1
|
Tillis SB, Chaney SB, Crouch EEV, Boyer D, Torregrosa K, Shuter AD, Armendaris A, Childress AL, McAloose D, Paré JA, Ossiboff RJ, Conley KJ. Identification and Characterization of Novel Serpentoviruses in Viperid and Elapid Snakes. Viruses 2024; 16:1477. [PMID: 39339954 PMCID: PMC11437479 DOI: 10.3390/v16091477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses in the subfamily Serpentovirinae (order Nidovirales, family Tobaniviridae) can cause significant morbidity and mortality in captive snakes, but documented infections have been limited to snakes of the Boidae, Colubridae, Homalopsidae, and Pythonidae families. Infections can either be subclinical or associated with oral and/or respiratory disease. Beginning in June 2019, a population of over 150 confiscated snakes was screened for serpentovirus as part of a quarantine disease investigation. Antemortem oropharyngeal swabs or lung tissue collected postmortem were screened for serpentovirus by PCR, and 92/165 (56.0%) of snakes tested were positive for serpentovirus. Serpentoviruses were detected in fourteen species of Viperidae native to Asia, Africa, and South America and a single species of Elapidae native to Australia. When present, clinical signs included thin body condition, abnormal behavior or breathing, stomatitis, and/or mortality. Postmortem findings included variably severe inflammation, necrosis, and/or epithelial proliferation throughout the respiratory and upper gastrointestinal tracts. Genetic characterization of the detected serpentoviruses identified four unique viral clades phylogenetically distinct from recognized serpentovirus genera. Pairwise uncorrected distance analysis supported the phylogenetic analysis and indicated that the viper serpentoviruses likely represent the first members of a novel genus in the subfamily Serpentovirinae. The reported findings represent the first documentation of serpentoviruses in venomous snakes (Viperidae and Elapidae), greatly expanding the susceptible host range for these viruses and highlighting the importance of serpentovirus screening in all captive snake populations.
Collapse
Affiliation(s)
- Steven B Tillis
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Sarah B Chaney
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Esther E V Crouch
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Donal Boyer
- Wildlife Conservation Society, Bronx Zoo, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Kevin Torregrosa
- Wildlife Conservation Society, Bronx Zoo, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Avishai D Shuter
- Wildlife Conservation Society, Bronx Zoo, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Anibal Armendaris
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - April L Childress
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Denise McAloose
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Jean A Paré
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Robert J Ossiboff
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kenneth J Conley
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| |
Collapse
|
2
|
Zhang R, Li H, Xie H, Wang P, Yu C, Li J, Yang Z, Zeshan B, Cao A, Wang X. Transcriptional kinetics of NADC34-like porcine reproductive and respiratory syndrome virus during cellular infection. Arch Virol 2024; 169:186. [PMID: 39180681 DOI: 10.1007/s00705-024-06113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024]
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) employs complex strategies to synthesize subgenomic RNAs (sgRNAs); however, their plasticity and temporal dynamics remain largely unexplored. Using next-generation sequencing (NGS), we examined the high-resolution landscape of the PRRSV subgenome, highlighting considerable heterogeneity in temporal kinetics and transcriptional control and revealing extensive coordination between TRSL-dependent and TRSL-independent sgRNAs. In addition, a comprehensive re-annotation of transcription regulatory sequence (TRS) locations was conducted, clarifying that their usage involved canonical, alternative, and non-canonical splicing events for annotated genes. These insights emphasize that the coding of genetic material in PRRSV is far more intricate than previously anticipated. Collectively, the altered sgRNA phenotype offers distinctive insights into PRRSV transcription and gives additional impetus for mining the functional short- and long-range RNA-RNA interactome at active viral replication sites.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chenfei Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junda Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Basit Zeshan
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore, 54000, Pakistan
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Aiqiao Cao
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore, 54000, Pakistan.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
4
|
Fritch EJ, Sanders W, Sims AC, Herring LE, Barker NK, Schepmoes AA, Weitz KK, Texier JR, Dittmer DP, Graves LM, Smith RD, Waters KM, Moorman NJ, Baric RS, Graham RL. Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection. iScience 2023; 26:106780. [PMID: 37193127 PMCID: PMC10152751 DOI: 10.1016/j.isci.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.
Collapse
Affiliation(s)
- Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy C. Sims
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Karl K. Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Jordan R. Texier
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M. Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard D. Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Katrina M. Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Allan MF, Brivanlou A, Rouskin S. RNA levers and switches controlling viral gene expression. Trends Biochem Sci 2023; 48:391-406. [PMID: 36710231 DOI: 10.1016/j.tibs.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 01/29/2023]
Abstract
RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins. These solutions are enabled by the ability of the RNA genome to fold into 3D structures that can mimic cellular RNAs, hijack host proteins, and expose or occlude regulatory protein-binding motifs to ultimately control key process in the viral life cycle. We highlight recent findings focusing on less conventional mechanisms of gene expression and new discoveries on the role of RNA structures.
Collapse
Affiliation(s)
- Matthew F Allan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amir Brivanlou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
7
|
Zhang R, Wang P, Ma X, Wu Y, Luo C, Qiu L, Zeshan B, Yang Z, Zhou Y, Wang X. Nanopore-Based Direct RNA-Sequencing Reveals a High-Resolution Transcriptional Landscape of Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2021; 13:2531. [PMID: 34960801 PMCID: PMC8706258 DOI: 10.3390/v13122531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Precise assessment of the intricate subgenomic RNA (sg mRNA) populations is required to understand the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing events using short-read sequencing, making the identification of transcription-regulatory sequences (TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize the recombined RNA molecules produced in porcine alveolar macrophages during early passage infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional landscape in PRRSV. The data revealed intriguing differences in subgenomic recombination types between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share the common preferred TRS in both strains. This study also identified a substantial number of TRS-mediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better control of the PRRS.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Basit Zeshan
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore 54000, Pakistan;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| |
Collapse
|
8
|
Long S. SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses 2021; 13:1923. [PMID: 34696353 PMCID: PMC8539008 DOI: 10.3390/v13101923] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, the etiologic agent at the root of the ongoing COVID-19 pandemic, harbors a large RNA genome from which a tiered ensemble of subgenomic RNAs (sgRNAs) is generated. Comprehensive definition and investigation of these RNA products are important for understanding SARS-CoV-2 pathogenesis. This review summarizes the recent progress on SARS-CoV-2 sgRNA identification, characterization, and application as a viral replication marker. The significance of these findings and potential future research areas of interest are discussed.
Collapse
Affiliation(s)
- Samuel Long
- Independent Researcher, Clarksburg, MD 20871, USA
| |
Collapse
|
9
|
Vanmechelen B, Zisi Z, Gryseels S, Goüy de Bellocq J, Vrancken B, Lemey P, Maes P, Bletsa M. Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses 2021; 13:1842. [PMID: 34578423 PMCID: PMC8473226 DOI: 10.3390/v13091842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.
Collapse
Affiliation(s)
- Bert Vanmechelen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| | - Zafeiro Zisi
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
- OD Taxonomy and Phylogeny, Royal Institute of Natural Sciences, Vautierstreet 29, 1000 Brussels, Belgium
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic;
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Bram Vrancken
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| | - Philippe Lemey
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| | - Magda Bletsa
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, 3000 Leuven, Belgium; (B.V.); (Z.Z.); (B.V.); (P.L.); (P.M.)
| |
Collapse
|
10
|
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021; 11:136. [PMID: 34281608 PMCID: PMC8287290 DOI: 10.1186/s13578-021-00643-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is an extremely contagious respiratory virus causing adult atypical pneumonia COVID-19 with severe acute respiratory syndrome (SARS). SARS-CoV-2 has a single-stranded, positive-sense RNA (+RNA) genome of ~ 29.9 kb and exhibits significant genetic shift from different isolates. After entering the susceptible cells expressing both ACE2 and TMPRSS2, the SARS-CoV-2 genome directly functions as an mRNA to translate two polyproteins from the ORF1a and ORF1b region, which are cleaved by two viral proteases into sixteen non-structural proteins (nsp1-16) to initiate viral genome replication and transcription. The SARS-CoV-2 genome also encodes four structural (S, E, M and N) and up to six accessory (3a, 6, 7a, 7b, 8, and 9b) proteins, but their translation requires newly synthesized individual subgenomic RNAs (sgRNA) in the infected cells. Synthesis of the full-length viral genomic RNA (gRNA) and sgRNAs are conducted inside double-membrane vesicles (DMVs) by the viral replication and transcription complex (RTC), which comprises nsp7, nsp8, nsp9, nsp12, nsp13 and a short RNA primer. To produce sgRNAs, RTC starts RNA synthesis from the highly structured gRNA 3' end and switches template at various transcription regulatory sequence (TRSB) sites along the gRNA body probably mediated by a long-distance RNA-RNA interaction. The TRS motif in the gRNA 5' leader (TRSL) is responsible for the RNA-RNA interaction with the TRSB upstream of each ORF and skipping of the viral genome in between them to produce individual sgRNAs. Abundance of individual sgRNAs and viral gRNA synthesized in the infected cells depend on the location and read-through efficiency of each TRSB. Although more studies are needed, the unprecedented COVID-19 pandemic has taught the world a painful lesson that is to invest and proactively prepare future emergence of other types of coronaviruses and any other possible biological horrors.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Tian
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
11
|
Telwatte S, Kumar N, Vallejo-Gracia A, Kumar GR, Lu CM, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR assays for simultaneous quantification of multiple noncoding and coding regions of SARS-CoV-2 RNA. J Virol Methods 2021; 292:114115. [PMID: 33667568 PMCID: PMC7923865 DOI: 10.1016/j.jviromet.2021.114115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
A hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of sensitive, quantitative RT-ddPCR assays designed to target regions spanning the genome of SARS-CoV-2. Our assays target untranslated regions (5', 3') as well as different coding regions, including non-structural genes that are only found in full length (genomic) RNA and structural genes that are found in genomic as well as different subgenomic RNAs. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 gene expression and may also inform the development of improved diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Sushama Telwatte
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA
| | | | - G Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Chuanyi M Lu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA; Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco, CA, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Joseph K Wong
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Steven A Yukl
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.
| |
Collapse
|
12
|
Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M, Wu K, Zhang Q, Ponty Y, Will S, Liu F, Yu X, Li S, Liu Q, Yang XL, Guo M, Li X, Chen M, Shi ZL, Lan K, Chen Y, Zhou Y. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell 2021; 81:2135-2147.e5. [PMID: 33713597 PMCID: PMC7927579 DOI: 10.1016/j.molcel.2021.02.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.
Collapse
Affiliation(s)
- Dehe Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ao Jiang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangnan Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Dong Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yann Ponty
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Sebastian Will
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Feiyan Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaopeng Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xingqiao Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
14
|
Cai Y, Yu S, Fang Y, Bollinger L, Li Y, Lauck M, Postnikova EN, Mazur S, Johnson RF, Finch CL, Radoshitzky SR, Palacios G, Friedrich TC, Goldberg TL, O’Connor DH, Jahrling PB, Kuhn JH. Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b' Is Not Required for In Vitro Virus Replication. Viruses 2021; 13:632. [PMID: 33917085 PMCID: PMC8067702 DOI: 10.3390/v13040632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.
Collapse
Affiliation(s)
- Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Ying Fang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (Y.F.); (Y.L.)
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Yanhua Li
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (Y.F.); (Y.L.)
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA; (M.L.); (T.C.F.); (D.H.O.)
| | - Elena N. Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Steven Mazur
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Reed F. Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
- Emerging Infectious Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Courtney L. Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (S.R.R.); (G.P.)
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (S.R.R.); (G.P.)
| | - Thomas C. Friedrich
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA; (M.L.); (T.C.F.); (D.H.O.)
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA; (M.L.); (T.C.F.); (D.H.O.)
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
- Emerging Infectious Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; (Y.C.); (S.Y.); (L.B.); (E.N.P.); (S.M.); (R.F.J.); (C.L.F.); (P.B.J.)
| |
Collapse
|
15
|
Jungreis I, Nelson CW, Ardern Z, Finkel Y, Krogan NJ, Sato K, Ziebuhr J, Stern-Ginossar N, Pavesi A, Firth AE, Gorbalenya AE, Kellis M. Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology 2021; 558:145-151. [PMID: 33774510 PMCID: PMC7967279 DOI: 10.1016/j.virol.2021.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
At least six small alternative-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity caused by prior usage of alternative names.
Collapse
Affiliation(s)
- Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Chase W Nelson
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan; Institute for Comparative Genomics, American Museum of Natural History, New York City, NY, 10024, USA
| | - Zachary Ardern
- Chair of Microbial Ecology, Technical University of Munich, 85354, Germany
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, Institute of Medical Science, The University of Tokyo, 1088639, Tokyo, Japan
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
16
|
Telwatte S, Kumar N, Vallejo-Gracia A, Kumar GR, Lu CM, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR Assays for determining the transcriptional profile of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.12.425991. [PMID: 33469579 PMCID: PMC7814816 DOI: 10.1101/2021.01.12.425991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The exact mechanism of coronavirus replication and transcription is not fully understood; however, a hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of specially designed SARS-CoV-2 ddPCR-based assays to map the viral transcription profile. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 replication and transcription and may also inform the development of improved diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Sushama Telwatte
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | | | - G. Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
17
|
Gulyaeva AA, Gorbalenya AE. A nidovirus perspective on SARS-CoV-2. Biochem Biophys Res Commun 2020; 538:24-34. [PMID: 33413979 PMCID: PMC7664520 DOI: 10.1016/j.bbrc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Two pandemics of respiratory distress diseases associated with zoonotic introductions of the species Severe acute respiratory syndrome-related coronavirus in the human population during 21st century raised unprecedented interest in coronavirus research and assigned it unseen urgency. The two viruses responsible for the outbreaks, SARS-CoV and SARS-CoV-2, respectively, are in the spotlight, and SARS-CoV-2 is the focus of the current fast-paced research. Its foundation was laid down by studies of many corona- and related viruses that collectively form the vast order Nidovirales. Comparative genomics of nidoviruses played a key role in this advancement over more than 30 years. It facilitated the transfer of knowledge from characterized to newly identified viruses, including SARS-CoV and SARS-CoV-2, as well as contributed to the dissection of the nidovirus proteome and identification of patterns of variations between different taxonomic groups, from species to families. This review revisits selected cases of protein conservation and variation that define nidoviruses, illustrates the remarkable plasticity of the proteome during nidovirus adaptation, and asks questions at the interface of the proteome and processes that are vital for nidovirus reproduction and could inform the ongoing research of SARS-CoV-2.
Collapse
Affiliation(s)
- Anastasia A Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
18
|
Keep S, Oade MS, Lidzbarski-Silvestre F, Bentley K, Stevenson-Leggett P, Freimanis GL, Tennakoon C, Sanderson N, Hammond JA, Jones RC, Britton P, Bickerton E. Multiple novel non-canonically transcribed sub-genomic mRNAs produced by avian coronavirus infectious bronchitis virus. J Gen Virol 2020; 101:1103-1118. [PMID: 32720890 PMCID: PMC7660457 DOI: 10.1099/jgv.0.001474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5' untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3'-UTR, an area previously thought to be non-coding in the Gammacoronavirus infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX. Interestingly, the potential protein produced by this ORF is prematurely truncated in the Beaudette strain. A single nucleotide deletion was made in the Beaudette strain allowing for the generation of a recombinant IBV (rIBV) that had the potential to express a full-length protein. Assessment of this rIBV in vitro demonstrated that restoration of the full-length potential protein had no effect on viral replication. Further assessment of the Beaudette-derived RNA identified a second non-canonically transcribed sgmRNA located within gene 2. Deep sequencing analysis of allantoic fluid from Beaudette-infected embryonated eggs confirmed the presence of both the newly identified non-canonically transcribed sgmRNAs and highlighted the potential for further yet unidentified sgmRNAs. This HiSeq data, alongside the confirmation of non-canonically transcribed sgmRNAs, indicates the potential of the coronavirus genome to encode a larger repertoire of genes than has currently been identified.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Filip Lidzbarski-Silvestre
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Kirsten Bentley
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- School of Biology, University of St Andrews, St Andrews, UK
| | | | | | | | - Nicholas Sanderson
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard C. Jones
- School of Veterinary Science, University of Liverpool, Neston, UK
| | - Paul Britton
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | |
Collapse
|
19
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
20
|
Saberi A, Gulyaeva AA, Brubacher JL, Newmark PA, Gorbalenya AE. A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog 2018; 14:e1007314. [PMID: 30383829 PMCID: PMC6211748 DOI: 10.1371/journal.ppat.1007314] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/02/2018] [Indexed: 12/28/2022] Open
Abstract
RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication (albeit within a permissive host environment). A 33.5 kilobase (kb) nidovirus has been considered close to the upper size limit for such entities; conversely, the minimal cellular DNA genome is in the 100–300 kb range. This large difference presents a daunting gap for the transition from primordial RNP to contemporary DNA-RNP-based life. Whether or not RNA viruses represent transitional steps towards DNA-based life, studies of larger RNA viruses advance our understanding of the size constraints on RNP entities and the role of genome size in virus adaptation. For example, emergence of the largest previously known RNA genomes (20–34 kb in positive-stranded nidoviruses, including coronaviruses) is associated with the acquisition of a proofreading exoribonuclease (ExoN) encoded in the open reading frame 1b (ORF1b) in a monophyletic subset of nidoviruses. However, apparent constraints on the size of ORF1b, which encodes this and other key replicative enzymes, have been hypothesized to limit further expansion of these viral RNA genomes. Here, we characterize a novel nidovirus (planarian secretory cell nidovirus; PSCNV) whose disproportionately large ORF1b-like region including unannotated domains, and overall 41.1-kb genome, substantially extend the presumed limits on RNA genome size. This genome encodes a predicted 13,556-aa polyprotein in an unconventional single ORF, yet retains canonical nidoviral genome organization and expression, as well as key replicative domains. These domains may include functionally relevant substitutions rarely or never before observed in highly conserved sites of RdRp, NiRAN, ExoN and 3CLpro. Our evolutionary analysis suggests that PSCNV diverged early from multi-ORF nidoviruses, and acquired additional genes, including those typical of large DNA viruses or hosts, e.g. Ankyrin and Fibronectin type II, which might modulate virus-host interactions. PSCNV's greatly expanded genome, proteomic complexity, and unique features–impressive in themselves–attest to the likelihood of still-larger RNA genomes awaiting discovery. RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication. The upper genome size for such entities was assumed to be <35 kb; conversely, the minimal cellular DNA genome is in the 100–300 kilobase (kb) range. This large difference presents a daunting gap for the proposed evolution of contemporary DNA-RNP-based life from primordial RNP entities. Here, we describe a nidovirus from planarians, named planarian secretory cell nidovirus (PSCNV), whose 41.1 kb genome is 23% larger than any riboviral genome yet discovered. This increase is nearly equivalent in size to the entire poliovirus genome, and it equips PSCNV with an unprecedented extra coding capacity to adapt. PSCNV has broken apparent constraints on the size of the genomic subregion that encodes core replication machinery in other nidoviruses, including coronaviruses, and has acquired genes not previously observed in RNA viruses. This virus challenges and advances our understanding of the limits to RNA genome size.
Collapse
Affiliation(s)
- Amir Saberi
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Anastasia A. Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - John L. Brubacher
- Department of Biology, Canadian Mennonite University, Winnipeg, Canada
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail: (PAN); (AEG)
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (PAN); (AEG)
| |
Collapse
|
21
|
Graham RL, Deming DJ, Deming ME, Yount BL, Baric RS. Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol 2018; 1:179. [PMID: 30393776 PMCID: PMC6206136 DOI: 10.1038/s42003-018-0175-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Emerging and re-emerging zoonotic viral diseases are major threats to global health, economic stability, and national security. Vaccines are key for reducing coronaviral disease burden; however, the utility of live-attenuated vaccines is limited by risks of reversion or repair. Because of their history of emergence events due to their prevalence in zoonotic pools, designing live-attenuated coronavirus vaccines that can be rapidly and broadly implemented is essential for outbreak preparedness. Here, we show that coronaviruses with completely rewired transcription regulatory networks (TRNs) are effective vaccines against SARS-CoV. The TRN-rewired viruses are attenuated and protect against lethal SARS-CoV challenge. While a 3-nt rewired TRN reverts via second-site mutation upon serial passage, a 7-nt rewired TRN is more stable, suggesting that a more extensively rewired TRN might be essential for avoiding growth selection. In summary, rewiring the TRN is a feasible strategy for limiting reversion in an effective live-attenuated coronavirus vaccine candidate that is potentially portable across the Nidovirales order.
Collapse
Affiliation(s)
- Rachel L Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC, 27599, USA
| | - Damon J Deming
- Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Food and Drug Administration, 10933 New Hampshire Avenue, Bldg 22, Rm 6170, Silver Spring, MD, 20993, USA
| | - Meagan E Deming
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- University of Maryland Medical Center, Department of Medicine, Division of Infectious Disease, Institute of Human Virology, 725 West Lombard Street, Room 211A, Baltimore, MD, 21201, USA
| | - Boyd L Yount
- Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Di H, Morantz EK, Sadhwani H, Madden JC, Brinton MA. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018; 525:150-160. [PMID: 30286427 DOI: 10.1016/j.virol.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Esther K Morantz
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Joseph C Madden
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
23
|
Stewart H, Brown K, Dinan AM, Irigoyen N, Snijder EJ, Firth AE. Transcriptional and Translational Landscape of Equine Torovirus. J Virol 2018; 92:e00589-18. [PMID: 29950409 PMCID: PMC6096809 DOI: 10.1128/jvi.00589-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.
Collapse
Affiliation(s)
- Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Vanmechelen B, Vergote V, Laenen L, Koundouno FR, Bore JA, Wada J, Kuhn JH, Carroll MW, Maes P. Expanding the Arterivirus Host Spectrum: Olivier's Shrew Virus 1, A Novel Arterivirus Discovered in African Giant Shrews. Sci Rep 2018; 8:11171. [PMID: 30042503 PMCID: PMC6057926 DOI: 10.1038/s41598-018-29560-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
The family Arteriviridae harbors a rapidly expanding group of viruses known to infect a divergent group of mammals, including horses, pigs, possums, primates, and rodents. Hosts infected with arteriviruses present with a wide variety of (sub) clinical symptoms, depending on the virus causing the infection and the host being infected. In this study, we determined the complete genome sequences of three variants of a previously unknown virus found in Olivier's shrews (Crocidura olivieri guineensis) sampled in Guinea. On the nucleotide level, the three genomes of this new virus, named Olivier's shrew virus 1 (OSV-1), are 88-89% similar. The genome organization of OSV-1 is characteristic of all known arteriviruses, yet phylogenetic analysis groups OSV-1 separately from all currently established arterivirus lineages. Therefore, we postulate that OSV-1 represents a member of a novel arterivirus genus. The virus described here represents the first discovery of an arterivirus in members of the order Eulipotyphla, thereby greatly expanding the known host spectrum of arteriviruses.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | - Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | | | | | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, Maryland, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, Maryland, 21702, USA
| | - Miles W Carroll
- Research & Development Institute, National Infections Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium.
| |
Collapse
|
25
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
26
|
Di H, McIntyre AA, Brinton MA. New insights about the regulation of Nidovirus subgenomic mRNA synthesis. Virology 2018; 517:38-43. [PMID: 29475599 PMCID: PMC5987246 DOI: 10.1016/j.virol.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 01/19/2023]
Abstract
The members of the Order Nidovirales share a similar genome organization with two overlapping nonstructural polyproteins encoded in the 5' two-thirds and the structural proteins encoded in the 3' third. They also express their 3' region proteins from a nested set of 3' co-terminal subgenomic messenger RNAs (sg mRNAs). Some but not all of the Nidovirus sg mRNAs also have a common 5' leader sequence that is acquired by a discontinuous RNA synthesis mechanism regulated by multiple 3' body transcription regulating sequences (TRSs) and the 5' leader TRS. Initial studies detected a single major body TRS for each 3' sg mRNA with a few alternative functional TRSs reported. The recent application of advanced techniques, such as next generation sequencing and ribosomal profiling, in studies of arteriviruses and coronaviruses has revealed an expanded sg mRNA transcriptome and coding capacity.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Ayisha A McIntyre
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|