible at the microsecond timescale.
Collapse
Affiliation(s)
| | - Valerie Vaissier Welborn
- Virginia Polytechnic Institute and State University, Chemistry, Davidson 421A, 1040 Drillfield Drive, 24073, Blacksburg, UNITED STATES
| |
Collapse
|
16
|
Winston DS, Gorman SD, Boehr DD. Conformational transitions in yeast chorismate mutase important for allosteric regulation as identified by nuclear magnetic resonance spectroscopy. J Mol Biol 2022; 434:167531. [DOI: 10.1016/j.jmb.2022.167531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
|
17
|
Madhu MK, Debroy A, Murarka RK. Molecular Insights into Phosphorylation-Induced Allosteric Conformational Changes in a β 2-Adrenergic Receptor. J Phys Chem B 2022; 126:1917-1932. [PMID: 35196859 DOI: 10.1021/acs.jpcb.1c08610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The large conformational flexibility of G protein-coupled receptors (GPCRs) has been a puzzle in structural and pharmacological studies for the past few decades. Apart from structural rearrangements induced by ligands, enzymatic phosphorylations by GPCR kinases (GRKs) at the carboxy-terminal tail (C-tail) of a GPCR also make conformational alterations to the transmembrane helices and facilitates the binding of one of its transducer proteins named β-arrestin. The phosphorylation-induced conformational transition of the receptor that causes specific binding to β-arrestin but prevents the association of other transducers such as G proteins lacks atomistic understanding and is elusive to experimental studies. Using microseconds of all-atom conventional and Gaussian accelerated molecular dynamics (GaMD) simulations, we investigate the allosteric mechanism of phosphorylation induced-conformational changes in β2-adrenergic receptor, a well-characterized GPCR model system. Free energy profiles reveal that the phosphorylated receptor samples a new conformational state in addition to the canonical active state corroborating with recent nuclear magnetic resonance experimental findings. The new state has a smaller intracellular cavity that is likely to accommodate β-arrestin better than G protein. Using contact map and inter-residue interaction energy calculations, we found the phosphorylated C-tail adheres to the cytosolic surface of the transmembrane domain of the receptor. Transfer entropy calculations show that the C-tail residues drive the correlated motions of TM residues, and the allosteric signal is relayed via several residues at the cytosolic surface. Our results also illustrate how the redistribution of inter-residue nonbonding interaction couples with the allosteric communication from the phosphorylated C-tail to the transmembrane. Atomistic insight into phosphorylation-induced β-arrestin specific conformation is therapeutically important to design drugs with higher efficacy and fewer side effects. Our results, therefore, open novel opportunities to fine-tune β-arrestin bias in GPCR signaling.
Collapse
Affiliation(s)
- Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Annesha Debroy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| |
Collapse
|
18
|
Stevens AO, He Y. Allosterism in the PDZ Family. Int J Mol Sci 2022; 23:1454. [PMID: 35163402 PMCID: PMC8836106 DOI: 10.3390/ijms23031454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dynamic allosterism allows the propagation of signal throughout a protein. The PDZ (PSD-95/Dlg1/ZO-1) family has been named as a classic example of dynamic allostery in small modular domains. While the PDZ family consists of more than 200 domains, previous efforts have primarily focused on a few well-studied PDZ domains, including PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ. Taken together, experimental and computational studies have identified regions of these domains that are dynamically coupled to ligand binding. These regions include the αA helix, the αB lower-loop, and the αC helix. In this review, we summarize the specific residues on the αA helix, the αB lower-loop, and the αC helix of PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ that have been identified as participants in dynamic allostery by either experimental or computational approaches. This review can serve as an index for researchers to look back on the previously identified allostery in the PDZ family. Interestingly, our summary of previous work reveals clear consistencies between the domains. While the PDZ family has a low sequence identity, we show that some of the most consistently identified allosteric residues within PTP-BL PDZ2 and PSD-95 PDZ3 domains are evolutionarily conserved. These residues include A46/A347, V61/V362, and L66/L367 on PTP-BL PDZ2 and PSD-95 PDZ3, respectively. Finally, we expose a need for future work to explore dynamic allostery within (1) PDZ domains with multiple binding partners and (2) multidomain constructs containing a PDZ domain.
Collapse
Affiliation(s)
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA;
| |
Collapse
|
19
|
Hidden electrostatic energy contributions define dynamic allosteric communications within p53 during molecular recognition. Biophys J 2021; 120:4512-4524. [PMID: 34478701 DOI: 10.1016/j.bpj.2021.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/03/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Molecular recognition is fundamental to transcription regulation. As a transcription factor, the tumor suppressor p53 has to recognize either specific DNA sequences or repressor protein partners. However, the molecular mechanism underlying the p53 conformational switch from the DNA-bound to repressor-bound states is not fully characterized. The highly charged nature of these interacting molecules prompted us to explore the nonbonded energy contributions behind molecular recognition of either a DNA or the repressor protein iASPP by p53 DNA binding domain (p53DBD), using molecular dynamics simulation followed by rigorous analyses of energy terms. Our results illuminate the allosteric pathway by which iASPP binding to p53 diminishes binding affinity between p53 and DNA. Even though the p53DBD uses a common framework of residues for recognizing both DNA and iASPP, a comparison of the electrostatics in the two p53DBD complexes revealed significant differences in residue-wise contributions to the electrostatic energy. We found that an electrostatic allosteric communication path exists in the presence of both substrates. It consists of evolutionarily conserved residues, from residue K120 of the binding loop L1 to a distal residue R213 of p53DBD. K120 is near the DNA in the p53DBD-DNA complex, whereas iASPP binding moves it away from its DNA binding position in the p53DBD-iASPP complex. The "energy hubs" (the residues show a higher degree of connectivity with other residues in the electrostatic networks) determined from the electrostatic network analysis established that this conformational change in K120 completely rewires the electrostatic network from K120 to R213, thereby impeding DNA binding. Furthermore, we found shifting populations of hydrogen bonds and salt bridges reduce pairwise electrostatic energies within p53DBD in its DNA-bound state.
Collapse
|
20
|
Shao Q, Han Z, Cheng J, Wang Q, Gong W, Li C. Allosteric Mechanism of Human Mitochondrial Phenylalanyl-tRNA Synthetase: An Atomistic MD Simulation and a Mutual Information-Based Network Study. J Phys Chem B 2021; 125:7651-7661. [PMID: 34242030 DOI: 10.1021/acs.jpcb.1c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs), a family of ubiquitous and essential enzymes, can bind target tRNAs and catalyze the aminoacylation reaction in genetic code translation. In this work, we explore the dynamic properties and allosteric communication of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS) in free and bound states to understand the mechanisms of its tRNAPhe recognition and allostery using molecular dynamics simulations combined with the torsional mutual information-based network model. Our results reveal that hmPheRS's residue mobility and inter-residue motional coupling are significantly enhanced by tRNAPhe binding, and there occurs a strong allosteric communication which is critical for the aminoacylation reaction, suggesting the vital role of tRNAPhe binding in the enzyme's function. The identified signaling pathways mainly make the connections between the anticodon binding domain (ABD) and catalytic domain (CAD), as well as within the CAD composed of many functional fragments and active sites, revealing the co-regulation role of them to act coordinately and achieve hmPheRS's aminoacylation function. Besides, several key residues along the communication pathways are identified to be involved in mediating the coordinated coupling between anticodon recognition at the ABD and activation process at the CAD, showing their pivotal role in the allosteric network, which are well consistent with the experimental observation. This study sheds light on the allosteric communication mechanism in hmPheRS and can provide important information for the structure-based drug design targeting aaRSs.
Collapse
Affiliation(s)
- Qi Shao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingmin Cheng
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Qiankun Wang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Bozovic O, Ruf J, Zanobini C, Jankovic B, Buhrke D, Johnson PJM, Hamm P. The Speed of Allosteric Signaling Within a Single-Domain Protein. J Phys Chem Lett 2021; 12:4262-4267. [PMID: 33904738 DOI: 10.1021/acs.jpclett.1c00915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While much is known about different allosteric regulation mechanisms, the nature of the allosteric signal and the time scale on which it propagates remains elusive. The PDZ3 domain from postsynaptic density-95 protein is a small protein domain with a terminal third α-helix, i.e., the α3-helix, which is known to be allosterically active. By cross-linking the allosteric helix with an azobenzene moiety, we obtained a photocontrollable PDZ3 variant. Photoswitching triggers its allosteric transition, resulting in a change in binding affinity of a peptide to the remote binding pocket. Using time-resolved infrared and UV/vis spectroscopy, we follow the allosteric signal transduction and reconstruct the timeline in which the allosteric signal propagates through the protein within 200 ns.
Collapse
Affiliation(s)
- Olga Bozovic
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Brankica Jankovic
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - David Buhrke
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
22
|
Wang S, Ma C, Zeng A. Dynamic energy correlation analysis of E. coli aspartokinase III and alteration of allosteric regulation by manipulating energy transduction pathways. Eng Life Sci 2021; 21:314-323. [PMID: 33976604 PMCID: PMC8092979 DOI: 10.1002/elsc.202000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Conformational change associated with allosteric regulation in a protein is ultimately driven by energy transformation. However, little is known about the latter process. In this work, we combined steered molecular dynamics simulations and sequence conservation analysis to investigate the conformational changes and energy transformation in the allosteric enzyme aspartokinase III (AK III) from Escherichia coli. Correlation analysis of energy change at residue level indicated significant transformation between electrostatic energy and dihedral angle energy during the allosteric regulation. Key amino acid residues located in the corresponding energy transduction pathways were identified by dynamic energy correlation analysis. To verify their functions, residues with a high energy correlation in the pathways were altered and their effects on allosteric regulation of AKIII were determined. This study sheds new insights into energy transformation during allosteric regulation of AK III and proposes a strategy to identify key residues that are involved in intramolecular energy transduction and thus in driving the allosteric process.
Collapse
Affiliation(s)
- Shizhen Wang
- Department of Chemical and Biochemical EngineeringCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Chengwei Ma
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
23
|
On the Emergence of Orientational Order in Folded Proteins with Implications for Allostery. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The beautiful structures of single- and multi-domain proteins are clearly ordered in some fashion but cannot be readily classified using group theory methods that are successfully used to describe periodic crystals. For this reason, protein structures are considered to be aperiodic, and may have evolved this way for functional purposes, especially in instances that require a combination of softness and rigidity within the same molecule. By analyzing the solved protein structures, we show that orientational symmetry is broken in the aperiodic arrangement of the secondary structure elements (SSEs), which we deduce by calculating the nematic order parameter, P2. We find that the folded structures are nematic droplets with a broad distribution of P2. We argue that a non-zero value of P2, leads to an arrangement of the SSEs that can resist external forces, which is a requirement for allosteric proteins. Such proteins, which resist mechanical forces in some regions while being flexible in others, transmit signals from one region of the protein to another (action at a distance) in response to binding of ligands (oxygen, ATP, or other small molecules).
Collapse
|
24
|
Ma J, Ayres CM, Hellman LM, Devlin JR, Baker BM. Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor. J Biol Chem 2021; 296:100686. [PMID: 33891944 PMCID: PMC8138769 DOI: 10.1016/j.jbc.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C–H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein–protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jason R Devlin
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
25
|
Uranga J, Hasecke L, Proppe J, Fingerhut J, Mata RA. Theoretical Studies of the Acid-Base Equilibria in a Model Active Site of the Human 20S Proteasome. J Chem Inf Model 2021; 61:1942-1953. [PMID: 33719420 DOI: 10.1021/acs.jcim.0c01459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 20S proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells and in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome (caspase-like), an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy- and boronic acid-containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics, and Bayesian optimization of nonbonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach for the reevaluation of nonbonded potentials making use of the hybrid quantum mechanics molecular mechanics dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the studied inhibitors.
Collapse
Affiliation(s)
- Jon Uranga
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jonny Proppe
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jan Fingerhut
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Guclu TF, Atilgan AR, Atilgan C. Dynamic Community Composition Unravels Allosteric Communication in PDZ3. J Phys Chem B 2021; 125:2266-2276. [PMID: 33631929 DOI: 10.1021/acs.jpcb.0c11604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The third domain of PSD-95 (PDZ3) is a model for investigating allosteric communication in protein and ligand interactions. While motifs contributing to its binding specificity have been scrutinized, a conformational dynamical basis is yet to be established. Despite the miniscule structural changes due to point mutants, the observed significant binding affinity differences have previously been assessed with a focus on two α-helices located at the binding groove (α2) and the C-terminus (α3). Here, we employ a new computational approach to develop a generalized view on the molecular basis of PDZ3 binding selectivity and interaction communication for a set of point mutants of the protein (G330T, H372A, G330T-H372A) and its ligand (CRIPT, named L1, and its T-2F variant, L2) along with the wild type (WT). To analyze the dynamical aspects hidden in the conformations that are produced by molecular dynamics simulations, we utilize variations in community composition calculated based on the betweenness centrality measure from graph theory. We find that the highly charged N-terminus, which is located far from the ligand, has the propensity to share the same community with the ligand in the biologically functional complexes, indicating a distal segment might mediate the binding dynamics. N- and C-termini of PDZ3 share communities, and α3 acts as a hub for the whole protein by sustaining the communication with all structural segments, albeit being a trait not unique to the functional complexes. Moreover, α2 which lines the binding cavity frequently parts communities with the ligand and is not a controller of the binding but is rather a slave to the overall dynamics coordinated by the N-terminus. Thus, ligand binding fate in PDZ3 is traced to the population of community compositions extracted from dynamics despite the lack of significant conformational changes.
Collapse
Affiliation(s)
- Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| |
Collapse
|
27
|
Takaya D, Watanabe C, Nagase S, Kamisaka K, Okiyama Y, Moriwaki H, Yuki H, Sato T, Kurita N, Yagi Y, Takagi T, Kawashita N, Takaba K, Ozawa T, Takimoto-Kamimura M, Tanaka S, Fukuzawa K, Honma T. FMODB: The World's First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. J Chem Inf Model 2021; 61:777-794. [PMID: 33511845 DOI: 10.1021/acs.jcim.0c01062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed the world's first web-based public database for the storage, management, and sharing of fragment molecular orbital (FMO) calculation data sets describing the complex interactions between biomacromolecules, named FMO Database (https://drugdesign.riken.jp/FMODB/). Each entry in the database contains relevant background information on how the data was compiled as well as the total energy of each molecular system and interfragment interaction energy (IFIE) and pair interaction energy decomposition analysis (PIEDA) values. Currently, the database contains more than 13 600 FMO calculation data sets, and a comprehensive search function implemented at the front-end. The procedure for selecting target proteins, preprocessing the experimental structures, construction of the database, and details of the database front-end were described. Then, we demonstrated a use of the FMODB by comparing IFIE value distributions of hydrogen bond, ion-pair, and XH/π interactions obtained by FMO method to those by molecular mechanics approach. From the comparison, the statistical analysis of the data provided standard reference values for the three types of interactions that will be useful for determining whether each interaction in a given system is relatively strong or weak compared to the interactions contained within the data in the FMODB. In the final part, we demonstrate the use of the database to examine the contribution of halogen atoms to the binding affinity between human cathepsin L and its inhibitors. We found that the electrostatic term derived by PIEDA greatly correlated with the binding affinities of the halogen containing cathepsin L inhibitors, indicating the importance of QM calculation for quantitative analysis of halogen interactions. Thus, the FMO calculation data in FMODB will be useful for conducting statistical analyses to drug discovery, for conducting molecular recognition studies in structural biology, and for other studies involving quantum mechanics-based interactions.
Collapse
Affiliation(s)
- Daisuke Takaya
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,JST PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shunpei Nagase
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshio Okiyama
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hirotomo Moriwaki
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Sato
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yoichiro Yagi
- Graduate School of Engineering, Okayama University of Science, Okayama, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Kawashita
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Kenichiro Takaba
- Pharmaceutical Research Center, Laboratory for Medicinal Chemistry, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Tomonaga Ozawa
- Kissei Pharmaceutical Co., LTD., Frontier Technology Research Lab., Research Div. 4365-1 Hotaka Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Midori Takimoto-Kamimura
- Teijin Institute for Biomedical Research, Teijin Pharma Ltd., 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Department of Computational Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan.,Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Sendai, Miyagi 980-8579, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
28
|
Mittal L, Srivastava M, Kumari A, Tonk RK, Awasthi A, Asthana S. Interplay among Structural Stability, Plasticity, and Energetics Determined by Conformational Attuning of Flexible Loops in PD-1. J Chem Inf Model 2021; 61:358-384. [PMID: 33433201 DOI: 10.1021/acs.jcim.0c01080] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynamics and plasticity of the PD-1/PD-L1 axis are the bottlenecks for the discovery of small-molecule antagonists to perturb this interaction interface significantly. Understanding the process of this protein-protein interaction (PPI) is of fundamental biological interest in structure-based drug designing. Food and Drug Administration (FDA)-approved anti-PD-1 monoclonal antibodies (mAbs) are the first-in-class with distinct binding modes to access this axis clinically; however, their mechanistic aspects remain elusive. Here, we have unveiled the interactive interfaces with PD-L1 and mAbs to investigate the native plasticity of PD-1 at global (structural and dynamical) and local (residue side-chain orientations) levels. We found that the structural stability and coordinated Cα movements are increased in the presence of PD-1's binding partners. The rigorous analysis of these PPIs using computational biophysical approaches revealed PD-1's intrinsic plasticity, its concerted loops' movement (BC, FG, and CC'), distal side-chain motions, and the thermodynamic landscape, which are perturbed remarkably from its unbound to bound states. Based on intra-/inter-residues' contact networks and energetics, the hot-spots have been identified that were found to be essential to arrest the dynamical motions of PD-1 significantly for the rational design of therapeutic agents by mimicking the mAbs mechanism.
Collapse
Affiliation(s)
- Lovika Mittal
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), Delhi 110017, India
| | - Mitul Srivastava
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Anita Kumari
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Delhi 110017, India
| | - Amit Awasthi
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
29
|
Guclu TF, Kocatug N, Atilgan AR, Atilgan C. N-Terminus of the Third PDZ Domain of PSD-95 Orchestrates Allosteric Communication for Selective Ligand Binding. J Chem Inf Model 2020; 61:347-357. [PMID: 33331776 DOI: 10.1021/acs.jcim.0c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PDZ domains constitute common models to study single-domain allostery without significant structural changes. The third PDZ domain of PSD-95 (PDZ3) is known to have selective structural features that confer unique modulatory roles to this unit. In this model system, two residues, H372 directly connected to the binding site and G330 holding an off-binding-site position, were designated to assess the effect of mutations on binding selectivity. It has been observed that the H372A and G330T-H372A mutations change ligand preferences from class I (T/S amino acid at position -2 of the ligand) to class II (hydrophobic amino acid at the same position). Alternatively, the G330T single mutation leads to the recognition of both ligand classes. We have performed a series of molecular dynamics (MD) simulations for wild-type, H372A, and G330T single mutants and a double mutant of PDZ3 in the absence and presence of both types of ligands. With the combination of free-energy difference calculations and a detailed analysis of MD trajectories, "class switching" and "class bridging" behavior of PDZ3 mutants, as well as their effects on ligand selection and binding affinities are explained. We show that the dynamics of the charged N-terminus plays a fundamental role in determining the binding preferences in PDZ3 by altering the electrostatic energy. These findings are corroborated by simulations on N-terminus-truncated versions of these systems. The dynamical allostery orchestrated by the N-terminus offers a fresh perspective to the study of communication pathways in proteins.
Collapse
Affiliation(s)
- Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Nazli Kocatug
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
30
|
Dudola D, Hinsenkamp A, Gáspári Z. Ensemble-Based Analysis of the Dynamic Allostery in the PSD-95 PDZ3 Domain in Relation to the General Variability of PDZ Structures. Int J Mol Sci 2020; 21:ijms21218348. [PMID: 33172212 PMCID: PMC7672539 DOI: 10.3390/ijms21218348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
PDZ domains are abundant interaction hubs found in a number of different proteins and they exhibit characteristic differences in their structure and ligand specificity. Their internal dynamics have been proposed to contribute to their biological activity via changes in conformational entropy upon ligand binding and allosteric modulation. Here we investigate dynamic structural ensembles of PDZ3 of the postsynaptic protein PSD-95, calculated based on previously published backbone and side-chain S2 order parameters. We show that there are distinct but interdependent structural rearrangements in PDZ3 upon ligand binding and the presence of the intramolecular allosteric modulator helix α3. We have also compared these rearrangements in PDZ1-2 of PSD-95 and the conformational diversity of an extended set of PDZ domains available in the PDB database. We conclude that although the opening-closing rearrangement, occurring upon ligand binding, is likely a general feature for all PDZ domains, the conformer redistribution upon ligand binding along this mode is domain-dependent. Our findings suggest that the structural and functional diversity of PDZ domains is accompanied by a diversity of internal motional modes and their interdependence.
Collapse
Affiliation(s)
- Dániel Dudola
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
| | - Anett Hinsenkamp
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
- 3in-PPCU Research Group, 2500 Esztergom, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
- Correspondence:
| |
Collapse
|
31
|
Kumawat A, Chakrabarty S. Protonation-Induced Dynamic Allostery in PDZ Domain: Evidence of Perturbation-Independent Universal Response Network. J Phys Chem Lett 2020; 11:9026-9031. [PMID: 33043672 DOI: 10.1021/acs.jpclett.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic allostery is a relatively new paradigm where certain external perturbations may lead to modulation of conformational dynamics at a distant part of a protein without significant changes in the overall structure. While most well-characterized examples of dynamic allostery involve binding with other entities like small molecules, peptides, or nucleic acids, in this work we demonstrate that chemical modifications like protonation may lead to significant dynamical allosteric response in a PDZ domain protein. Tuning the protonation states of two histidine residues (H317 and H372), we identify the allosteric pathways responsible for the dynamic response. Interestingly, the same set of residues that constitute the allosteric response network upon ligand binding seem to be responsible for protonation-induced dynamic allostery. Thus, we propose the existence of an inherent universal response network in signaling proteins, where the same set of residues can respond to varying types of external perturbations in terms of rearrangement of hydrogen-bonded network and redistribution of electrostatic interaction energies.
Collapse
Affiliation(s)
- Amit Kumawat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
32
|
Wingert B, Krieger J, Li H, Bahar I. Adaptability and specificity: how do proteins balance opposing needs to achieve function? Curr Opin Struct Biol 2020; 67:25-32. [PMID: 33053463 DOI: 10.1016/j.sbi.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
Many proteins select from a small repertoire of 3-dimensional folds retained over evolutional timescales and recruited for different functions, with changes in local structure and sequence to enable specificity. Recent studies have revealed the evolutionary constraints on protein dynamics to achieve function. The significance of protein dynamics in simultaneously satisfying conformational flexibility/malleability and stability/precision requirements becomes clear upon dissecting the spectrum of equilibrium motions accessible to fold families. Accessibility to highly conserved global modes of motions shared by family members, to low-to-intermediate-frequency modes that distinguish subfamilies and confer specificity, and to conserved high-frequency modes ensuring chemical precision and core stability underlies functional specialization while exploiting highly versatile folds. These design principles are illustrated for the family of PDZ domains.
Collapse
Affiliation(s)
- Bentley Wingert
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA 15213 USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA 15213 USA
| | - Hongchun Li
- Research Center for Computer-Aided Drug Discovery at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA 15213 USA.
| |
Collapse
|
33
|
Abstract
Protein function can be allosterically regulated by changes in structure or dynamics. PDZ domains are classic examples for studies of allostery in single protein domains. However, PDZ domains are often found in multidomain proteins; in particular, PDZ3 is located in a supramodule containing three domains. The allosteric network in PDZ3 has never been studied in the presence of the adjacent domains. Here we map the allosteric network for a PDZ3:ligand complex, both in isolation and in the context of a supramodule. We demonstrate that the allosteric network is highly dependent on this supertertiary structure, with broad implications for studies of allostery in single domains. The notion that protein function is allosterically regulated by structural or dynamic changes in proteins has been extensively investigated in several protein domains in isolation. In particular, PDZ domains have represented a paradigm for these studies, despite providing conflicting results. Furthermore, it is still unknown how the association between protein domains in supramodules, consitituting so-called supertertiary structures, affects allosteric networks. Here, we experimentally mapped the allosteric network in a PDZ:ligand complex, both in isolation and in the context of a supramodular structure, and show that allosteric networks in a PDZ domain are highly dependent on the supertertiary structure in which they are present. This striking sensitivity of allosteric networks to the presence of adjacent protein domains is likely a common property of supertertiary structures in proteins. Our findings have general implications for prediction of allosteric networks from primary and tertiary structures and for quantitative descriptions of allostery.
Collapse
|
34
|
Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. Int J Mol Sci 2020; 21:E5933. [PMID: 32824756 PMCID: PMC7460635 DOI: 10.3390/ijms21165933] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
- InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David Aranda-García
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| |
Collapse
|
35
|
Visconti L, Toto A, Jarvis JA, Troilo F, Malagrinò F, De Simone A, Gianni S. Demonstration of Binding Induced Structural Plasticity in a SH2 Domain. Front Mol Biosci 2020; 7:89. [PMID: 32528972 PMCID: PMC7247818 DOI: 10.3389/fmolb.2020.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
SH2 domains are common protein interaction domains able to recognize short aminoacidic sequences presenting a phosphorylated tyrosine (pY). In spite of their fundamental importance for cell physiology there is a lack of information about the mechanism by which these domains recognize and bind their natural ligands. The N-terminal SH2 (N-SH2) domain of PI3K mediates the interaction with different scaffolding proteins and is known to recognize a specific pY-X-X-M consensus sequence. These interactions are at the cross roads of different molecular pathways and play a key role for cell development and division. By combining mutagenesis, chemical kinetics and NMR, here we provide a complete characterization of the interaction between N-SH2 and a peptide mimicking the scaffolding protein Gab2. Our results highlight that N-SH2 is characterized by a remarkable structural plasticity, with the binding reaction being mediated by a diffused structural region and not solely by the residues located in the binding pocket. Furthermore, the analysis of kinetic data allow us to pinpoint an allosteric network involving residues far from the binding pocket involved in specificity. Results are discussed on the light of previous works on the binding properties of SH2 domains.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - James A Jarvis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
36
|
Paul S, Ainavarapu SRK, Venkatramani R. Variance of Atomic Coordinates as a Dynamical Metric to Distinguish Proteins and Protein-Protein Interactions in Molecular Dynamics Simulations. J Phys Chem B 2020; 124:4247-4262. [PMID: 32281802 DOI: 10.1021/acs.jpcb.0c01191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein dynamics is a manifestation of the complex trajectories of these biomolecules on a multidimensional rugged potential energy surface (PES) driven by thermal energy. At present, computational methods such as atomistic molecular dynamics (MD) simulations can describe thermal protein conformational changes in fully solvated environments over millisecond timescales. Despite these advances, a quantitative assessment of protein dynamics remains a complicated topic, intricately linked to issues such as sampling convergence and the identification of appropriate reaction coordinates/structural features to describe protein conformational states and motions. Here, we present the cumulative variance of atomic coordinate fluctuations (CVCF) along trajectories as an intuitive PES sensitive metric to assess both the extent of sampling and protein dynamics captured in MD simulations. We first examine the sampling problem in model one- (1D) and two-dimensional (2D) PES to demonstrate that the CVCF when traced as a function of the sampling variable (time in MD simulations) can identify local and global equilibria. Further, even far from global equilibrium, a situation representative of standard MD trajectories of proteins, the CVCF can distinguish different PES and therefore resolve the resultant protein dynamics. We demonstrate the utility of our CVCF analysis by applying it to distinguish the dynamics of structurally homologous proteins from the ubiquitin family (ubiquitin, SUMO1, SUMO2) and ubiquitin protein-protein interactions. Our CVCF analysis reveals that differential side-chain dynamics from the structured part of the protein (the conserved β-grasp fold) present distinct protein PES to distinguish ubiquitin from SUMO isoforms. Upon binding to two functionally distinct protein partners (UBCH5A and UEV), intrinsic ubiquitin dynamics changes to reflect the binding context even though the two proteins have similar binding modes, which lead to negligible (sub-angstrom scale) structural changes.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| |
Collapse
|
37
|
Bose S, Chakrabarty S, Ghosh D. Support Vector Regression-Based Monte Carlo Simulation of Flexible Water Clusters. ACS OMEGA 2020; 5:7065-7073. [PMID: 32280847 PMCID: PMC7143414 DOI: 10.1021/acsomega.9b02968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Molecular simulations based on classical force fields are computationally efficient but lack accuracy due to the empirical formulation of non-bonded interactions. Quantum mechanical (QM) methods, albeit accurate, have inhibitory computational costs for large molecules and clusters. Hence, to overcome the bottleneck, machine learning (ML)-based methods have been employed in the recent years. We had earlier reported a combined scheme of many-body expansion (MBE) and ML to predict the interaction energies of rigid water clusters. In this work, we proceed toward building a flexible water model using the ML-MBE scheme. This ML-MBE scheme has an error of <1% for interaction energy prediction in comparison to the parent QM method for flexible water decamers. Machine learning-based Monte Carlo simulations (MLMC) are performed with this water model, and the structural properties of these configurations are compared with those obtained from ab initio molecular dynamics (AIMD) and the TIP3P classical force field. The radial distribution functions, tetrahedral order parameters, and number of hydrogen bonds in AIMD and MLMC have a similar qualitative and quantitative trend, whereas the classical force fields show a significant deviation.
Collapse
Affiliation(s)
- Samik Bose
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, West Bengal, India
| | - Suman Chakrabarty
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Debashree Ghosh
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, West Bengal, India
| |
Collapse
|
38
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
39
|
Zhang Y, Doruker P, Kaynak B, Zhang S, Krieger J, Li H, Bahar I. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr Opin Struct Biol 2019; 62:14-21. [PMID: 31785465 DOI: 10.1016/j.sbi.2019.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Allosteric behavior is central to the function of many proteins, enabling molecular machinery, metabolism, signaling and regulation. Recent years have shown that the intrinsic dynamics of allosteric proteins defined by their 3-dimensional architecture or by the topology of inter-residue contacts favors cooperative motions that bear close similarity to structural changes they undergo during their allosteric actions. These conformational motions are usually driven by energetically favorable or soft modes at the low frequency end of the mode spectrum, and they are evolutionarily conserved among orthologs. These observations brought into light evolutionary adaptation mechanisms that help maintain, optimize or regulate allosteric behavior as the evolution from bacterial to higher organisms introduces sequential heterogeneities and structural complexities.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
40
|
Hayatshahi HS, Ahuactzin E, Tao P, Wang S, Liu J. Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps. J Chem Inf Model 2019; 59:4691-4705. [PMID: 31589429 DOI: 10.1021/acs.jcim.9b00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allosteric regulation is a well-established phenomenon defined as a distal conformational or dynamical change of the protein upon allosteric effector binding. Here, we developed a novel approach to delineate allosteric effects in proteins. In this approach, we applied robust machine learning methods, including deep neural network and random forest, on extensive molecular dynamics (MD) simulations to distinguish otherwise similar allosteric states of proteins. Using the PDZ3 domain of PDS-95 as a model protein, we demonstrated that the allosteric effects could be represented as residue-specific properties through two-dimensional property-residue maps, which we refer to as "residue response maps". These maps were constructed through two machine learning methods and could accurately describe how different properties of various residues are affected upon allosteric perturbation on protein. Based on the "residue response maps", we propose allostery as a residue-specific concept, suggesting that all residues could be considered as allosteric residues because each residue "senses" the allosteric events through changing its single or multiple attributes in a quantitatively unique way. The "residue response maps" could be used to fingerprint a protein based on the unique patterns of residue responses upon binding events, providing a novel way to systematically describe the protein allosteric effects of each residue upon perturbation.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Emilio Ahuactzin
- Harmony School of Innovation-Fort Worth , 8100 S. Hulen St. , Fort Worth , Texas 76123 , United States
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, & Systems Engineering, College of Engineering , University of Texas at Arlington , 701 S. Nedderman Dr. , Arlington , Texas 76019 , United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| |
Collapse
|
41
|
Halder R, Jana B. Exploring and Engineering the Conformational Landscape of Calmodulin through Specific Interactions. J Phys Chem B 2019; 123:9321-9327. [DOI: 10.1021/acs.jpcb.9b06343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
42
|
Lao Z, Chen Y, Tang Y, Wei G. Molecular Dynamics Simulations Reveal the Inhibitory Mechanism of Dopamine against Human Islet Amyloid Polypeptide (hIAPP) Aggregation and Its Destabilization Effect on hIAPP Protofibrils. ACS Chem Neurosci 2019; 10:4151-4159. [PMID: 31436406 DOI: 10.1021/acschemneuro.9b00393] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aberrant self-assembly of human islet amyloid polypeptide (hIAPP) into toxic oligomers, protofibrils, and mature fibrils is associated with the pathogenesis of type 2 diabetes (T2D). Inhibition of hIAPP aggregation and destabilization of preformed hIAPP fibrils are considered as two major therapeutic strategies for treating T2D. Previous experimental studies reported that dopamine prevented the formation of hIAPP oligomers and fibrils. However, the underlying inhibitory mechanism at the atomic level remains elusive. Herein we investigated the conformational ensembles of hIAPP dimer with and without dopamine using replica-exchange molecular dynamics simulations. The simulations demonstrated that dopamine preferentially bound to R11, L12, F15, H18, F23, I26, L27, and Y37 residues, inhibited the formation of β-sheets in the amyloidogenic regions spanning residues 11RLANFLVH18, 22NFGAIL27, and 30TNVGSNT36, and resulted in more disordered hIAPP dimers, thus hindering the amyloid formation of hIAPP. Protonated and deprotonated dopamine molecules displayed distinct binding capabilities but bound to similar residue sites on hIAPP. Additional microsecond molecular dynamics simulations showed that dopamine mainly bound to the β1 and turn regions of hIAPP protofibril and destabilized the protofibril structure. This study not only revealed the molecular mechanism of dopamine toward the inhibition of hIAPP aggregation but also demonstrated the protofibril-destabilizing effects of dopamine, which may be helpful for the design of drug candidates to treat T2D.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
43
|
Bhosale S, Nikte SV, Sengupta D, Joshi M. Differential Dynamics Underlying the Gln27Glu Population Variant of the β 2-Adrenergic Receptor. J Membr Biol 2019; 252:499-507. [PMID: 31520159 DOI: 10.1007/s00232-019-00093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a membrane-bound G-protein-coupled receptor and an important drug target for asthma. Clinical studies report that the population variant Gln27Glu is associated with a differential response to common asthma drugs, such as albuterol, isoproterenol and terbutaline. Interestingly, the 27th amino acid is positioned on the N-terminal region that is the most flexible and consequently the least studied part of the receptor. In this study, we probe the molecular origin of the differential drug binding by performing structural modeling and simulations of the wild-type (Gln) and variant (Glu) receptors followed by ensemble docking with the ligands, albuterol, isoproterenol and terbutaline. In line with clinical studies, the ligands were observed to interact preferentially with the Glu variant. Our results indicate that the Glu residue at the 27th position perturbs the network of electrostatic interactions that connects the N-terminal region to the binding site in the wild-type receptor. As a result, the Glu variant is observed to bind better to the three ligands tested in this study. Our study provides a structural basis to explain the variable drug response associated with the 27th position polymorphism in the β2AR and is a starting step to identify genotype-specific therapeutics.
Collapse
Affiliation(s)
- Sumedha Bhosale
- Bioinformatics Centre, S. P. University, Pune, 411 007, India
| | - Siddhanta V Nikte
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411 008, India
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411 008, India.
| | - Manali Joshi
- Bioinformatics Centre, S. P. University, Pune, 411 007, India.
| |
Collapse
|
44
|
Serçinoglu O, Ozbek P. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations. Nucleic Acids Res 2019; 46:W554-W562. [PMID: 29800260 PMCID: PMC6030995 DOI: 10.1093/nar/gky381] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 11/12/2022] Open
Abstract
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
Collapse
Affiliation(s)
- Onur Serçinoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Kadikoy, Istanbul 34722, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Kadikoy, Istanbul 34722, Turkey
| |
Collapse
|
45
|
Roche J, Girard E, Mas C, Madern D. The archaeal LDH-like malate dehydrogenase from Ignicoccus islandicus displays dual substrate recognition, hidden allostery and a non-canonical tetrameric oligomeric organization. J Struct Biol 2019; 208:7-17. [PMID: 31301348 DOI: 10.1016/j.jsb.2019.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The NAD(P)-dependent malate dehydrogenases (MalDHs) and NAD-dependent lactate dehydrogenases (LDHs) are homologous enzymes involved in central metabolism. They display a common protein fold and the same catalytic mechanism, yet have a stringent capacity to discriminate between their respective substrates. The MalDH/LDH superfamily is divided into several phylogenetically related groups. It has been shown that the canonical LDHs and LDH-like group of MalDHs are primarily tetrameric enzymes that diverged from a common ancestor. In order to gain understanding of the evolutionary history of the LDHs and MalDHs, the biochemical properties and crystallographic structure of the LDH-like MalDH from the hyperthermophilic archaeon Ignicoccus islandicus (I. isl) were determined. I. isl MalDH recognizes oxaloacetate as main substrate, but it is also able to use pyruvate. Surprisingly, with pyruvate, the enzymatic activity profile looks like that of allosteric LDHs, suggesting a hidden allosteric capacity in a MalDH. The I. isl MalDH tetrameric structure in the apo state is considerably different from those of canonical LDH-like MalDHs and LDHs, representing an alternative oligomeric organization. A comparison with MalDH and LDH counterparts provides strong evidence that the divergence between allosteric and non-allosteric members of the superfamily involves homologs with intermediate, atypical properties.
Collapse
Affiliation(s)
- Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
46
|
Timsit Y, Bennequin D. Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives. Int J Mol Sci 2019; 20:ijms20122911. [PMID: 31207893 PMCID: PMC6627100 DOI: 10.3390/ijms20122911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
In the past few decades, studies on translation have converged towards the metaphor of a “ribosome nanomachine”; they also revealed intriguing ribosome properties challenging this view. Many studies have shown that to perform an accurate protein synthesis in a fluctuating cellular environment, ribosomes sense, transfer information and even make decisions. This complex “behaviour” that goes far beyond the skills of a simple mechanical machine has suggested that the ribosomal protein networks could play a role equivalent to nervous circuits at a molecular scale to enable information transfer and processing during translation. We analyse here the significance of this analogy and establish a preliminary link between two fields: ribosome structure-function studies and the analysis of information processing systems. This cross-disciplinary analysis opens new perspectives about the mechanisms of information transfer and processing in ribosomes and may provide new conceptual frameworks for the understanding of the behaviours of unicellular organisms.
Collapse
Affiliation(s)
- Youri Timsit
- Mediterranean Institute of Oceanography UM 110, Aix-Marseille Université, CNRS, IRD, Campus de Luminy, 13288 Marseille, France.
| | - Daniel Bennequin
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG) Université Paris Diderot, bâtiment Sophie-Germain, 8, place Aurélie Nemours, 75013 Paris, France.
| |
Collapse
|
47
|
On the perturbation nature of allostery: sites, mutations, and signal modulation. Curr Opin Struct Biol 2019; 56:18-27. [DOI: 10.1016/j.sbi.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
48
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
49
|
Baumann T, Hauf M, Schildhauer F, Eberl KB, Durkin PM, Deniz E, Löffler JG, Acevedo‐Rocha CG, Jaric J, Martins BM, Dobbek H, Bredenbeck J, Budisa N. Ortsaufgelöste Beobachtung von Schwingungsenergietransfer durch ein genetisch codiertes ultraschnelles Heizelement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tobias Baumann
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
| | - Matthias Hauf
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
| | - Fabian Schildhauer
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
| | - Katharina B. Eberl
- Institut für BiophysikJohann Wolfgang von Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt Deutschland
| | - Patrick M. Durkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
| | - Erhan Deniz
- Institut für BiophysikJohann Wolfgang von Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt Deutschland
| | - Jan G. Löffler
- Institut für BiophysikJohann Wolfgang von Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt Deutschland
| | | | - Jelena Jaric
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
- Derzeitige Adresse: Hospira Zagreb d.o.o.a Pfizer company Prudnicka cesta 60 10291 Prigorje Brdovecko Kroatien
| | - Berta M. Martins
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Unter den Linden 6 10099 Berlin Deutschland
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Unter den Linden 6 10099 Berlin Deutschland
| | - Jens Bredenbeck
- Institut für BiophysikJohann Wolfgang von Goethe-Universität Max-von-Laue-Straße 1 60438 Frankfurt Deutschland
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Straße 10 10623 Berlin Deutschland
- Department of ChemistryUniversity of Manitoba 44 Dysart Rd R3T 2N2 Winnipeg MB Kanada
| |
Collapse
|
50
|
Mukherjee S, Mondal S, Bagchi B. Mechanism of Solvent Control of Protein Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:058101. [PMID: 30822020 DOI: 10.1103/physrevlett.122.058101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/09/2023]
Abstract
We find that the coupled interactions between protein and water polarization fluctuations play a dominant role in driving the configuration space random walk of solvated proteins. We perform atomistic molecular dynamics simulations on five proteins. Owing to a very low dielectric constant of protein, its dipolar groups experience forces from water along with local forces due to protein atoms. Energy fluctuations reveal a pronounced anticorrelation between protein and water contributions. The protein energy spectrum shows bimodal 1/f noise, which can be attributed to the influence of water on the dynamics of protein.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|